• Search Menu
  • Editor's Choice
  • Author Guidelines
  • Submission Site
  • Open Access
  • About Journal of Cybersecurity
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Exposure to cyberattacks and policy attitudes, the mediating role of threat perceptions, experimental method.

  • < Previous

Cyberattacks, cyber threats, and attitudes toward cybersecurity policies

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data

Keren L G Snider, Ryan Shandler, Shay Zandani, Daphna Canetti, Cyberattacks, cyber threats, and attitudes toward cybersecurity policies, Journal of Cybersecurity , Volume 7, Issue 1, 2021, tyab019, https://doi.org/10.1093/cybsec/tyab019

  • Permissions Icon Permissions

Does exposure to cyberattacks influence public support for intrusive cybersecurity policies? How do perceptions of cyber threats mediate this relationship? While past research has demonstrated how exposure to cyberattacks affects political attitudes, the mediating role played by threat perception has been overlooked. This study employs a controlled randomized survey experiment design to test the effect of exposure to lethal and nonlethal cyberattacks on support for different types of cybersecurity policies. One thousand twenty-two Israeli participants are exposed to scripted and simulated television reports of lethal or nonlethal cyberattacks against national infrastructure. Findings suggest that exposure to cyberattacks leads to greater support for stringent cybersecurity regulations, through a mechanism of threat perception. Results also indicate that different types of exposure relate to heightened support for different types of regulatory policies. People exposed to lethal cyberattacks tend to support cybersecurity policies that compel the government to alert citizens about cyberattacks. People who were exposed to nonlethal attacks, on the other hand, tend to support oversight policies at higher levels. More broadly, our research suggests that peoples’ willingness to accept government cybersecurity policies that limit personal civil liberties and privacy depends on the type of cyberattacks to which they were exposed and the perceptions associated with such exposure.

In recent years, the increase in civilian exposure to cyberattacks has been accompanied by heightened demands for governments to introduce comprehensive cybersecurity policies. These demands peaked in the aftermath of the 2021 Colonial Pipeline and SolarWinds cyberattacks, where the US government's lack of access to cybersecurity information in critical industries wrought havoc on the country's national and economic security. In the aftermath of these attacks, lawmakers and the public exhibited newfound enthusiasm for legislation that would mandate cyberattack reporting by private enterprises—accelerating a regulatory trend that has existed for several years [ 1 ]. In 2020, for example, 40 US states and territories introduced more than 280 cybersecurity related bills and resolutions [ 2 , 3 ]. A similar process has taken place in Europe [ 4 ] and in Israel [ 5 , 6 ].

The public willingness to accept government policies and regulations that limit personal civil liberties and privacy is part of a delicate tradeoff between security and privacy. In some ways, privacy is seen as an adequate cost of enhanced personal and societal security in the face of novel threats. However, the public has grown increasingly sensitive to the importance of online privacy, and is keenly aware of the ethical, political, legal, and rights-based dilemmas that revolve around government monitoring of online activity and communications [ 7 , 8 ].

The debate on digital surveillance centers on how and whether authorities should gain access to encrypted materials, and raise key questions concerning the extent of state interference in civic life, and the protection of civil rights in the context of security. Yet what lies at the heart of this willingness to accept government policies and regulations that limit personal civil liberties and privacy via increasing public demand for government intervention in cybersecurity? Does exposure to different types of cyberattacks lead to heightened support for different types of regulatory policies? And does the public differentiate between interventionist and regulatory forms of cybersecurity policies?

To test these questions, we ran a controlled randomized survey experiment that exposed 1022 Israeli participants to simulated video news reports of lethal and nonlethal cyberattacks. We argue that public support for governmental cybersecurity measures rises as a result of exposure to different forms of cyberattacks, and that perceived threat plays a mediating role in this relationship. More specifically, we propose that exposure to initial media reports about cyberattacks is a key to the exposure effect, since at this time the threat is magnified and the public has minimal information about the identity of the attacker and the type of cyberattack that was conducted. Past events show that in many cases, the public internalizes the details of an attack in its immediate aftermath when media reports are heaviest. While later reports in the days and weeks following an attack will include far more detailed information, the damage by this time has already been done and the public is already scared and alert.

Further to this, we suggest that the literature has erroneously pooled together all cyber regulatory policies under a single banner of cybersecurity. We propose that civilian exposure to different types of cyberattacks leads to increased support for different and specific cybersecurity policies. We therefore differentiate between support for policies that focus on alerting the public in cases of cyberattacks and others that call for oversight of cybersecurity. In examining how exposure to cyberattacks influences support for these specific policy positions, we distinguish between the outcome of cyberattacks—lethal attacks that cause lethal consequences as a first- or second-degree outcome of the attack, versus nonlethal attacks that merely involve financial consequences. This more nuanced breakdown of exposure types and policy options can help officials contend with certain policy debates without the need for a one-size-fits-all policy. For example, reservations expressed by conservative/libertarian scholars who are concerned about government intervention in the commercial marketplace need not disqualify all forms of cybersecurity policy [ 9 ]. Likewise, the reservations of those concerned with individual privacy violations need not lead to the denunciation of all policies [ 10 ].

To ground this analysis of how the public responds following exposure to both lethal and nonlethal cyberattacks, we apply theories associated with the literature on terrorism and political violence. These theories offer sophisticated mechanisms that explain how individual exposure to violence translates into political outcomes—including demands for government intervention and policymaking. This approach is especially applicable in the digital realm as cyberattacks track a middle ground between technological breakthroughs that constitute tactical developments and new strategic weapons [ 11 ]. The consequence of such ambiguity is that civilians who are exposed to digital political threats can only identify the outcomes of the attack—i.e. whether it is a lethal or nonlethal cyberattack—while the motivations and identities of attackers often remain veiled, or at least unsettled. In light of these attributional challenges, and reflecting the fact that the public typically operates in a low-information environment, we refrain from declaring that the cyberattacks that appear in our experimental manipulations are cybercrime, cyberterrorism, cyber-vandalism, or any other type of attack. Rather, we refer to all attacks under the general heading of "cyberattacks," leaving all respondents to react to the attacks in a way that they see as appropriate in light of the severity of the reported outcome.

The most common form of cyberattack is cybercrime. Reports of data breaches resulting from cyberattacks by criminal organizations show a growth of more than threefold between 2011 and 2018 [ 12 ]. In the first half of 2019 alone, the United States Treasury Department announced that there had been 3494 successful cyberattacks against financial institutions resulting in colossal financial losses and the capture of personal information relating to hundreds of millions of people [ 13 ]. Cyberattacks executed by terror organizations are a newer phenomenon, albeit one that has captured the popular imagination. While terror organizations predominantly make use of cyberspace for fundraising, propaganda, and recruitment [ 14 , 15 ], a recent development has been the next-generation capacity of cyber strikes to trigger lethal consequences, be it through first- or second-order effects. 1 We acknowledge that scholars have expressed some skepticism about the likelihood of impending destructive cyberterror incidents [ 16–18 ], yet national security officials have regularly predicted that lethal cyberattacks pose a "critical threat" [ 19 ]. In the last decade, the nature of this threat has evolved from the earlier depictions of an apocalyptic cyber "pearl harbor" that would ravage modern society from the shadows [ 20 ], to a more nuanced understanding that cyberattacks, while still posing a threat to critical infrastructure, are more likely to manifest through targeted strikes. For example, in April 2020, Israel narrowly averted a cyberattack targeting civilian water networks that would have killed scores of civilians by adding chlorine to the water supply [ 19 ]. Other physically destructive cyberattacks have caused explosive damage to critical infrastructure [ 21 ], while researchers have experimentally verified the ability of malicious digital actors to hack pacemakers and insulin pumps [ 22 ]. While the lethal stature of cyberattacks is still developing, these incidents establish the bona fides of this impending threat and the importance of understanding how the public responds to this type of event.

The discussion that follows has four parts. We begin by examining the theory of how exposure to violence translates into policy preferences, with a particular focus on the mediating role of threat perception. Second, we discuss the design of our controlled, randomized experiment that exposes participants to television news reports of lethal and nonlethal cyberattacks. Third, we present our main results and consider various mediation models that pertain to the different regulatory subsets. We conclude by discussing the implications of our findings for the study of cybersecurity and cyber threats more generally.

Civilians who are exposed to political violence often suffer from feelings of trauma, anxiety, and helplessness in the face of threatening external forces [ 23–25 ]. These emotional responses—whether caused by acts of cyber or conventional violence—are known to cause shifts in political attitudes. Research has shown how exposure to conventional terrorism, which targets civilians and disrupts their daily routines, has an impact on individuals’ support for attitudes toward peace and compromise with the other [ 26 ], political conservatism [ 27 ], exclusionism [ 28 ] and intragroup relations [ 29 ].

Despite the sizeable literature dealing with the effects of exposure to violence, few studies directly investigate the effects of exposure to destructive cyberattacks. This is despite the growing recognition that these threats have become a very tangible part of modern life. In a complex scenario described in the Tallinn Manual 2.0 on the International Law Applicable to Cyber Warfare, the authors contemplated how new forms of cyberattacks could be used to “acquire the credentials necessary to access the industrial control system of a nuclear power plant… with the intent of threatening to conduct cyber operations against the system in a manner that will cause significant damage or death…” [ 30 ]. Even more recently, reports have acknowledged how cyberterror attacks could immobilize a country's or region's electrical infrastructure [ 31 ], disable military defense systems [ 32 ], and even imperil nuclear stability [ 33 ]. While there is a difference between capability and intent, and we acknowledge that physically destructive cyber threats have remained scarce until now, understanding how civilians respond to such digital cyberattacks will become particularly important as the threat matures.

Studies that directly investigated exposure to digital political violence found that exposure had significant effects on political behavior and attitudes, akin to exposure to conventional political violence [ 34 , 35 ]. In a series of exploratory studies regarding the phenomena of cyberterrorism, Gross et al . [ 34 , 36 ] sought to empirically measure the effects of exposure to cyberterrorism under controlled experimental conditions. Their key finding was that exposure to cyberterrorism was severe enough to generate significant negative emotions and cognitive reactions (threat perceptions) at equivalent levels to those of conventional terror acts. Canetti et al . [ 37 ] found that victims of cyberattacks react by demanding government protection, with psychological distress explaining the relationship between exposure and the demand for government intervention. In a subsequent biologically focused experiment, Canetti et al . measured cortisol levels to show how participants who are exposed to cyberterror attacks and experience higher levels of stress are more likely to support hardline retaliatory policies [ 38 ].

Building on this foundation, other research has sought to refine a more precise psycho-political mechanism that understands how cyberattacks trigger shifts in political attitudes. Research by Shandler et al . [ 39 , 40 ], e.g. found that only lethal cyberattacks cause political consequences akin to conventional political violence, and that only the emotion of anger explained these shifts.

In the current paper, we aim to add to this emerging body of research by examining the topic of cybersecurity preferences in the aftermath of lethal and nonlethal cyberattacks. While one past study by Cheung-Blunden et al . [ 41 ] examined how emotional responses to cyber incidents sway cybersecurity preferences, no research has yet attempted to analyze how different types of cyberattacks affect different kinds of cybersecurity policies. As such, we add much needed nuance to the literature.

For the purpose of considering the effects of exposure to cyberattacks, this research focuses on the "outcome" of a cyberattack rather than the "identity" of the perpetrator or the "classification" of the attack. This is necessary for several reasons that relate to the specific characteristics of cyberspace. First, as introduced above, a new class of cyberattack exemplified by the ransomware epidemic has exhibited characteristics of both cybercrime and cyberterror operations, impeding the classification of cyber incidents into simple categories. Second, attribution in cyberspace is fraught with difficulty, and an age of manipulated information complicates the determination of provenance [ 42–44 ]. Sophisticated cyber operatives working from anywhere in the world can exploit the principle of anonymity that underlies the Internet infrastructure to hide their identity. Though authorities would be able to quickly identify the identity of an attacker behind any major cyberattack [ 42 ], this is essentially impossible for members of the public who are confronted with both structural and technical obstacles that prevent them from rendering an objective judgement about the attack source. This reality of publicly obscured cyber antagonists can be viewed in the timelines of several famous cyber incidents. It took between six months and three years for authorities and private actors to publicly reveal the actors behind the 2017 WannaCry attacks, the 2016 cyber intrusion into the Democratic National Committee's networks, and the 2016 cyberattack against the Bowman Dam in New York [ 45–47 ]. While each of these incidents were eventually attributed to an attack source, and the authorities may well have known the identity of the attacker from an early date, we can see that from the perspective of the public, there was a time lag of several months or years before a name was attached to any attack. Third, state involvement in cyberattacks—either as a direct attacker or via proxies—can add substantial background noise to the perception of an attack, raising the specter of interstate war. There is an interesting debate in the literature about whether states may be deemed capable of conducting cyberterrorism—or whether this is a label that can only be applied to nonstate actors. While the literature is still unsettled on this point, Macdonald, Jarvis and Nouri [ 48 ] found considerable expert support for the proposition that states can engage in cyberterrorism.

It is for these reasons that we choose to follow the lead of the scholars who are beginning to evaluate responses to cyber threats through the prism that is most readily available for the public—specifically, the outcome variable, or in other words, the lethality of the attack [ 33 ]. This focus on outcome rather than attacker is necessary in order to understand the factors that prompt emotional and political responses in the public. While these information asymmetries explain our focus on the outcome of the attack rather than the identity of the attacker, we acknowledge that the people draw inferences about the identity and motivations of attackers based on prior experiences and political orientation [ 49 ]. Liberman and Skitka's vicarious retribution theory [ 50 , 51 ] demonstrates how the public may impute responsibility to unrelated or symbolically related offenders when the identity of an attacker is unclear. Nonetheless, maintaining the highest standards of ecological validity demands that attribution and attack categorization is absent in initial public reports of cyber incidents.

Under this framework, we hypothesize that:

Hypothesis 1: Exposure to (i) lethal or (ii) nonlethal cyberattacks will lead to greater support for adopting cybersecurity policies compared with people who were not exposed to any cyberattack. In other words, exposure to cyberattacks—lethal (LC) or nonlethal (NLC)—will increase support for adopting cybersecurity policies, as compared with a control group.

Hypothesis 2: People who are exposed to lethal cyberattacks (LC) will exhibit to higher support for adopting cybersecurity policies than people who are exposed to nonlethal cyberattacks (NLC).

Civilians are notoriously weak at accurately assessing security threats—a fact that is amplified in the cyber realm due to low cybersecurity knowledge, general cognitive biases in calculating risk, and the distortion of cyber risks by the media, which focuses predominantly on spectacular yet low-likelihood attacks [ 52–54 ]. Perceived risk is partly reliant on the scope of the attack to which people are exposed. Victims of cybercrimes (identity theft and cyber bullying) report moderate or severe emotional distress such as anger, fear, anxiety, mistrust, and loss of confidence [ 55 ]. The effects of conventional terrorism include post-traumatic stress, depression, and anticipatory anxiety [ 56 , 29 ]. In both of these cases, threat perception is a common predictor of political attitudes and behavior. Indeed, the best predictor of hostile out-group attitudes is the perceived threat that out-group members will harm members of the in-group, whether physically, economically or symbolically [ 28 , 57 , 58 ]. In many of the studies cited above, threat perception was found to mediate the relationship between exposure to violence and support for harsh or restrictive policies, especially in conflict-related contexts [ 27 ]. Extending this empirical and theoretical evidence to digital political violence suggests that individuals are likely to respond similarly to cyber threats by supporting strong cybersecurity policies through the interceding influence of heightened threat perception.

A set of early studies compared the level of threat evoked by exposure to different forms of cyber threats, identifying key differences in the how cybercrime and cyberterrorism influenced attitudes toward government policy [ 34 , 36 ]. These studies concluded that direct exposure to cyberterrorism had no effect on support for hardline cybersecurity policies (increased digital surveillance, the introduction of intrusive new regulations), but threat perceptions relating to cyberterrorism successfully predicted support for these policies. Recognizing therefore that threat perception plays a central role in understanding the response to cyberattacks, we predict that

Hypothesis 3: Cyber threat perception will mediate the relationship between individual exposure to cyberattacks and support for cybersecurity policies.

To test our hypotheses, we conducted a controlled survey experiment that exposed respondents to simulated news reports about major cyberattacks. The experimental manipulation relied on professionally produced original video clips that broadcast feature news reports. The lethal treatment group viewed a feature report discussing several lethal cyberattacks that had taken place against Israeli targets, while the nonlethal treatment group broadcast a collection of stories pertaining to nonlethal cyber incidents (see below for additional details about each manipulation). The control group did not watch any news report.

We utilized the medium of video news reports for our experimental manipulation since experiments in recent years have shown how broadcast videos and media reports of major attacks arouse strong emotions among viewers, which in turn trigger reevaluations of policy positions and political attitudes related to issues of security [ 35 , 59 , 60 ]. The rationale behind these finding can be partly explained by Terror Management Theory, which explains how even indirect exposure to violent acts triggers potent emotional reactions as people confront threats to their mortality [ 61 , 62 ]. Just as importantly, news reports are a key avenue by which the public learns about major security incidents, and so this method maintains its ecological validity. Each of the groups completed a pre- and post-survey, answering a series of questions about their attitudes to cybersecurity along with relevant sociodemographic information.

Each of the television news reports was presented as an authentic feature story that appeared on Israeli channel 1 television station. The news reports described the global scale of cyber threats facing the public (i.e. two million malicious web sites launch each month and 60 000 new malware programs appear every day at an annual cost to the global economy of 500 billion dollars). The clips were screened in a feature format using on-camera interviews, voiceover and film footage to describe various cyberattacks. To increase the authenticity of the experience, the reports included interviews with well-known Israeli security experts. To mimic the challenges of cyber attribution, the perpetrators of the attacks described in the videos were not identified and were neutrally referred to as cyber operatives. Each video lasted approximately 3 min.

Lethal Cyber Condition—The television news report described various cyberattacks with lethal consequences that had targeted Israel during the previous years. For example, in one of the featured stories, an attack was revealed to have targeted the servers controlling Israel's electric power grid, cutting off electricity to a hospital and causing deaths. In another story, cyber operatives were said to have attacked a military navigation system, altering the course of a missile so that it killed three Israeli soldiers. A third story concerned the use of malware to infect the pacemaker of the Israeli Defense Minister, and a fourth involved the failure of an emergency call to 10 000 military reserve soldiers due to a cyberattack in which foreign agents changed the last digit of the soldiers’ telephone numbers in the military database. The video's interviews with well-known figures from Israel's security sector emphasized the life-threatening danger posed by cyberattacks.

Nonlethal Cyber Condition—The television news report revealed various nonlethal cyberattacks that had targeted Israel during recent years. For example, the broadcast explained how mobile phone users are made vulnerable to attackers by installing new games and applications, potentially introducing malware that can later access data like personal messages or financial details. Another example concerned the dangers posed by the Internet of Things and featured a story in which all the major credit cards companies suspended their customer support after hundreds of thousands of citizens were fraudulently charged for food purchases by their smart refrigerators. The Israeli experts in this video emphasized the potential financial damage from cyberattacks.

Participants

The online survey experiment was administered in Israel during September 2015 via the Midgam Survey Panel. One thousand twenty-two participants were randomly assigned to the three groups (lethal condition: N  = 387; nonlethal condition: N  = 374; control group: N  = 361). The experimental sample represents a random cross-section of the Jewish Israeli population. The sample is largely representative of the wider population, and balance checks reveal that the treatment distribution is acceptable. We note that due to data collection constraints, the sample does not include ultra-orthodox (religious) respondents due to difficulties in accessing this subgroup through online methods. The mean age of the participants was 41 (SD = 14.81), and gender distribution of 49.96% male and 50.04% female. With respect to political orientation, 44.35% of the sample define themself as right-wing ( N  = 452), 38.28% themselves as centrist ( N  = 390), and 17.37% as left-wing ( N  = 177) (this reflects the right-wing slant of the Israeli population that has been apparent in recent elections). The distribution of education and income levels was similar across the three groups (Education: F(2, 1120) = 0.20, P  < 0.82; Income: F(2, 1045) = 0.63, P  < 0.53). Sociodemographic characteristics of the participants are presented in Appendix A (Supporting Information), together with experimental balance checks.

The experiment incorporated three primary variables: the predictor variable (exposure to cyberattacks), the dependent variable (support for cybersecurity policies), and the mediator variable (threat perception). Sociodemographic measures were also collected.

Predictor variable—exposure to cyberattacks

Exposure to cyberattacks was operationalized by random assignment to one of the three experimental treatments described above—lethal cyberattacks/nonlethal cyberattacks/control condition.

Dependent variable: support for cybersecurity policies

Support for cybersecurity policies was examined using twelve questions taken from two scales developed by McCallister and Graves [ 63 , 64 ]. After separating out one item that reflected a unique form of cybersecurity policy, the remaining items were subjected to a principal component analysis (PCA), which highlighted different aspects of cybersecurity policy. Our criteria for the factor dimension extraction was an eigenvalue greater than one for number of dimensions, and factor loading greater than 0.35, for dimension assignment. We applied the PCA extraction method with the Varimax rotation to construct orthogonal factors [ 65 ]. This procedure gave rise to two clearly distinguishable cyber policy dimensions. Following this process, we combined the two remaining items that were excluded due to poor loadings (loading < 0.35) to create a third policy dimension with a high correlation between the items ( r  = 0.617, P  < 0.001) (see Appendix B in the Supporting Information for the PCA and complete list of the items used to construct each scale). The final three measures of cybersecurity policies reflected the breadth of available policy options, which emphasized different levels of government intervention and oversight strategies. The first of these is cybersecurity prevention policy (CPP); the second is cybersecurity alert policy (CAP); and the third is cybersecurity oversight policy (COP).

The cybersecurity prevention policy dimension (CPP) captures the idea that the state should mandate commercial companies to implement minimum levels of cybersecurity to prevent damage. Respondents were asked questions such as: “should the state compel business owners to protect themselves against cyberattacks?” Cronbach's α was within an acceptable range at 0.720.

The cybersecurity oversight policy dimension (COP) refers to the notion that the state should directly intervene to offer cyber protection to its citizens and businesses. Relevant questions for this dimension included “should the state protect its citizens from cyberattacks?” Cronbach's α was within an acceptable range at 0.737.

The cybersecurity alert policy dimension (CAP) relates to the state's presumed responsibility to ensure citizens are alerted when a hack of a cyberattack is discovered. For example, a related question would ask: “should the state alert citizens after a successful attack on critical infrastructure?” As opposed to the prevention policy dimension that relates to measures that must be taken before a cyberattack, the alert policy focuses on the measures to be taken after an attack. Cronbach's α was slightly below acceptable range at 0.632. All questions were measured on a scale ranging from 1 (“completely disagree”) to 6 (“completely agree”).

Mediator: perceptions of cybersecurity threats

Threat perception pertaining to cyber threats was gauged using a five-item scale based on studies conducted in the United States [ 66 ]. Respondents were asked how concerned they feel about the possibility of an actual threat to their security. Respondents answered questions including: “To what extent does the idea of a cyberattack on Israel affect your sense of personal security?” and “To what extent does a cyberattack on Israel threaten the country's critical infrastructure?,” and the answers ranged from 1 (“not at all”) to 6 (“to a very great degree”). The internal consistency of this measure was very high (Alpha = 0.913).

Control variables

Control variables collected included political ideology (assessed through a self-reported five-point scale ranging from 1 [very conservative] to 5 [very liberal]), age, gender, marital status, religiosity, education, and income.

We also measured and controlled for participants’ past exposure to cyberattacks. To measure this variable, we adapted a four-item scale used to measure exposure to terrorism and political violence [ 67 , 35 ]. Items included questions that asked the extent to which the respondents, their friends and their family had ever suffered harm or loss from a cyberattack. Similarly to past studies, we did not calculate the internal reliability for past exposure, given that one type of exposure does not necessarily portend another type.

Preliminary analyses

We begin our analysis by testing the variance between the treatment groups regarding attitudes toward cybersecurity policies, to establish that the experimental conditions produce at least minimal levels of differences in the dependent variables. Hence, we conducted a one-way univariate analysis of variance (ANOVA), in which the different cyber policies were the dependent variables. The results indicated differences between the three groups in support for policies regarding cybersecurity alerts (CAP: F(2, 1020) = 4.61, P  < 0.010). No differences between groups were found in support for cybersecurity prevention policy or cybersecurity oversight policy (CPP: F(2, 1020) = 1.35, P  < 0.259; COP: F(2, 1020) = 0.94, P  < 0.39). We followed the CAP ANOVA analysis with pairwise comparisons using Bonferroni corrections, which revealed that the highest level of support for cybersecurity alerts was expressed by the group exposed to lethal cyberattacks on average, while the other two groups showed lower levels of support for this policy. These results support the conclusion that the differences in cybersecurity policy preferences between the three groups derive from the video stimulus, and not from differences in participants’ sociodemographic characteristics (see Appendix C in the Supporting Information for means and standard deviations of study variables, in all three manipulation groups).

In addition, we tested group differences regarding threat perceptions and found significant differences in threat perceptions between the three groups (F(2, 1020) = 21.68, P  < 0.001). The follow up pairwise comparisons with Bonferroni corrections, revealed that participants in both experimental groups (LC and NLC) expressed higher levels of threat perceptions in comparison to participants in the control group. These analyses provide sufficient preliminary support to conduct more complex analyses that integrate multiple effects in this triangle of exposure to cyberattacks, cyber threat perception, and support for cybersecurity policies.

Mediation analysis

To test hypothesis 3, we ran a path analysis model, i.e. a structural equation modeling with observed indicators only. In this model, the exposure was divided into lethal vs control and nonlethal vs control. More specifically, with regard to the mediation effect, the model structure included two pathways from the experimental conditions to support for cybersecurity policies: From the lethal vs control, and from nonlethal vs control through threat perceptions. The latter variable was expected to mediate the effect condition effects on cyber policy positions as proposed in the theory section.

In order to further investigate the mediation mechanism, we constructed an integrative path analysis model [ 53 ]. Running this model enables us to identify direct and indirect effects among all the study variables. We provide modeling results in the following Table 1 and an illustration of the path analysis model in Fig. 1 .

Empirical model results—direct effects of exposure to lethal and nonlethal attack groups vs control group. *P < 0.05, **P < 0.01, ***P < 0.001.

Empirical model results—direct effects of exposure to lethal and nonlethal attack groups vs control group. * P  < 0.05, ** P  < 0.01, *** P  < 0.001.

Path: analysis direct effects, standardized estimates

Standard error in parentheses; * P  < 0.05, ** P  < 0.01, *** P  < 0.001. NLC = non-ethal cyberattack; LC = lethal cyberattack.

Direct effects

Table 1 presents the results of the standardized estimates (beta coefficients) of each experimental group vis-à-vis the control group (i.e. NLC vs control, and LC vs control), perceptions of threat, past exposure to cyberattacks and socio demographic variables—gender, religiosity, education and political ideology—with the three dimensions of cybersecurity policies as the dependent variables. In the pairwise comparison of the experimental groups, which compares the lethal and nonlethal conditions to the control group, we find a larger direct effect in the LC (lethal) group compared with the NLC (nonlethal) group in predicting support for CAP.

A follow-up that compared the two regression weights further confirmed the stronger relative effect of the lethal exposure over the nonlethal exposure (H 2 : NLC-LC = −0.21 (0.10), P  = 0.047). This demonstrates support for our second hypothesis. People who were exposed to lethal cyberattacks tended to support cybersecurity policies that compel the government and security forces to alert citizens if they have evidence of citizens’ computers being hacked or if an act cyberattack is discovered (CAP) at higher levels than people who were exposed to nonlethal/economic cyberattacks compared with people in the control group.

Interestingly, this trend was reversed for the oversight policies (COP) form of cybersecurity regulation. Here, we identified a significant direct effect wherein exposure to nonlethal cyberattacks led to support for oversight policies (COP) at higher levels than respondents who were exposed to the lethal cyberattacks manipulation or the control group. However, the difference between the two treatment conditions was not significant (NLC-LC = 0.11(0.08), P  = 0.16). This indicates that exposure to any kind of cyberattack, lethal or nonlethal, predicts greater support for oversight regulation policies (COP) to the same extent. No direct effect was found between exposure to cyberattacks and support for prevention regulation policies (CPP). By breaking apart this analysis into different dimensions of cybersecurity polices our results reveal how exposure to different forms of cyberattacks contribute to support for distinct types of policy that emphasize oversight or intervention.

Most importantly, results indicate a significant direct effect of threat perceptions on all three dimensions of cybersecurity policy and higher levels of threat perception in the lethal cyber manipulation group compared with the nonlethal cyber manipulation group and the control group.

Mediating effects

Table 2 presents the indirect effects of each of the two treatment conditions in comparison to the control group for the three dimensions of cybersecurity policies—with threat perception as a mediator. The indirect effects are pathways from the independent variable to the policy variables through threat perceptions. In the path analysis model, each dependent variable, i.e. support for particular cybersecurity policies, could have two potential paths, one from the nonlethal condition and the one from the lethal condition. Altogether, six mediation pathways were tested. These indirect outcomes are illustrated in Fig. 1 . In the LC group we see a complete mediation effect of threat perceptions and no significant direct effect of exposure on COP support. This means that for those participants who were exposed to the lethal condition, the actual exposure was not as strong a predictor of policy support as the threat perception associated with the attacks.

Path: analysis mediation effects, standardized estimates

Standard error in parentheses; * P  < 0.05, ** P  < 0.01, *** P  < 0.001. In squared brackets 95% confidence interval with bias correction bootstrapping ( n  = 2000).

In our models predicting CAP, we see a partial mediation effect for both treatment groups, in addition to the direct effect that we described above. We see a larger indirect effect in the LC group than in the NLC group and this was confirmed by a test of difference. This indicates that people who were exposed to lethal cyberattacks reported higher levels of cyber threat perception as compared with people who were exposed to the nonlethal condition, and this heightened threat perception in turn led to more support for various cybersecurity polices.

Support for CAP (i.e. cybersecurity policies whereby the government or relevant organizations are expected to alert citizens if they have evidence of citizens’ computers being hacked or an act of cyberattack being detected) was predicted both by a direct effect of level of exposure to cyberattacks (NLC, LC) and by the mediation of threat perceptions.

Yet our models predicting support for oversight polices (COP) showed a different picture. In the NLC group we see a partial mediation of threat perceptions in addition to the direct effect that we found in the models shown in Table 2 . Support for COP (i.e. cybersecurity policies whereby the state should protect the country, organizations, and citizens from cyberattacks through direct government action) was predicted by a direct effect of NLC exposure and by the mediation of threat perceptions in both LC and NLC groups. In the LC group versus the control group, support of COP was predicted only through the mediation perceptions of threat. These results support our third hypothesis regarding the mediating role played by threat perception in predicting COP.

Our models predicting support for prevention policies (CPP) showed a complete mediation effect of threat perception in both experimental treatment groups. No direct effect of exposure on CPP was found, indicating that the mediating mechanism is the best predictor for CPP. Support for CPP (i.e. cybersecurity policies whereby the state compels commercial enterprises to install minimum thresholds of cybersecurity) was predicted by the indirect effect of threat perception.

These results emphasize the central role played by threat perception in predicting support for adopting stringent cybersecurity policies. What is especially noteworthy is that threat perception overrides past experience as the full mediation models indicate. For example, we found that when people are exposed to destructive cyberattacks, the level of perceived threat predicted support for adopting cybersecurity policies that required the state to protect citizens and organizations (COP). Similarly, we found that when it comes to predicting support for prevention policies—threat is the driving force.

In order to complement the indirect effect analyses and test the relative strength of the mediation pathways, we contrasted the indirect effects of the various groups on each policy option. According to the outcome estimates in Table 2 , model 3 has a significantly larger mediation effect compared with model 1 (difference = –0.014; 0.024 P  < 0.001) 2 , which indicates that within the NLC group, the mediation model is a stronger predictor of support for COP than CAP. In other words, participants who were exposed to the nonlethal condition were more likely to support oversight polices than alert policies.

Our findings draw on an experimental design that suggests that exposure to different types of cyberattacks intensifies perceptions of cyber threats and shifts political attitudes in support of stringent cybersecurity policies. We find that exposure to lethal cyberattacks affects individual-level political behavior in a manner akin to conventional terrorism [ 68–71 ]. This research was motivated by a desire to better understand what drives individuals to support strong or hardline cybersecurity policies, using Israel as a case study. The findings contribute to this research direction in a number of important ways.

First, exposure to lethal cyberattacks heightens perceptions of cyber threat to a greater degree than nonlethal/economic cyberattacks. Second, as a result of exposure to cyberattacks, respondents were willing to forfeit civil liberties and privacy in exchange for more security. Like conventional terrorism, cyberattacks with lethal consequences harden political attitudes, as individuals tend to support more government oversight, greater regulation of cybersecurity among commercial businesses, and the implementation of strategies to increase public awareness following cyberattacks. Third, our data suggest that in some cases the mere exposure to cyberattack, either lethal or nonlethal, affects the level of support for specific types of cybersecurity polices (stronger support of cybersecurity alert policies among participants in the lethal cyberattack manipulation, and stronger support of cybersecurity oversight policy among participants in the nonlethal cyberattack treatment group). In other cases, threat perception, rather than the exposure to the cyber-events themselves, drive the cognitive effects of cyberattacks on attitudes toward policy (A strong support for COP among the LC group was predicted only through the mediating role of threat perception, and support of CPP, in both manipulation groups was predicted only through a mediated pathway). Finally, we observed differences in the way our mediation model works in relation to different cybersecurity policies. The mediation model for the nonlethal condition group participants predicted greater support for cybersecurity policies focusing on oversight rather than policies focusing on alerting the public.

Our study examined public support for three distinct types of cybersecurity policies that we described as prevention policies, alert policies, and oversight policies. Each of these play a role in securing cyberspace, where the uncertainty regarding the form and nature of potential threats calls for a varied array of preventive actions [ 36 , 37 ]. Each of these policies raises questions about the delicate balancing act between privacy and security demands. In reality, policy approaches are likely to combine several of these elements—yet it behooves us to first consider each of them independently since very little is known about the public knowledge and familiarity with different cybersecurity policies. While preliminary research has looked at public support for cybersecurity preferences in general [ 41 ], these have yet to consider the varied approaches to cybersecurity. To that end, in the current paper we tried to simplify the different cybersecurity polices as much as possible based on real-world policies.

Overall, the study provides evidence that exposure to cyberattacks predicts support for cybersecurity policies through the mediating effect of threat perception. Yet our discovery of differential effects depending on the type of cybersecurity policy being proposed adds a new level of nuance that should be probed further in subsequent studies. More so, results indicate that the public worry and concern in the aftermath of cyberattacks leads directly to calls for governmental intervention. This information sheds light on public opinion processes and helps inform our understanding how individuals will likely respond to new cyber threats. It may also help policymakers understand the complex emotions and cognitions evoked by attacks, which can improve policy formulations that respond to the needs of the public.

Future studies should also investigate how fear appeals intervene in this mechanism, and how to motivate people to take cyber threats more seriously in a way that leads to positive behavioral change.

Participants who were exposed to the lethal manipulation supported cybersecurity policies that focus on alerting the public in cases of cyberattacks more than participants in the two other groups. On the other hand, participants who were exposed to the nonlethal manipulation tended to support cybersecurity policies that call for state oversight of cybersecurity. We found no evidence that any type of exposure has a direct effect on support for polices mandating minimum thresholds of cybersecurity in the commercial arena.

One possible explanation for these results is that thus far, cyberattacks have caused economic damage, but lethal cyberattacks that vividly resemble terrorism are a significantly rarer phenomenon. Hence, participants who were exposed to lethal terror cyberattacks supported cybersecurity policies that would alert them and keep them informed about impending cyber threats. Policies that focus on oversight are perceived as less important during violent terror attacks. On the other hand, exposure to nonlethal cyberattacks, which are typically focused on economic gain, is more common. The economic damage caused by cyberattacks is estimated to reach $6 trillion by 2021 [ 72 ]. As such, participants in the nonlethal manipulation may have regarded cyberattacks causing economic damage as more likely and therefore supported polices that will bolster digital protections.

We note a key condition about the temporal nature of these findings. In analyzing the effect of exposure to cyberattacks, this study focuses on people's immediate response following exposure to cyber threats. Assessing people's short-term responses is valuable as the responses speak to the direction of the political and psychological effects. Yet what is missing from this picture (and beyond the scope of our research design), is the longevity of the response, which speaks to the strength of the effect. If the measured distress and political outcomes swiftly dissipate, then the policy relevance of our findings comes into question.

The literature is split on the question of the temporal durability of attitudinal shifts in the aftermath of major attacks. There is one school of thought that holds that most political effects stemming from political violence or terrorism are fleeting, and that the public is broadly desensitized to political violence [ 73–75 ]. Yet a second school of thought suggests that exposure to attacks can trigger prolonged effects and lasting shifts in political and psychological attitudes. Brandon & Silke [ 76 ] assert that while the distress triggered by exposure dissipates over time, this is not an instantaneous process. Several longitudinal studies following the Oklahama bombing and 9/11 found lingering harms, with exposed individuals reporting elevated levels of psychological distress and altered political attitudes for months or years following the event [ 77–79 ].

In applying this to the case of cyberattacks, there is insufficient evidence to positively determine the longevity of the political and psychological effects that we identified in our study. We anticipate that the effects will be more than fleeting, since the novelty of cyber threats means that people have yet to undergo any cognitive or emotional desensitization to cyberattacks [ 80 ]. However, we acknowledge that this this position requires further empirical substantiation in future research.

A central conclusion of this study is that the implementation of cybersecurity regulations should take account of public perception of cyber threats and public exposure to cyberattacks. This position challenges two unspoken yet ubiquitous notions in the field of cybersecurity. First, the formulation of cybersecurity policies—in a manner akin to national security and espionage discussions—has typically taken place without public input due to the perception that it is a question best left to experts with engineering or national security expertise [ 81 ]. Scholars argue that this complete abdication of cybersecurity policy to specialists is a profound mistake, since excluding “the general public from any meaningful voice in cyber policymaking removes citizens from democratic governance in an area where our welfare is deeply implicated” [ 82 ]. Functional cybersecurity relies on good practices by the ordinary public, and the failure of cybersecurity awareness campaigns to effectively change behavior may well be linked to the lack of public input in its regulation [ 81 ]. Our findings indicate that growing civilian exposure to cyberattacks leads to more defined attitudes toward specific cybersecurity regulations through the mechanism of heightened threat perception. Governments will increasingly need to engage the public as one of the stakeholders in effecting new cyber regulations.

A second conceptual dilemma about the role of public exposure and opinion has to do with the question of whether cybersecurity is a public good deserving of government investment and regulation at all. Much of the field of cybersecurity is dominated by private enterprise, with government involvement taking place in limited ways. Support for government intervention in the realm of cybersecurity is premised on the astronomical public costs of cybercrime, the threat of cyberterror attacks, and the claim of a market failure in the provision of cybersecurity whose negative externalities in the absence of government involvement would cause substantial national damage [ 83 ]. A prominent counter-school of thought, resting on a belief that the private market is the most efficient system of allocating economic resources, claims that there is no need for government intervention in the cybersecurity market [ 84 ]. These proponents of private sector cybersecurity suggest that the private sector can more effectively achieve cybersecurity outcomes, an assertion that is backed up by the fact that private spending on cybersecurity in 2018 reached USD $96 billion [ 85 ]. This raises the question of how civilian exposure to cyberattacks and the subsequent support for cybersecurity regulation can translate to real outcomes if the market responds to both public and private interests, which take account of public opinion and civilian threat perception in different ways.

Seeing that cyber threats are continuously evolving, there are opportunities to expand and consolidate this research in future studies. In the current article, we focus on the effect of exposure to lethal and nonlethal cyberattacks on support for different types of cybersecurity policies among Israeli participants. Yet despite this singular geographic focus, the results offer lessons that can be applied widely. Like several other Western countries, Israel has been repeatedly exposed to publicly reported cyberattacks on critical infrastructure. And, similarly to American and some European countries, Israel has high levels of Internet penetration and publicly renowned levels of cybersecurity readiness to deal with such attacks. Past studies that examined public perceptions of cyber threats have replicated the findings across multiple countries. Shandler et al . [ 80 ] found that psychological responses to internalized reports of cyberattacks explains support for military retaliation, and that this mechanism applies similarly in Israel, the United States, and England. Though requiring additional research, the evidence suggests that cyber threats operate via an underlying psycho-political mechanism that transcends national borders. In fact, the effects of cyberattacks may prove weaker in Israel than elsewhere as the constant exposure among Israelis to political violence places digital violence in the context of a political struggle that has, in many ways, fixed and acceptable costs [ 34 ]. Therefore, we believe that an Israeli sample offers major advantages in understanding the effects of cyberattacks among other Western nations. Nonetheless, we encourage future studies to corroborate these findings in different settings.

A second area where our findings could benefit from additional research relates to the nature of the media exposure. In this study, we exposed respondents to "initial" media reports about major cyberattacks where there is minimal information pertaining to the identity of the attacker and the type of attack that was conducted. While this in many ways reflects the reality of media reports about cyberattacks, it does not discount that journalists will sometimes make inferences about the details of an attack, and that later reports in the days and weeks following an attack will include far more detailed information. More so, this article bears implications for a wide literature beyond the political violence discipline. The public discussion regarding digital privacy and surveillance has spurred crucial new research on the dynamics of digital insecurity. In communications and media studies, for example, scientists are focusing on information-age warfare via different social media platforms, and early results show that citizens are as active in correcting disinformation online as they are in spreading disinformation [ 86 , 87 ]. The debate in the field of business management is also developing as it focuses on consumer expectations surrounding information technology and big data, as well as on the roles and responsibilities of public and private actors in securing personal data [ 88 , 89 ].

Cyber threats are a critical and growing component of national security. As this threat continues to grow all over the world, both in its public perception and in the true scope of the threat, the need to implement strong cybersecurity regulations will grow as well. Our findings indicate that particular forms of exposure to cyberattacks can contribute to support for various types of cybersecurity legislation and contribute to their public legitimacy. This is especially important since the introduction of these regulations constitutes a sacrifice of civil liberties, a sacrifice that citizens are prone to support only under particular conditions.

Though a DDoS attack, e.g. may not trigger physical casualties, its crippling of emergency services and telecommunications could catastrophically amplify the second- and third-order damage during a physical attack; for more, see Catherine A. Theohary and John W. Rollins,   Cyberwarfare and cyberterrorism: In brief (Washington, DC: Congressional Research Service, 2015).

We also see a marginal significant effect between mediation 1 and 5 and 2 and 6. The differences between mediation 1 and mediation 5 show mediation 5 (NLC/control-threat-CPP) has a marginal significant larger mediation effect compared with mediation 1 (NLC/control-threat-CAP) (difference = –0.035; 0.035 P  = 0.073). This means that within the NLC group the mediation model predicts stronger predicting CPP than CAP. In other words, participants who were exposed to the nonlethal (NLC) condition were more likely to support CPP than CAP. We saw that the CAP is stronger in the LC group. Another marginal significant effect was found between mediation 2 and mediation 6. The differences between mediation 2 and mediation 6 show mediation 6 (LC/control-threat-CPP) has a marginal significant larger mediation effect compared with mediation 2 (LC/control-threat-CAP) (difference = −0.044; 0.024 P  = 0.062). This means that within the LC group the mediation model predicts stronger predicting CPP than CAP. In other words, participants who were exposed to the lethal (LC) condition were more likely to support CPP than CAP. We saw a direct effect of LC on CAP.

Geller E , Matishak M . A federal government left ‘completely blind’ on cyberattacks looks to force reporting . Politico . 2021 . https://www.politico.com/news/2021/05/15/congress-colonial-pipeline-disclosure-488406 (10 August, 2021, date last accessed) .

Google Scholar

Cybersecurity legislation 2020. NCSL . https://www.ncsl.org/research/telecommunications-and-information-technology/cybersecurity-legislation-2020.aspx (17 October 2020, date last accessed).

US state cybersecurity regulation more than doubled in 2017, while federal regulation waned. BusinessWire . https://www.businesswire.com/news/home/20180129005238/en/State-Cybersecurity-Regulation-Doubled-2017-Federal-Regulation (29 January 2018, last accessed) .

Kasper A . EU cybersecurity governance: stakeholders and normative intentions towards integration . In: Harwood M , Moncada S , Pace R (eds). The Future of the European Union: Demisting the Debate . Msida : Institute for European Studies , 2020 , 166 – 85 .

Google Preview

Israel National Cyber Directorate (INCD) . https://www.gov.il/en/departments/about/newabout (1 February 2021, date last accessed) .

Ochoa CS , Gadinger F , Yildiz T . Surveillance under dispute: conceptualizing narrative legitimation politics . Eur J Int Secur . 2021 ; 6 : 210 – 32 ..‏

Flyverbom M , Deibert R , Matten D . The governance of digital technology, big data, and the internet: new roles and responsibilities for business . Bus Soc . 2019 ; 58 : 3 – 19 ..‏

Rosenzweig P . The alarming trend of cybersecurity breaches and failures in the U.S. government . The Heritage Foundation. https://www.heritage.org/defense/report/the-alarming-trend-cybersecurity-breaches-and-failures-the-us-government-continues (17 April 2020, last accessed) .

Lee JK , Chang Y , Kwon HY et al.  Reconciliation of privacy with preventive cybersecurity: the bright internet approach . Inf Syst Front . 2020 ; 22 : 45 – 57 .

Nye JS . Nuclear lessons for cyber security? . Strateg Stud Q . 2011 ; 5 : 18 – 38 .

Annual number of data breaches and exposed records in the United States from 2005 to 2018 (in millions) . Statista . https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed (26 February 2019, last accessed) .

For big banks, it's an endless fight with hackers The Business Times , 30 July 2019 . https://www.businesstimes.com.sg/banking-finance/for-big-banks-it%E2%80%99s-an-endless-fight-with-hackers

Nye JS Jr . Cyber Power . Cambridge : Harvard Kennedy School, Belfer Center for Science and International Affairs , 2010 .

Stohl M . Cyber terrorism: a clear and present danger, the sum of all fears, breaking point or patriot games? . Crime Law Soc Change . 2006 ; 46 : 223 – 38 .

Lawson ST . Cybersecurity Discourse in the United States: Cyber-Doom Rhetoric and Beyond . New York : Routledge , 2019 .

Valeriano B , Maness RC . Cyber War Versus Cyber Realities: Cyber Conflict in the International System . New York : Oxford University Press , 2015 .

Lawson S . Beyond cyber-doom: Assessing the limits of hypothetical scenarios in the framing of cyber-threats . J Inf Technol Polit . 2013 ; 10 : 86 – 103 .

Israeli cyber chief: Major attack on water systems thwarted. Washington Post. https://www.washingtonpost.com/world/middle_east/israeli-cyber-chief-major-attack-on-water-systems-thwarted/2020/05/28/5a923fa0-a0b5-11ea-be06-af5514ee0385_story.html (28 May 2020, last accessed) .

Panetta warns of dire threat of cyberattack on U.S. New York Times. (October 11, 2012). https://www.nytimes.com/2012/10/12/world/panetta-warns-of-dire-threat-of-cyberattack.html

Choi SJ , Johnson ME , Lehmann CU . Data breach remediation efforts and their implications for hospital quality . Health Serv Res . 2019 ; 54 : 971 – 80 .

Zetter K . A cyber attack has caused confirmed physical damage for the second time ever . Wired . 2015 . http://www.wired.com/2015/01/german-steel-mill-hack-destruction . (April 2020, date last accessed) .

Hobfoll SE , Canetti-Nisim D , Johnson RJ . Exposure to terrorism, stress-related mental health symptoms, and defensive coping among Jews and Arabs in Israel . J Consult Clin Psychol . 2006 ; 74 : 207 – 18 .

Halperin E , Canetti-Nisim D , Hirsch-Hoefler S . The central role of group-based hatred as an emotional antecedent of political intolerance: Evidence from Israel . Polit Psychol . 2009 ; 30 : 93 – 123 .

Bar-Tal D , Halperin E , de Rivera J . Collective emotions in conflict situations: societal implications . J Soc Issues . 2007 ; 63 : 441 – 60 .

Hirsch-Hoefler S , Canetti D , Rapaport C et al.  Conflict will harden your heart: exposure to violence, psychological distress, and peace barriers in Israel and Palestine . Br J Polit Sci . 2016 ; 46 : 845 – 59 .

Bonanno GA , Jost JT . Conservative shift among high-exposure survivors of the September 11th terrorist attacks . Basic Appl Soc Psychol . 2006 ; 28 : 311 – 23 .

Canetti-Nisim D , Ariely G , Halperin E . Life, pocketbook, or culture: the role of perceived security threats in promoting exclusionist political attitudes toward minorities in Israel . Polit Res Q . 2008 ; 61 : 90 – 103 .

Zeitzoff T . Anger, exposure to violence, and intragroup conflict: a “lab in the field” experiment in southern Israel . Polit Psychol . 2014 ; 35 : 309 – 35 .

Schmitt N . Tallinn Manual 2.0 on the International Law Applicable to Cyber Operations . Cambridge : Cambridge University Press , 2017 .

Russian hackers appear to shift focus to U.S. power grid. The New York Times, 27 July 2018 . 2018 ;

Aucsmith D . Disintermediation, Counterinsurgency, and Cyber Defense . 2016 , Available at SSRN 2836100 . doi: 10.1093/cybsec/tyw018 , (10 August, 2021 last accessed) .

Gartzke E , Lindsay JR . Thermonuclear cyberwar . J Cybersecur . 2017 ; 3 : 37 – 48 .

Gross ML , Canetti D , Vashdi DR . Cyberterrorism: its effects on psychological well-being, public confidence and political attitudes . J Cybersecur . 2017 ; 3 : 49 – 58 .

Backhaus S , Gross ML , Waismel-Manor I et al.  A cyberterrorism effect? Emotional reactions to lethal attacks on critical infrastructure . Cyberpsychol Behav Soc Netw . 2020 ; 23 : 595 – 603 ..‏

Gross ML , Canetti D , Vashdi DR . The psychological effects of cyber-terrorism . Bull At Sci . 2016 ; 72 : 284 – 91 .

Canetti D , Gross ML , Waismel-Manor I . Immune from cyber-fire? The psychological & physiological effects of cyberwar . In: Allhoff F , Henschke A , Strawser BJ (eds). Binary Bullets: The Ethics of Cyberwarfare . Oxford : Oxford University Press , 2016 , 157 – 76 .

Canetti D , Gross ML , Waismel-Manor I et al.  How cyberattacks terrorize: Cortisol and personal insecurity jump in the wake of cyberattacks . Cyberpsychol Behav Soc Netw . 2017 ; 20 : 72 – 7 .

Shandler R , Gross MG , Backhaus S et al.  Cyber terrorism and public support for retaliation: a multi-country survey experiment . Br J Polit Sci . 1 – 19 ., 2021 . DOI: 10.1017/S0007123420000812 .

Rosenzweig P . Cybersecurity and public goods, The public/private ‘partnership’ . In: Berkowitz P (ed). Emerging Threats in National Security and Law . Stanford : Hoover Institution, Stanford University , 2011 , 1 – 36 .

Cheung-Blunden V , Cropper K , Panis A et al.  Functional divergence of two threat-induced emotions: fear-based versus anxiety-based cybersecurity preferences . Emotion . 2017 ; 19 : 1353 – 65 .

Jardine E , Porter N . Pick your poison: the attribution paradox in cyberwar. 2020 , https://osf.io/preprints/socarxiv/etb72/ .

Rid T , Buchanan B . Attributing cyber attacks . J Strateg Stud . 2015 ; 38 : 4 – 37 .

Clark DD , Landau S . Untangling attribution . Harvard National Secur J . 2011 ; 2 : 323 – 52 .

Alraddadi W , Sarvotham H . A comprehensive analysis of WannaCry: technical analysis, reverse engineering, and motivation . https://docplayer.net/130787668-A-comprehensive-analysis-of-wannacry-technical-analysis-reverse-engineering-and-motivation.html , (17 April 2020, last accessed).

Romanosky S , Boudreaux B . Private-sector attribution of cyber incidents: benefits and risks to the US government . Int J Intell CounterIntelligence . 2020 ; 0 : 1 – 31 .

Baezner M . Iranian cyber-activities in the context of regional rivalries and international tensions . ETH Zurich . 2019 : 1 – 37 .

Macdonald S , Jarvis L , Nouri L . State cyberterrorism: a contradiction in terms? . J Terrorism Res . 2015 ; 6 : 62 – 75 .

Canetti D , Gubler J , Zeitzoff T . Motives don't matter? Motive attribution and counterterrorism policy . Polit Psychol . 2021 ; 42 : 483 – 99 .

Liberman P , Skitka LJ . Revenge in US public support for war against Iraq . Public Opin Q . 2017 ; 81 : 636 – 60 .

Liberman P , Skitka LJ . Vicarious retribution in US public support for war against Iraq . Secur Stud . 2019 ; 28 : 189 – 215 .

Kostyuk N , Wayne C . The microfoundations of state cybersecurity: cyber risk perceptions and the mass public . J Glob Secur Stud . 2021 ; 6 : ogz077 .

Gomez MA . Past behavior and future judgements: seizing and freezing in response to cyber operations . J Cybersecur . 2019 ; 5 : 1 – 19 .

Gomez MA , Villar EB . Fear, uncertainty, and dread: cognitive heuristics and cyber threats . Polit Gov . 2018 ; 6 : 61 – 72 .

Harrell E , Langton L . The Victims of Identity Theft, 2012 . US Department of Justice, Office of Justice Programs, Bureau of Justice Statistics , 2013 . https://www.bjs.gov/content/pub/pdf/vit12.pdf

Sinclair SJ , Antonius D . The Psychology of Terrorism Fears . Oxford : Oxford University Press , 2012 .

Quillian L . Prejudice as a response to perceived group threat: population composition and anti-immigrant and racial prejudice in Europe . Am Sociol Rev . 1995 ; 60 : 586 – 611 .

Ben-Nun Bloom P , Arikan G , Lahav G . The effect of perceived cultural and material threats on ethnic preferences in immigration attitudes . Ethn Racial Stud . 2015 ; 38 : 1760 – 78 .

Shoshani A , Slone M . The drama of media coverage of terrorism: emotional and attitudinal impact on the audience . Stud Confl Terror . 2008 ; 31 : 627 – 40 ..‏

Huddy L , Smirnov O , Snider KL et al.  Anger, anxiety, and selective exposure to terrorist violence . J Confl Resolut . 2021 : 00220027211014937 .‏

Greenberg J , Pyszczynski T , Solomon S . The causes and consequences of a need for self-esteem: a terror management theory . In: Public Self and Private Self . New York, NY : Springer , 1986 , ‏ 212 – 189 .

Hall BJ , Hobfoll SE , Canetti D et al.  The defensive nature of benefit finding during ongoing terrorism: an examination of a national sample of Israeli Jews . J Soc Clin Psychol . 2009 ; 28 : 993 – 1021 ..‏

Canetti D , Hall BJ , Rapaport C et al.  Exposure to political violence and political extremism . Eur Psychol . 2013 ; 18 : 263 – 72 .

McCallister E . Guide to Protecting the Confidentiality of Personally Identifiable Information . Darby : Diane Publishing , 2010 .

Graves J , Acquisti A , Anderson R . Experimental measurement of attitudes regarding cybercrime . In: 13th Annual Workshop on the Economics of Information Security . 2014 ; Pennsylvania State University.‏

Huddy L , Feldman S , Capelos T et al.  The consequences of terrorism: disentangling the effects of personal and national threat . Polit Psychol . 2002 ; 23 : 485 – 509 .

Hefetz A , Liberman G . The factor analysis procedure for exploration: a short guide with examples . Cult Educ . 2017 ; 29 : 526 – 62 .

Muthén LK , Muthén BO . MPlus: Statistical Analysis with Latent Variables: User's Guide . Muthén & Muthén , Los Angeles, CA , 2012 .

Galea S , Ahern J , Resnick H et al.  Psychological sequelae of the September 11 terrorist attacks in New York City . N Engl J Med . 2002 ; 346 : 982 – 7 .

Canetti-Nisim D , Halperin E , Sharvit K et al.  A new stress-based model of political extremism: personal exposure to terrorism, psychological distress, and exclusionist political attitudes . J Confl Res . 2009 ; 53 : 363 – 89 .

Canetti D , Snider KLG , Pedersen A et al.  Threatened or threatening? How ideology shapes asylum seekers’ immigration policy attitudes in Israel and Australia . J Refug Stud . 2016 ; 29 : 583 – 606 .

Morgan S . Cybersecurity Ventures predicts cybercrime will cost the world in excess of $6 trillion annually by 2021. Cybercrime Magazine . 2017 ; https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/ (11 May 2020, date last accessed) .

Yakter A , Harsgor L . Long-term change in conflict attitudes: a dynamic approach . ‏ 2021 . http://liran.harsgor.com/wp-content/uploads/2021/07/YakterHarsgor_2021_Long-term-conflict.pdf

Brouard S , Vasilopoulos P , Foucault M . How terrorism affects political attitudes: France in the aftermath of the 2015–2016 attacks . West Eur Polit . 2018 ; 41 : 1073 – 99 .

Castanho Silva B . The (non)impact of the 2015 Paris terrorist attacks on political attitudes . Pers Soc Psychol Bull . 2018 ; 44 : 838 – 50 .

Brandon SE , Silke AP . Near- and long-term psychological effects of exposure to terrorist attacks .‏ In: Bongar B , Brown LM , Beutler LE , al. et (eds). Psychology of Terrorism . Oxford: Oxford University Press 2007 , 175 – 93 .

Pfefferbaum B , Nixon SJ , Krug RS et al.  Clinical needs assessment of middle and high school students following the 1995 Oklahoma City bombing . Am J Psychiatry . 1999 ; 156 : 1069 – 74 ..‏

Galea S , Vlahov D , Resnick H et al.  Trends of probable post-traumatic stress disorder in New York City after the September 11 terrorist attacks . Am J Epidemiol . 2003 ; 158 : 514 – 24 ..‏

Landau MJ , Solomon S , Greenberg J et al.  Deliver us from evil: the effects of mortality salience and reminders of 9/11 on support for President George W. Bush . Pers Soc Psychol Bull . 2004 ; 30 : 1136 – 50 ..‏

Nussio E . Attitudinal and emotional consequences of Islamist terrorism. Evidence from the Berlin attack . Polit Psychol . 2020 ; 41 : 1151 – 71 ..‏

Bada M , Sasse AM , Nurse JRC . Cyber security awareness campaigns: why do they fail to change behaviour? In: International Conference on Cyber Security for Sustainable Society , Global Cyber Security Capacity Centre. 2015 , 1 – 11 .

Shane PM . Cybersecurity policy as if ‘ordinary citizens’ mattered: the case for public participation in cyber policy making . SSRN Electron J . 2012 ; 8 : 433 – 62 .

Shandler R . White paper: Israel as a cyber power . 2019 , DOI: 10.13140/RG.2.2.15936.07681 .

Gartner forecasts worldwide security spending will reach $96 billion in 2018, up 8 percent from 2017. Gartner. https://www.gartner.com/newsroom/id/3836563 (1 August 2019, date last accessed) .

Shandler R , Gross ML , Canetti D . A fragile public preference for using cyber strikes: evidence from survey experiments in the United States, United Kingdom and Israel . Contemp Secur Policy . 2021 ; 42 : 135 – 62 .

Prier J . Commanding the trend: social media as information warfare . Strateg Stud Q . 2017 ; 11 : 50 – 85 ..‏

Golovchenko Y , Hartmann M , Adler-Nissen R . State, media and civil society in the information warfare over Ukraine: citizen curators of digital disinformation . Int Aff . 2018 ; 94 : 975 – 94 ..‏

Belk RW . Extended self in a digital world . J Consum Res . 2013 ; 40 : 477 – 500 .

West SM . Data capitalism: redefining the logics of surveillance and privacy . Bus Soc . 2019 ; 58 : 20 – 41 .

Cahane A . The new Israeli cyber draft bill: a preliminary overview . CSRCL . 2018 . https://csrcl.huji.ac.il/news/new-israeli-cyber-law-draft-bill . (10 August, 2021, date last accessed) .

Supplementary data

Email alerts, citing articles via, affiliations.

  • Online ISSN 2057-2093
  • Print ISSN 2057-2085
  • Copyright © 2024 Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Cyber Security Essay for Students and Children

Cyber security essay.

Cybersecurity means protecting data, networks, programs and other information from unauthorized or unattended access, destruction or change. In today’s world, cybersecurity is very important because of some security threats and cyber-attacks. For data protection, many companies develop software. This software protects the data. Cybersecurity is important because not only it helps to secure information but also our system from virus attack. After the U.S.A. and China, India has the highest number of internet users.

cyber security essay

Cyber Threats

It can be further classified into 2 types. Cybercrime – against individuals, corporates, etc.and Cyberwarfare – against a state.

Cyber Crime

Use of cyberspace, i.e. computer, internet, cellphone, other technical devices, etc., to commit a crime by an individual or organized group is called cyber-crime. Cyber attackers use numerous software and codes in cyberspace to commit cybercrime. They exploit the weaknesses in the software and hardware design through the use of malware. Hacking is a common way of piercing the defenses of protected computer systems and interfering with their functioning. Identity theft is also common.

Cybercrimes may occur directly i.e,  targeting the computers directly by spreading computer viruses. Other forms include DoS attack. It is an attempt to make a machine or network resource unavailable to its intended users. It suspends services of a host connected to the internet which may be temporary or permanent.

Malware is a software used to disrupt computer operation, gather sensitive information, or gain access to private computer systems. It usually appears in the form of code, scripts, active content, and other software. ‘Malware’ refers to a variety of forms of hostile or intrusive software, for example, Trojan Horses, rootkits, worms, adware, etc.

Another way of committing cybercrime is independent of the Computer Network or Device. It includes Economic frauds. It is done to destabilize the economy of a country, attack on banking security and transaction system, extract money through fraud, acquisition of credit/debit card data, financial theft, etc.

Hinder the operations of a website or service through data alteration, data destruction. Others include using obscene content to humiliate girls and harm their reputation, Spreading pornography, threatening e-mail, assuming a fake identity, virtual impersonation. Nowadays misuse of social media in creating intolerance, instigating communal violence and inciting riots is happening a lot.

Get the huge list of more than 500 Essay Topics and Ideas

Cyber Warfare

Snowden revelations have shown that Cyberspace could become the theatre of warfare in the 21st century. Future wars will not be like traditional wars which are fought on land, water or air. when any state initiates the use of internet-based invisible force as an instrument of state policy to fight against another nation, it is called cyberwar’.

It includes hacking of vital information, important webpages, strategic controls, and intelligence. In December 2014 the cyberattack a six-month-long cyberattack on the German parliament for which the Sofacy Group is suspected. Another example 2008 cyberattack on US Military computers. Since these cyber-attacks, the issue of cyber warfare has assumed urgency in the global media.

Inexpensive Cybersecurity Measures

  • The simplest thing you can do to up your security and rest easy at night knowing your data is safe is to change your passwords.
  • You should use a password manager tool like LastPass, Dashlane, or Sticky Password to keep track of everything for you. These applications help you to use unique, secure passwords for every site you need while also keeping track of all of them for you.
  • An easy way for an attacker to gain access to your network is to use old credentials that have fallen by the wayside. Hence delete unused accounts.
  • Enabling two-factor authentication to add some extra security to your logins. An extra layer of security that makes it harder for an attacker to get into your accounts.
  • Keep your Softwares up to date.

Today due to high internet penetration, cybersecurity is one of the biggest need of the world as cybersecurity threats are very dangerous to the country’s security. Not only the government but also the citizens should spread awareness among the people to always update your system and network security settings and to the use proper anti-virus so that your system and network security settings stay virus and malware-free.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Cyber Security - List of Essay Samples And Topic Ideas

Cybersecurity, a critical concern in our digitally connected world, encompasses practices, technologies, and policies to protect networks, devices, programs, and data from attack or unauthorized access. Essays could delve into the myriad types of cyber threats like malware, phishing, and ransomware, exploring their evolution and impact on individuals and organizations. They might also discuss the measures individuals and enterprises can adopt to mitigate cyber risks, the challenges of staying ahead of cyber adversaries, and the role of governmental and international regulation in promoting cybersecurity. Discussions could extend to the implications of cybersecurity on national security, privacy, and the digital economy, and how the burgeoning field of cybersecurity is evolving to meet the complex challenges of the modern digital landscape. A substantial compilation of free essay instances related to Cyber Security you can find at Papersowl. You can use our samples for inspiration to write your own essay, research paper, or just to explore a new topic for yourself.

Cyber Security and how to Prevent Cyber Crime

Cybercrimes are interrupting normal computer functions and has brought many known companies and personal entities to their knees. Over the last decade, crime has entered into the world of information. Crime is developing gradually since the days when merchandise was transported by stagecoach, theft or extortion has changed to keep up, even to our modern-day equivalent-credit and debit cards. Stealing credit card number has become well known danger. In the present, internet has become a playing field for computer attackers. […]

Cyber Security Threats in Healthcare

Cyberattacks have been targeting the healthcare industry, among the biggest industries in the US, in the 2018 period. The implication is that it has come time to improve the protection of institutional and patient information with a more tailored approach to this threat. In comparison with other industries, many health organizations have engaged in inadequate investment in cybersecurity while spending approximately as much money as other industries. It is quite worrying when phishing cyberattacks, as well as breaches of patient […]

Impact of Technology on Privacy

The 21st Century is characterized by the heavy impact technology has on us as a society while it continues to develop new devices and modernize technology. Millions of individuals around the world are now connected digitally, in other words, people globally rely heavily on smartphones tablets, and/ or computers that store or save a majority of their personal information. Critical and extremely personal data is available and collected in these smart technology such as credit card details, fingerprint layout, and […]

We will write an essay sample crafted to your needs.

Cyber Security Threats on the State Level

This paper examines two notable events of cyber warfare and security in our current age (the Stuxnet attack on centrifuges, and the Petya ransomware affecting citizens and governmental agencies), as well as examines how these attacks shape foreign and domestic policies and procedures. By examining the extent of the damage of these two attacks, I will argue that cyber warfare events will not just affect governmental systems, but would ultimately cause destruction to the layman's infrastructure, further crippling any state […]

Essay of Cyber Security Education

The experts and professionals of matters related to cyber security should assign the participant puzzles whereby they should divide themselves into various teams as indicated in the framework of NICE, and each group should specialize in a specific area. There is a wide range of ideas on the cyber security where the riddles may come from the fields like Wireshark, protection of website application, analysis of digital systems, and social engineering. There should be a task force created to conduct […]

Constant the Rise of Technologies and Cyber Threats

There is a wide range of cyber threats that happen every day, it is important that we follow all of the necessary precaution's in order to ensure the safety of our private information including but not limited to passwords, network credentials, banking or credit card information. Malicious attacks occur more frequently than one would expect, their purpose is to damage a device. Most of us are unaware of the weaknesses we have within our smartphone's security settings. With that being […]

Cyber Security for the Average American

According to statistics, the average American spends 10 hours per day using technology. Whether it be a cellphone, tablet or laptop, that's more than 40 hours a week online. We think that we're safe, but part of living in this 21st century is understanding that our so-called private information can easily accessed by the wrong person and made public. I am sure you have heard, at some point, news pertaining to identity theft or data breaches, with the effects being […]

Cyber Security for our Generation

Some of the biggest threats to our national security often go unnoticed. These threats are generally not publicized, and no emphasis is placed on them. They represent some of the most significant challenges our generation faces. It's shocking is that these threats are often covered up or are attempted to be. For instance, one of the key issues that arose in 2018 was the Facebook data scandal. This scandal was not a cyber-attack per se, yet it highlighted that most […]

How Pervasive is the Internet in your Life?

Q.1 How pervasive is the internet in your life? How much do you think society has come to depend on the Internet? Answer: When it comes to how pervasive the internet is in current life, my answer is that the internet has almost influenced each event of our daily life every day. Of course, we can't deny that there may be some people, around our side, who never heard about the internet, for example, those elder people who has less […]

The E-Commerce and Cyber Security

The wish is the online e-commerce company that will provide the opportunity for all shoppers to find their favourite wordrobe online in all of the world. Their wardrobe could be included dresses, skirts, jeans and etc.... This company was founded in 2010 and also have the App for their over 100 million users on the iOS and android platform. The E-Commerce servers for this company is located in four cites internationally, two are in the USA, the headquarter in Alexandria […]

Advanced Cyber Security and its Methodologies

Digital Civilization has turned into a critical wellspring of data sharing and proficient exercises like business, saving money exchanges, shopping, and administrations and With the expansion in utilization of the internet, cybercriminal exercises are additionally expanding exponentially. The fundamental reasons is that with the commencement of internet, the web applications were likewise getting prevalence for information putting away and information sharing, regardless of the client. With the progression of time, web applications were getting more intricate with quick increment in […]

Defining Cybersecurity Law

INTRODUCTION In "Defining Cybersecurity Law," Jeff Kosseff, the author, appears to be more concerned with improving cybersecurity law than defining it. In this paper, I will provide a brief summary and critique of the four substantive sections of this article. I will conclude with a mention of the aspects of cybersecurity law the author missed. My main issues with this article are the author's (1) preoccupation with the prevention of cybersecurity breaches instead of balancing security against values, (2) definition […]

Why do you Want to Study Cyber Security

In today's hyper-connected era, we're more online than offline. Our digital identities intertwine with the real, making the boundary blurry. But as we gleefully navigate this digital frontier, shadows lurk in the form of cyber threats, reminding us that our brave new world isn't without its pitfalls. So, why venture into the challenging world of cybersecurity? Why choose a path that constantly grapples with these shadows? Spoiler alert: It's more than just a career choice. Real-world Superheroes In comic books […]

Health Care Cyber Security

Healthcare is an industry sector that has become unstable and crucial in this expanding digital landscape. This necessitates an organization's data security program to be properly structured, as there is no room for error, which could easily translate into a life-and-death situation. This article presents both fundamental technical and business issues that often elude the healthcare data security program. On the technical side, extensive proliferation of data and systems into the cloud, a continuous increase in connected medical devices, and […]

Substations: Smart Grid & Cyber Security Threats

Transferring from old energy network to a new technology such as smart grids. It changes the energy industry worldwide to better quality, manageability and performance. It gives us the ability to operate it by communications, monitor and control it. However, using communications in smart grid increase connectivity causing our security to be exposed and make it more challenge to protected. It can be a target for hackers, and cyber terrorism. Thus, it got governments, consumer and industry attention to increase […]

Cybersecurity: Protecting the Fragile Web of Global Connectivity

I believe everything that is created by man can also be destroyed by it. Humans have proved to be the most intelligent species in this world. We have created the technology that appears to be smarter than the human brain but if it overpowers the human intelligence it can be destroyed as well. Internet works in the same manner. It has created dependencies that have led to millions of people relying on this technology in getting every task done no […]

Cybersecurity Issues in Societal Perspective

E-governance and Cybersecurity Documents issued by a country's government provide a personal identity to an individual. Driver's licenses, social security numbers, tax identification numbers, and various other entitlement documents are used on a regular basis by people to demonstrate their identity and authorization for various opportunities. Because these documents form the basis for all subsequent documents, their integrity is of high importance to stakeholders. Therefore, these crucial documents are targets for criminals and further cyberattacks (Conklin, A., & White, G. […]

The Real Issue Behind Cyber-Security

The steady trend towards digitalization has been occurring for a long time, and as of lately, a new type of crime market has risen alongside digitalization. In recent years, companies all over the world have been affected by some form of cybersecurity issue whether that be attacks to infrastructure or momentary paralyzation of the company itself through the exploitation of security measures. Over the years the number of attacks all around the world has increased exponentially with many more cyber-attacks […]

Cybersecurity Today

Networks (internet) are not secure enough due to the lack of efficient cybersecurity. As a result, ransomware attacks are increasing, affecting most businesses and individuals today. Enacting measures to detect cyberattacks and ransomware attacks can be helpful in preventing unforeseen repercussions from the attacker in the corporate network. Cybersecurity needs to implement new policies and recommendations so that ransomware attacks can be reduced. This report will first discuss some ransomware attacks that have happened before. Next, the report will discuss […]

Cybersecurity as a Form of Digital Protection

Cybersecurity is an ever-growing form of digital protection, created and used for the sole purpose of protecting confidential information against hard drive malfunctions, power outages, and adversaries. In healthcare, it is crucial for hospitals and health providers to keep up with the security of digital health data through cybersecurity in order to comply with the Health Insurance Portability and Accountability Act (HIPAA) and avoid potentially devastating consequences. Insider threats, access control breaches, and network breaches are some of the main […]

Virtual Reality: Game Transfer Phenomena

Imagine if you were you were floating through space, watching a horror film,s or perhaps playing a video game, and it seemed like you were actually there. With the invention of virtual reality (VR), people are able to explore the illusion of this reality. Virtual reality is computer-generated technology used to create a manufactured environment. There is a range of systems that are used for this purpose such as special headsets and fiber optic gloves. The term virtual reality means […]

Cybersecurity Paper

With cybersecurity attacks on the rise, the ability of an organization to ensure uninterrupted operations is an imperative. No longer can an organization solely rely upon software applications to identify and mitigate cyber risks. It takes a skilled team led by an experienced manager to holistically address an organization's technology risks. The National Infrastructure Advisory Council's (NIAC's) definition of infrastructure resilience is "the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or […]

Cybercrimes: an Unprecedented Threat to the Society

What is a Cybercrime? Cybercrime, or computer-oriented crime, is the crime that involves computer and its network. The computer may have been used in the commission of a crime, or it may be the target. Cybercrimes can be defined as: "Offences that are committed against individuals or groups of individuals with a criminal motive to intentionally harm the reputation of the victim or cause physical or mental harm, or loss, to the victim directly or indirectly, using modern telecommunication networks […]

Cybersecurity for a Successful Acquisition Report

The act of conducting a policy gap analysis is crucial in determining any missing overlap or technical deficiencies when planning to join the IT architecture and network topologies of two or more companies. During the acquisition process, the policies of either party will be examined in order to confirm current software updates and patches, proper configuration of tools, and employee protocol during the transition. Once the initial merger is complete, it'll be important to compare the outcome with each company's […]

Reasons of Cyber Attacks

1. Substandard User ID and Password Every individual need to have their own password secure and stronger. For an instance strong password can be obtained by latest maintaining minimum of having15-character length with an least one special character, number, capital and small alphabet. Most importantly choosing password like own name, date of birth, phone number may become hacker to simply figure out easy to break through your personal account security. In the same way User ID should not be shared […]

Laws of Cybercrimes

Abstract This paper examines the cyber security and its challenges in current temperamental circumstance of security in present world. These day's innovation of technology persistently developing more quickly than expected. As a public that runs on latest innovation technologies, we are likewise therefore reliant on it. Where similarly as innovation of technology brings ever more noteworthy advantages, it likewise brings ever more prominent threats. We should look some significant concerns confronting that incorporate threats, information theft, identity theft, cyber war, […]

Developing and Testing Photorealistic Avatar with Body Motions and Facial Expressions for Communication in Social Virtual Reality Applications

Developing and Testing Photorealistic Avatar with Body Motions and Facial Expressions for Communication in Social Virtual Reality Applications Abstract Providing effective communication in social virtual reality (VR) applications requires a high level of avatar representation realism and body movement to convey users’ thoughts and behaviours. In this research, we investigate the influence of avatar representation and behaviour on communication in an immersive virtual environment (IVE) by comparing video-based versus model-based avatar representations. Additionally, we introduce a novel VR communication system […]

Advantages of Cybersecurity in a Digital World

Ever stopped to think about how much of your life plays out in the digital realm? Our lives are undeniably intertwined with technology, from morning alarms on our smartphones to evening Netflix binges. Yet, while we eagerly embrace the latest app or gadget, there's an unsung hero behind the scenes, ensuring our digital escapades are safe and sound: cybersecurity. It's easy to dismiss it as mere technical jargon or something only businesses need to worry about. But, truth be told, […]

Featured Categories

Related topic, additional example essays.

  • Positive Effects of Social Media
  • Appropriate Age for Social Media
  • Instagram and body dysmorphia
  • Is Social Media Bad for Relationships Argumentative Essay
  • The Negative Effects of Social Media On Mental Health
  • Leadership and the Army Profession
  • Why College Should Not Be Free
  • Shakespeare's Hamlet Character Analysis
  • A Raisin in the Sun Theme
  • Why Abortion Should be Illegal
  • The Devil And Tom Walker: Romanticism
  • Does Arrest Reduce Domestic Violence

How To Write an Essay About Cyber Security

Understanding cyber security.

Before writing an essay about cyber security, it is essential to understand what it encompasses. Cyber security refers to the practice of protecting systems, networks, and programs from digital attacks. These cyber attacks are usually aimed at accessing, changing, or destroying sensitive information; extorting money from users; or interrupting normal business processes. Begin your essay by defining cyber security and discussing its importance in the contemporary digital world. Explore the different types of cyber threats, such as malware, phishing, ransomware, and denial-of-service attacks. It’s also crucial to understand the impact of these threats on individuals, businesses, and governments.

Developing a Thesis Statement

A strong essay on cyber security should be anchored by a clear, focused thesis statement. This statement should present a specific viewpoint or argument about cyber security. For instance, you might discuss the evolving nature of cyber threats, the challenges of cyber security in a particular sector (like finance or healthcare), or analyze the effectiveness of current cyber security measures. Your thesis will guide the direction of your essay and provide a structured approach to your analysis.

Gathering Supporting Evidence

To support your thesis, gather evidence from credible sources. This might include recent studies on cyber security, statistics about cyber attacks, examples of significant security breaches, or expert opinions. Use this evidence to support your thesis and build a persuasive argument. Remember to consider different perspectives, including technological, ethical, and legal viewpoints.

Analyzing Cyber Security Strategies and Challenges

Dedicate a section of your essay to analyzing cyber security strategies and the challenges faced in implementing them. Discuss various approaches to cyber security, such as technological solutions, policy measures, and user education. Explore the challenges in keeping up with constantly evolving cyber threats and the balance between security and privacy. For example, consider how advancements in areas like artificial intelligence and machine learning are influencing cyber security practices.

Concluding the Essay

Conclude your essay by summarizing the main points of your discussion and restating your thesis in light of the evidence provided. Your conclusion should tie together your analysis and emphasize the significance of cyber security in the digital age. You might also want to reflect on future trends in cyber security or suggest areas where further research or policy development is needed.

Reviewing and Refining Your Essay

After completing your essay, review and edit it for clarity and coherence. Ensure that your arguments are well-structured and supported by evidence. Check for grammatical accuracy and ensure that your essay flows logically from one point to the next. Consider seeking feedback from peers or experts in the field to refine your essay further. A well-written essay on cyber security will not only demonstrate your understanding of the topic but also your ability to engage with complex technological and societal issues.

1. Tell Us Your Requirements

2. Pick your perfect writer

3. Get Your Paper and Pay

Hi! I'm Amy, your personal assistant!

Don't know where to start? Give me your paper requirements and I connect you to an academic expert.

short deadlines

100% Plagiarism-Free

Certified writers

Pitchgrade

Presentations made painless

  • Get Premium

127 Cyber Security Essay Topic Ideas & Examples

Inside This Article

With the increasing reliance on technology, cyber security has become a critical concern for individuals, organizations, and governments worldwide. As cyber threats continue to evolve and become more sophisticated, it is essential to stay informed about the latest trends and issues in this field. If you are tasked with writing an essay on cyber security, here are 127 topic ideas and examples to get your creative juices flowing.

The role of artificial intelligence in enhancing cyber security.

The impact of cyber attacks on critical infrastructure.

The ethical considerations of cyber warfare.

The legal frameworks governing cyber security.

The challenges of securing the Internet of Things (IoT) devices.

The role of encryption in protecting sensitive information.

The effectiveness of password policies in preventing cyber attacks.

The psychology behind social engineering attacks.

The impact of cyber attacks on the global economy.

The future of biometrics in cyber security.

The role of cyber insurance in mitigating cyber risks.

The ethics of hacking for the greater good.

The impact of cyber attacks on healthcare systems.

The role of education in raising cyber security awareness.

The challenges of securing cloud computing environments.

The implications of quantum computing on cyber security.

The importance of international cooperation in combating cyber crime.

The role of cyber security in protecting intellectual property.

The impact of cyber attacks on national security.

The challenges of securing critical data in the cloud.

The role of cybersecurity audits in identifying vulnerabilities.

The impact of cyber attacks on the banking and financial sector.

The ethical implications of government surveillance for cyber security purposes.

The role of cybersecurity professionals in addressing the skills gap.

The challenges of securing personal information in the digital age.

The impact of cyber attacks on elections and democratic processes.

The role of user awareness training in preventing cyber attacks.

The implications of data breaches for consumer trust.

The challenges of securing mobile devices in the workplace.

The role of cyber security in protecting personal privacy.

The impact of cyber attacks on small businesses.

The role of cyber security in safeguarding intellectual property in academia.

The challenges of securing critical infrastructure in developing countries.

The ethical considerations of vulnerability disclosure.

The impact of cyber attacks on the transportation sector.

The role of cyber security in protecting children online.

The challenges of securing Internet of Things (IoT) in smart homes.

The implications of cyber attacks on the aviation industry.

The role of cyber security in protecting against ransomware attacks.

The impact of cyber attacks on the entertainment industry.

The challenges of securing e-commerce platforms.

The role of cyber security in preventing identity theft.

The implications of cyber attacks on the energy sector.

The ethical considerations of government backdoor access to encrypted data.

The impact of cyber attacks on the hospitality and tourism industry.

The role of cyber security in protecting sensitive government information.

The challenges of securing online gaming platforms.

The implications of cyber attacks on the media and journalism.

The role of cyber security in protecting against social media threats.

The impact of cyber attacks on the transportation and logistics industry.

The challenges of securing online banking and financial transactions.

The role of cyber security in protecting against insider threats.

The implications of cyber attacks on the education sector.

The ethical considerations of using cyber weapons in warfare.

The impact of cyber attacks on the retail industry.

The role of cyber security in protecting against insider trading.

The challenges of securing online voting systems.

The implications of cyber attacks on the gaming industry.

The role of cyber security in protecting against intellectual property theft.

The impact of cyber attacks on the healthcare and pharmaceutical industry.

The challenges of securing social media platforms.

The ethical considerations of cyber security in autonomous vehicles.

The implications of cyber attacks on the hospitality industry.

The role of cyber security in protecting against credit card fraud.

The impact of cyber attacks on the manufacturing industry.

The challenges of securing online dating platforms.

The implications of cyber attacks on the insurance industry.

The role of cyber security in protecting against corporate espionage.

The impact of cyber attacks on the food and beverage industry.

The challenges of securing online marketplaces.

The implications of cyber attacks on the pharmaceutical industry.

The role of cyber security in protecting against intellectual property infringement.

The impact of cyber attacks on the nonprofit sector.

The challenges of securing online streaming platforms.

The ethical considerations of cyber security in wearable technology.

The implications of cyber attacks on the real estate industry.

The role of cyber security in protecting against medical identity theft.

The impact of cyber attacks on the telecommunications industry.

The challenges of securing online job portals.

The implications of cyber attacks on the automotive industry.

The role of cyber security in protecting against data breaches in the legal sector.

The impact of cyber attacks on the music industry.

The challenges of securing online auction platforms.

The implications of cyber attacks on the construction industry.

The role of cyber security in protecting against online harassment.

The impact of cyber attacks on the advertising and marketing industry.

The challenges of securing online learning platforms.

The implications of cyber attacks on the fashion industry.

The role of cyber security in protecting against online stalking.

The impact of cyber attacks on the sports industry.

The challenges of securing online travel booking platforms.

The implications of cyber attacks on the beauty and cosmetics industry.

The role of cyber security in protecting against online scams.

The impact of cyber attacks on the hospitality and catering industry.

The challenges of securing online dating applications.

The implications of cyber attacks on the healthcare and wellness industry.

The role of cyber security in protecting against online bullying.

The impact of cyber attacks on the entertainment and events industry.

The challenges of securing online food delivery platforms.

The implications of cyber attacks on the fitness and wellness industry.

The role of cyber security in protecting against online fraud.

The impact of cyber attacks on the home services industry.

The challenges of securing online social networking platforms.

The implications of cyber attacks on the pet care industry.

The role of cyber security in protecting against online piracy.

The impact of cyber attacks on the restaurant industry.

The challenges of securing online fashion retail platforms.

The implications of cyber attacks on the healthcare and fitness industry.

The role of cyber security in protecting against online hate speech.

The impact of cyber attacks on the wedding and event planning industry.

The challenges of securing online grocery delivery platforms.

The implications of cyber attacks on the gaming and entertainment industry.

The impact of cyber attacks on the music and entertainment industry.

The challenges of securing online travel and tourism platforms.

The implications of cyber attacks on the beauty and wellness industry.

The role of cyber security in protecting against online identity theft.

The impact of cyber attacks on the fashion and retail industry.

The challenges of securing online health and wellness platforms.

The implications of cyber attacks on the food and beverage industry.

These essay topic ideas cover a broad range of industries and sectors, highlighting the pervasive nature of cyber security threats. Whether you choose to explore the implications of cyber attacks on a specific industry, examine the challenges of securing a particular platform, or discuss the ethical considerations of cyber security, there are endless possibilities for research and analysis in this field. Remember to choose a topic that interests you and aligns with your objectives, ensuring a rewarding and engaging essay-writing experience.

Want to create a presentation now?

Instantly Create A Deck

Let PitchGrade do this for me

Hassle Free

We will create your text and designs for you. Sit back and relax while we do the work.

Explore More Content

  • Privacy Policy
  • Terms of Service

© 2023 Pitchgrade

Home — Essay Samples — Information Science and Technology — Computers — Cyber Security

one px

Essays on Cyber Security

Choosing a topic, types of essays, example thesis statements, example paragraphs, target breach case study, cyber security personal statement, made-to-order essay as fast as you need it.

Each essay is customized to cater to your unique preferences

+ experts online

Cybersecurity Measures Against Gun Trafficking

Brief history of cyber security, cyber crimes and cyber security in modern world, cybersecurity and risk management, let us write you an essay from scratch.

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Effects of Social Media on Cybercrime

The importance of cybersecurity: department of justice, yahoo and jp morgan chase, the history and concept of cyber security, impact realisation of cyber warfare, get a personalized essay in under 3 hours.

Expert-written essays crafted with your exact needs in mind

Fundamental Steps of Cyber Security

Statement of purpose (information technology and cyber security), data mining and machine learning methods for cyber security intrusion detection, best ways to have secure coding at your company, the issue of digital security risks and its types, a survey on android malwares and their detection techniques, the notions of cyber-warriors in social media, human error, the weakest link in cybersecurity, digital crime and digital terrorism: the future of technology, general data protection regulation, cyber bullying, its effects and ways to stop, cyber crimes, cyber terrorism as a major security challenge, the most damaging hackers' attacks in history, malware classification using machine learning, national security and its need for technological advancement, international cybercrime law: past, present, future perspectives, the future of cyber security: what we can expect, research on cyberwarfare: cyberattacks, experiments, and future predictions, the role of information security, relevant topics.

  • Digital Era
  • Computer Science
  • Virtual Reality
  • Artificial Intelligence
  • Disadvantages of Technology
  • Negative Impact of Technology

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essay on cyber security policy

Cyber risk and cybersecurity: a systematic review of data availability

  • Open access
  • Published: 17 February 2022
  • Volume 47 , pages 698–736, ( 2022 )

Cite this article

You have full access to this open access article

essay on cyber security policy

  • Frank Cremer 1 ,
  • Barry Sheehan   ORCID: orcid.org/0000-0003-4592-7558 1 ,
  • Michael Fortmann 2 ,
  • Arash N. Kia 1 ,
  • Martin Mullins 1 ,
  • Finbarr Murphy 1 &
  • Stefan Materne 2  

65k Accesses

42 Altmetric

Explore all metrics

Cybercrime is estimated to have cost the global economy just under USD 1 trillion in 2020, indicating an increase of more than 50% since 2018. With the average cyber insurance claim rising from USD 145,000 in 2019 to USD 359,000 in 2020, there is a growing necessity for better cyber information sources, standardised databases, mandatory reporting and public awareness. This research analyses the extant academic and industry literature on cybersecurity and cyber risk management with a particular focus on data availability. From a preliminary search resulting in 5219 cyber peer-reviewed studies, the application of the systematic methodology resulted in 79 unique datasets. We posit that the lack of available data on cyber risk poses a serious problem for stakeholders seeking to tackle this issue. In particular, we identify a lacuna in open databases that undermine collective endeavours to better manage this set of risks. The resulting data evaluation and categorisation will support cybersecurity researchers and the insurance industry in their efforts to comprehend, metricise and manage cyber risks.

Similar content being viewed by others

essay on cyber security policy

The Ethical Implications of Using Artificial Intelligence in Auditing

essay on cyber security policy

AI-Driven Cybersecurity: An Overview, Security Intelligence Modeling and Research Directions

essay on cyber security policy

Cyber Security Threats and Vulnerabilities: A Systematic Mapping Study

Avoid common mistakes on your manuscript.

Introduction

Globalisation, digitalisation and smart technologies have escalated the propensity and severity of cybercrime. Whilst it is an emerging field of research and industry, the importance of robust cybersecurity defence systems has been highlighted at the corporate, national and supranational levels. The impacts of inadequate cybersecurity are estimated to have cost the global economy USD 945 billion in 2020 (Maleks Smith et al. 2020 ). Cyber vulnerabilities pose significant corporate risks, including business interruption, breach of privacy and financial losses (Sheehan et al. 2019 ). Despite the increasing relevance for the international economy, the availability of data on cyber risks remains limited. The reasons for this are many. Firstly, it is an emerging and evolving risk; therefore, historical data sources are limited (Biener et al. 2015 ). It could also be due to the fact that, in general, institutions that have been hacked do not publish the incidents (Eling and Schnell 2016 ). The lack of data poses challenges for many areas, such as research, risk management and cybersecurity (Falco et al. 2019 ). The importance of this topic is demonstrated by the announcement of the European Council in April 2021 that a centre of excellence for cybersecurity will be established to pool investments in research, technology and industrial development. The goal of this centre is to increase the security of the internet and other critical network and information systems (European Council 2021 ).

This research takes a risk management perspective, focusing on cyber risk and considering the role of cybersecurity and cyber insurance in risk mitigation and risk transfer. The study reviews the existing literature and open data sources related to cybersecurity and cyber risk. This is the first systematic review of data availability in the general context of cyber risk and cybersecurity. By identifying and critically analysing the available datasets, this paper supports the research community by aggregating, summarising and categorising all available open datasets. In addition, further information on datasets is attached to provide deeper insights and support stakeholders engaged in cyber risk control and cybersecurity. Finally, this research paper highlights the need for open access to cyber-specific data, without price or permission barriers.

The identified open data can support cyber insurers in their efforts on sustainable product development. To date, traditional risk assessment methods have been untenable for insurance companies due to the absence of historical claims data (Sheehan et al. 2021 ). These high levels of uncertainty mean that cyber insurers are more inclined to overprice cyber risk cover (Kshetri 2018 ). Combining external data with insurance portfolio data therefore seems to be essential to improve the evaluation of the risk and thus lead to risk-adjusted pricing (Bessy-Roland et al. 2021 ). This argument is also supported by the fact that some re/insurers reported that they are working to improve their cyber pricing models (e.g. by creating or purchasing databases from external providers) (EIOPA 2018 ). Figure  1 provides an overview of pricing tools and factors considered in the estimation of cyber insurance based on the findings of EIOPA ( 2018 ) and the research of Romanosky et al. ( 2019 ). The term cyber risk refers to all cyber risks and their potential impact.

figure 1

An overview of the current cyber insurance informational and methodological landscape, adapted from EIOPA ( 2018 ) and Romanosky et al. ( 2019 )

Besides the advantage of risk-adjusted pricing, the availability of open datasets helps companies benchmark their internal cyber posture and cybersecurity measures. The research can also help to improve risk awareness and corporate behaviour. Many companies still underestimate their cyber risk (Leong and Chen 2020 ). For policymakers, this research offers starting points for a comprehensive recording of cyber risks. Although in many countries, companies are obliged to report data breaches to the respective supervisory authority, this information is usually not accessible to the research community. Furthermore, the economic impact of these breaches is usually unclear.

As well as the cyber risk management community, this research also supports cybersecurity stakeholders. Researchers are provided with an up-to-date, peer-reviewed literature of available datasets showing where these datasets have been used. For example, this includes datasets that have been used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems. This reduces a time-consuming search for suitable datasets and ensures a comprehensive review of those available. Through the dataset descriptions, researchers and industry stakeholders can compare and select the most suitable datasets for their purposes. In addition, it is possible to combine the datasets from one source in the context of cybersecurity or cyber risk. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks.

Cyber risks are defined as “operational risks to information and technology assets that have consequences affecting the confidentiality, availability, and/or integrity of information or information systems” (Cebula et al. 2014 ). Prominent cyber risk events include data breaches and cyberattacks (Agrafiotis et al. 2018 ). The increasing exposure and potential impact of cyber risk have been highlighted in recent industry reports (e.g. Allianz 2021 ; World Economic Forum 2020 ). Cyberattacks on critical infrastructures are ranked 5th in the World Economic Forum's Global Risk Report. Ransomware, malware and distributed denial-of-service (DDoS) are examples of the evolving modes of a cyberattack. One example is the ransomware attack on the Colonial Pipeline, which shut down the 5500 mile pipeline system that delivers 2.5 million barrels of fuel per day and critical liquid fuel infrastructure from oil refineries to states along the U.S. East Coast (Brower and McCormick 2021 ). These and other cyber incidents have led the U.S. to strengthen its cybersecurity and introduce, among other things, a public body to analyse major cyber incidents and make recommendations to prevent a recurrence (Murphey 2021a ). Another example of the scope of cyberattacks is the ransomware NotPetya in 2017. The damage amounted to USD 10 billion, as the ransomware exploited a vulnerability in the windows system, allowing it to spread independently worldwide in the network (GAO 2021 ). In the same year, the ransomware WannaCry was launched by cybercriminals. The cyberattack on Windows software took user data hostage in exchange for Bitcoin cryptocurrency (Smart 2018 ). The victims included the National Health Service in Great Britain. As a result, ambulances were redirected to other hospitals because of information technology (IT) systems failing, leaving people in need of urgent assistance waiting. It has been estimated that 19,000 cancelled treatment appointments resulted from losses of GBP 92 million (Field 2018 ). Throughout the COVID-19 pandemic, ransomware attacks increased significantly, as working from home arrangements increased vulnerability (Murphey 2021b ).

Besides cyberattacks, data breaches can also cause high costs. Under the General Data Protection Regulation (GDPR), companies are obliged to protect personal data and safeguard the data protection rights of all individuals in the EU area. The GDPR allows data protection authorities in each country to impose sanctions and fines on organisations they find in breach. “For data breaches, the maximum fine can be €20 million or 4% of global turnover, whichever is higher” (GDPR.EU 2021 ). Data breaches often involve a large amount of sensitive data that has been accessed, unauthorised, by external parties, and are therefore considered important for information security due to their far-reaching impact (Goode et al. 2017 ). A data breach is defined as a “security incident in which sensitive, protected, or confidential data are copied, transmitted, viewed, stolen, or used by an unauthorized individual” (Freeha et al. 2021 ). Depending on the amount of data, the extent of the damage caused by a data breach can be significant, with the average cost being USD 392 million Footnote 1 (IBM Security 2020 ).

This research paper reviews the existing literature and open data sources related to cybersecurity and cyber risk, focusing on the datasets used to improve academic understanding and advance the current state-of-the-art in cybersecurity. Furthermore, important information about the available datasets is presented (e.g. use cases), and a plea is made for open data and the standardisation of cyber risk data for academic comparability and replication. The remainder of the paper is structured as follows. The next section describes the related work regarding cybersecurity and cyber risks. The third section outlines the review method used in this work and the process. The fourth section details the results of the identified literature. Further discussion is presented in the penultimate section and the final section concludes.

Related work

Due to the significance of cyber risks, several literature reviews have been conducted in this field. Eling ( 2020 ) reviewed the existing academic literature on the topic of cyber risk and cyber insurance from an economic perspective. A total of 217 papers with the term ‘cyber risk’ were identified and classified in different categories. As a result, open research questions are identified, showing that research on cyber risks is still in its infancy because of their dynamic and emerging nature. Furthermore, the author highlights that particular focus should be placed on the exchange of information between public and private actors. An improved information flow could help to measure the risk more accurately and thus make cyber risks more insurable and help risk managers to determine the right level of cyber risk for their company. In the context of cyber insurance data, Romanosky et al. ( 2019 ) analysed the underwriting process for cyber insurance and revealed how cyber insurers understand and assess cyber risks. For this research, they examined 235 American cyber insurance policies that were publicly available and looked at three components (coverage, application questionnaires and pricing). The authors state in their findings that many of the insurers used very simple, flat-rate pricing (based on a single calculation of expected loss), while others used more parameters such as the asset value of the company (or company revenue) or standard insurance metrics (e.g. deductible, limits), and the industry in the calculation. This is in keeping with Eling ( 2020 ), who states that an increased amount of data could help to make cyber risk more accurately measured and thus more insurable. Similar research on cyber insurance and data was conducted by Nurse et al. ( 2020 ). The authors examined cyber insurance practitioners' perceptions and the challenges they face in collecting and using data. In addition, gaps were identified during the research where further data is needed. The authors concluded that cyber insurance is still in its infancy, and there are still several unanswered questions (for example, cyber valuation, risk calculation and recovery). They also pointed out that a better understanding of data collection and use in cyber insurance would be invaluable for future research and practice. Bessy-Roland et al. ( 2021 ) come to a similar conclusion. They proposed a multivariate Hawkes framework to model and predict the frequency of cyberattacks. They used a public dataset with characteristics of data breaches affecting the U.S. industry. In the conclusion, the authors make the argument that an insurer has a better knowledge of cyber losses, but that it is based on a small dataset and therefore combination with external data sources seems essential to improve the assessment of cyber risks.

Several systematic reviews have been published in the area of cybersecurity (Kruse et al. 2017 ; Lee et al. 2020 ; Loukas et al. 2013 ; Ulven and Wangen 2021 ). In these papers, the authors concentrated on a specific area or sector in the context of cybersecurity. This paper adds to this extant literature by focusing on data availability and its importance to risk management and insurance stakeholders. With a priority on healthcare and cybersecurity, Kruse et al. ( 2017 ) conducted a systematic literature review. The authors identified 472 articles with the keywords ‘cybersecurity and healthcare’ or ‘ransomware’ in the databases Cumulative Index of Nursing and Allied Health Literature, PubMed and Proquest. Articles were eligible for this review if they satisfied three criteria: (1) they were published between 2006 and 2016, (2) the full-text version of the article was available, and (3) the publication is a peer-reviewed or scholarly journal. The authors found that technological development and federal policies (in the U.S.) are the main factors exposing the health sector to cyber risks. Loukas et al. ( 2013 ) conducted a review with a focus on cyber risks and cybersecurity in emergency management. The authors provided an overview of cyber risks in communication, sensor, information management and vehicle technologies used in emergency management and showed areas for which there is still no solution in the literature. Similarly, Ulven and Wangen ( 2021 ) reviewed the literature on cybersecurity risks in higher education institutions. For the literature review, the authors used the keywords ‘cyber’, ‘information threats’ or ‘vulnerability’ in connection with the terms ‘higher education, ‘university’ or ‘academia’. A similar literature review with a focus on Internet of Things (IoT) cybersecurity was conducted by Lee et al. ( 2020 ). The review revealed that qualitative approaches focus on high-level frameworks, and quantitative approaches to cybersecurity risk management focus on risk assessment and quantification of cyberattacks and impacts. In addition, the findings presented a four-step IoT cyber risk management framework that identifies, quantifies and prioritises cyber risks.

Datasets are an essential part of cybersecurity research, underlined by the following works. Ilhan Firat et al. ( 2021 ) examined various cybersecurity datasets in detail. The study was motivated by the fact that with the proliferation of the internet and smart technologies, the mode of cyberattacks is also evolving. However, in order to prevent such attacks, they must first be detected; the dissemination and further development of cybersecurity datasets is therefore critical. In their work, the authors observed studies of datasets used in intrusion detection systems. Khraisat et al. ( 2019 ) also identified a need for new datasets in the context of cybersecurity. The researchers presented a taxonomy of current intrusion detection systems, a comprehensive review of notable recent work, and an overview of the datasets commonly used for assessment purposes. In their conclusion, the authors noted that new datasets are needed because most machine-learning techniques are trained and evaluated on the knowledge of old datasets. These datasets do not contain new and comprehensive information and are partly derived from datasets from 1999. The authors noted that the core of this issue is the availability of new public datasets as well as their quality. The availability of data, how it is used, created and shared was also investigated by Zheng et al. ( 2018 ). The researchers analysed 965 cybersecurity research papers published between 2012 and 2016. They created a taxonomy of the types of data that are created and shared and then analysed the data collected via datasets. The researchers concluded that while datasets are recognised as valuable for cybersecurity research, the proportion of publicly available datasets is limited.

The main contributions of this review and what differentiates it from previous studies can be summarised as follows. First, as far as we can tell, it is the first work to summarise all available datasets on cyber risk and cybersecurity in the context of a systematic review and present them to the scientific community and cyber insurance and cybersecurity stakeholders. Second, we investigated, analysed, and made available the datasets to support efficient and timely progress in cyber risk research. And third, we enable comparability of datasets so that the appropriate dataset can be selected depending on the research area.

Methodology

Process and eligibility criteria.

The structure of this systematic review is inspired by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework (Page et al. 2021 ), and the search was conducted from 3 to 10 May 2021. Due to the continuous development of cyber risks and their countermeasures, only articles published in the last 10 years were considered. In addition, only articles published in peer-reviewed journals written in English were included. As a final criterion, only articles that make use of one or more cybersecurity or cyber risk datasets met the inclusion criteria. Specifically, these studies presented new or existing datasets, used them for methods, or used them to verify new results, as well as analysed them in an economic context and pointed out their effects. The criterion was fulfilled if it was clearly stated in the abstract that one or more datasets were used. A detailed explanation of this selection criterion can be found in the ‘Study selection’ section.

Information sources

In order to cover a complete spectrum of literature, various databases were queried to collect relevant literature on the topic of cybersecurity and cyber risks. Due to the spread of related articles across multiple databases, the literature search was limited to the following four databases for simplicity: IEEE Xplore, Scopus, SpringerLink and Web of Science. This is similar to other literature reviews addressing cyber risks or cybersecurity, including Sardi et al. ( 2021 ), Franke and Brynielsson ( 2014 ), Lagerström (2019), Eling and Schnell ( 2016 ) and Eling ( 2020 ). In this paper, all databases used in the aforementioned works were considered. However, only two studies also used all the databases listed. The IEEE Xplore database contains electrical engineering, computer science, and electronics work from over 200 journals and three million conference papers (IEEE 2021 ). Scopus includes 23,400 peer-reviewed journals from more than 5000 international publishers in the areas of science, engineering, medicine, social sciences and humanities (Scopus 2021 ). SpringerLink contains 3742 journals and indexes over 10 million scientific documents (SpringerLink 2021 ). Finally, Web of Science indexes over 9200 journals in different scientific disciplines (Science 2021 ).

A search string was created and applied to all databases. To make the search efficient and reproducible, the following search string with Boolean operator was used in all databases: cybersecurity OR cyber risk AND dataset OR database. To ensure uniformity of the search across all databases, some adjustments had to be made for the respective search engines. In Scopus, for example, the Advanced Search was used, and the field code ‘Title-ABS-KEY’ was integrated into the search string. For IEEE Xplore, the search was carried out with the Search String in the Command Search and ‘All Metadata’. In the Web of Science database, the Advanced Search was used. The special feature of this search was that it had to be carried out in individual steps. The first search was carried out with the terms cybersecurity OR cyber risk with the field tag Topic (T.S. =) and the second search with dataset OR database. Subsequently, these searches were combined, which then delivered the searched articles for review. For SpringerLink, the search string was used in the Advanced Search under the category ‘Find the resources with all of the words’. After conducting this search string, 5219 studies could be found. According to the eligibility criteria (period, language and only scientific journals), 1581 studies were identified in the databases:

Scopus: 135

Springer Link: 548

Web of Science: 534

An overview of the process is given in Fig.  2 . Combined with the results from the four databases, 854 articles without duplicates were identified.

figure 2

Literature search process and categorisation of the studies

Study selection

In the final step of the selection process, the articles were screened for relevance. Due to a large number of results, the abstracts were analysed in the first step of the process. The aim was to determine whether the article was relevant for the systematic review. An article fulfilled the criterion if it was recognisable in the abstract that it had made a contribution to datasets or databases with regard to cyber risks or cybersecurity. Specifically, the criterion was considered to be met if the abstract used datasets that address the causes or impacts of cyber risks, and measures in the area of cybersecurity. In this process, the number of articles was reduced to 288. The articles were then read in their entirety, and an expert panel of six people decided whether they should be used. This led to a final number of 255 articles. The years in which the articles were published and the exact number can be seen in Fig.  3 .

figure 3

Distribution of studies

Data collection process and synthesis of the results

For the data collection process, various data were extracted from the studies, including the names of the respective creators, the name of the dataset or database and the corresponding reference. It was also determined where the data came from. In the context of accessibility, it was determined whether access is free, controlled, available for purchase or not available. It was also determined when the datasets were created and the time period referenced. The application type and domain characteristics of the datasets were identified.

This section analyses the results of the systematic literature review. The previously identified studies are divided into three categories: datasets on the causes of cyber risks, datasets on the effects of cyber risks and datasets on cybersecurity. The classification is based on the intended use of the studies. This system of classification makes it easier for stakeholders to find the appropriate datasets. The categories are evaluated individually. Although complete information is available for a large proportion of datasets, this is not true for all of them. Accordingly, the abbreviation N/A has been inserted in the respective characters to indicate that this information could not be determined by the time of submission. The term ‘use cases in the literature’ in the following and supplementary tables refers to the application areas in which the corresponding datasets were used in the literature. The areas listed there refer to the topic area on which the researchers conducted their research. Since some datasets were used interdisciplinarily, the listed use cases in the literature are correspondingly longer. Before discussing each category in the next sections, Fig.  4 provides an overview of the number of datasets found and their year of creation. Figure  5 then shows the relationship between studies and datasets in the period under consideration. Figure  6 shows the distribution of studies, their use of datasets and their creation date. The number of datasets used is higher than the number of studies because the studies often used several datasets (Table 1 ).

figure 4

Distribution of dataset results

figure 5

Correlation between the studies and the datasets

figure 6

Distribution of studies and their use of datasets

Most of the datasets are generated in the U.S. (up to 58.2%). Canada and Australia rank next, with 11.3% and 5% of all the reviewed datasets, respectively.

Additionally, to create value for the datasets for the cyber insurance industry, an assessment of the applicability of each dataset has been provided for cyber insurers. This ‘Use Case Assessment’ includes the use of the data in the context of different analyses, calculation of cyber insurance premiums, and use of the information for the design of cyber insurance contracts or for additional customer services. To reasonably account for the transition of direct hyperlinks in the future, references were directed to the main websites for longevity (nearest resource point). In addition, the links to the main pages contain further information on the datasets and different versions related to the operating systems. The references were chosen in such a way that practitioners get the best overview of the respective datasets.

Case datasets

This section presents selected articles that use the datasets to analyse the causes of cyber risks. The datasets help identify emerging trends and allow pattern discovery in cyber risks. This information gives cybersecurity experts and cyber insurers the data to make better predictions and take appropriate action. For example, if certain vulnerabilities are not adequately protected, cyber insurers will demand a risk surcharge leading to an improvement in the risk-adjusted premium. Due to the capricious nature of cyber risks, existing data must be supplemented with new data sources (for example, new events, new methods or security vulnerabilities) to determine prevailing cyber exposure. The datasets of cyber risk causes could be combined with existing portfolio data from cyber insurers and integrated into existing pricing tools and factors to improve the valuation of cyber risks.

A portion of these datasets consists of several taxonomies and classifications of cyber risks. Aassal et al. ( 2020 ) propose a new taxonomy of phishing characteristics based on the interpretation and purpose of each characteristic. In comparison, Hindy et al. ( 2020 ) presented a taxonomy of network threats and the impact of current datasets on intrusion detection systems. A similar taxonomy was suggested by Kiwia et al. ( 2018 ). The authors presented a cyber kill chain-based taxonomy of banking Trojans features. The taxonomy built on a real-world dataset of 127 banking Trojans collected from December 2014 to January 2016 by a major U.K.-based financial organisation.

In the context of classification, Aamir et al. ( 2021 ) showed the benefits of machine learning for classifying port scans and DDoS attacks in a mixture of normal and attack traffic. Guo et al. ( 2020 ) presented a new method to improve malware classification based on entropy sequence features. The evaluation of this new method was conducted on different malware datasets.

To reconstruct attack scenarios and draw conclusions based on the evidence in the alert stream, Barzegar and Shajari ( 2018 ) use the DARPA2000 and MACCDC 2012 dataset for their research. Giudici and Raffinetti ( 2020 ) proposed a rank-based statistical model aimed at predicting the severity levels of cyber risk. The model used cyber risk data from the University of Milan. In contrast to the previous datasets, Skrjanc et al. ( 2018 ) used the older dataset KDD99 to monitor large-scale cyberattacks using a cauchy clustering method.

Amin et al. ( 2021 ) used a cyberattack dataset from the Canadian Institute for Cybersecurity to identify spatial clusters of countries with high rates of cyberattacks. In the context of cybercrime, Junger et al. ( 2020 ) examined crime scripts, key characteristics of the target company and the relationship between criminal effort and financial benefit. For their study, the authors analysed 300 cases of fraudulent activities against Dutch companies. With a similar focus on cybercrime, Mireles et al. ( 2019 ) proposed a metric framework to measure the effectiveness of the dynamic evolution of cyberattacks and defensive measures. To validate its usefulness, they used the DEFCON dataset.

Due to the rapidly changing nature of cyber risks, it is often impossible to obtain all information on them. Kim and Kim ( 2019 ) proposed an automated dataset generation system called CTIMiner that collects threat data from publicly available security reports and malware repositories. They released a dataset to the public containing about 640,000 records from 612 security reports published between January 2008 and 2019. A similar approach is proposed by Kim et al. ( 2020 ), using a named entity recognition system to extract core information from cyber threat reports automatically. They created a 498,000-tag dataset during their research (Ulven and Wangen 2021 ).

Within the framework of vulnerabilities and cybersecurity issues, Ulven and Wangen ( 2021 ) proposed an overview of mission-critical assets and everyday threat events, suggested a generic threat model, and summarised common cybersecurity vulnerabilities. With a focus on hospitality, Chen and Fiscus ( 2018 ) proposed several issues related to cybersecurity in this sector. They analysed 76 security incidents from the Privacy Rights Clearinghouse database. Supplementary Table 1 lists all findings that belong to the cyber causes dataset.

Impact datasets

This section outlines selected findings of the cyber impact dataset. For cyber insurers, these datasets can form an important basis for information, as they can be used to calculate cyber insurance premiums, evaluate specific cyber risks, formulate inclusions and exclusions in cyber wordings, and re-evaluate as well as supplement the data collected so far on cyber risks. For example, information on financial losses can help to better assess the loss potential of cyber risks. Furthermore, the datasets can provide insight into the frequency of occurrence of these cyber risks. The new datasets can be used to close any data gaps that were previously based on very approximate estimates or to find new results.

Eight studies addressed the costs of data breaches. For instance, Eling and Jung ( 2018 ) reviewed 3327 data breach events from 2005 to 2016 and identified an asymmetric dependence of monthly losses by breach type and industry. The authors used datasets from the Privacy Rights Clearinghouse for analysis. The Privacy Rights Clearinghouse datasets and the Breach level index database were also used by De Giovanni et al. ( 2020 ) to describe relationships between data breaches and bitcoin-related variables using the cointegration methodology. The data were obtained from the Department of Health and Human Services of healthcare facilities reporting data breaches and a national database of technical and organisational infrastructure information. Also in the context of data breaches, Algarni et al. ( 2021 ) developed a comprehensive, formal model that estimates the two components of security risks: breach cost and the likelihood of a data breach within 12 months. For their survey, the authors used two industrial reports from the Ponemon institute and VERIZON. To illustrate the scope of data breaches, Neto et al. ( 2021 ) identified 430 major data breach incidents among more than 10,000 incidents. The database created is available and covers the period 2018 to 2019.

With a direct focus on insurance, Biener et al. ( 2015 ) analysed 994 cyber loss cases from an operational risk database and investigated the insurability of cyber risks based on predefined criteria. For their study, they used data from the company SAS OpRisk Global Data. Similarly, Eling and Wirfs ( 2019 ) looked at a wide range of cyber risk events and actual cost data using the same database. They identified cyber losses and analysed them using methods from statistics and actuarial science. Using a similar reference, Farkas et al. ( 2021 ) proposed a method for analysing cyber claims based on regression trees to identify criteria for classifying and evaluating claims. Similar to Chen and Fiscus ( 2018 ), the dataset used was the Privacy Rights Clearinghouse database. Within the framework of reinsurance, Moro ( 2020 ) analysed cyber index-based information technology activity to see if index-parametric reinsurance coverage could suggest its cedant using data from a Symantec dataset.

Paté-Cornell et al. ( 2018 ) presented a general probabilistic risk analysis framework for cybersecurity in an organisation to be specified. The results are distributions of losses to cyberattacks, with and without considered countermeasures in support of risk management decisions based both on past data and anticipated incidents. The data used were from The Common Vulnerability and Exposures database and via confidential access to a database of cyberattacks on a large, U.S.-based organisation. A different conceptual framework for cyber risk classification and assessment was proposed by Sheehan et al. ( 2021 ). This framework showed the importance of proactive and reactive barriers in reducing companies’ exposure to cyber risk and quantifying the risk. Another approach to cyber risk assessment and mitigation was proposed by Mukhopadhyay et al. ( 2019 ). They estimated the probability of an attack using generalised linear models, predicted the security technology required to reduce the probability of cyberattacks, and used gamma and exponential distributions to best approximate the average loss data for each malicious attack. They also calculated the expected loss due to cyberattacks, calculated the net premium that would need to be charged by a cyber insurer, and suggested cyber insurance as a strategy to minimise losses. They used the CSI-FBI survey (1997–2010) to conduct their research.

In order to highlight the lack of data on cyber risks, Eling ( 2020 ) conducted a literature review in the areas of cyber risk and cyber insurance. Available information on the frequency, severity, and dependency structure of cyber risks was filtered out. In addition, open questions for future cyber risk research were set up. Another example of data collection on the impact of cyberattacks is provided by Sornette et al. ( 2013 ), who use a database of newspaper articles, press reports and other media to provide a predictive method to identify triggering events and potential accident scenarios and estimate their severity and frequency. A similar approach to data collection was used by Arcuri et al. ( 2020 ) to gather an original sample of global cyberattacks from newspaper reports sourced from the LexisNexis database. This collection is also used and applied to the fields of dynamic communication and cyber risk perception by Fang et al. ( 2021 ). To create a dataset of cyber incidents and disputes, Valeriano and Maness ( 2014 ) collected information on cyber interactions between rival states.

To assess trends and the scale of economic cybercrime, Levi ( 2017 ) examined datasets from different countries and their impact on crime policy. Pooser et al. ( 2018 ) investigated the trend in cyber risk identification from 2006 to 2015 and company characteristics related to cyber risk perception. The authors used a dataset of various reports from cyber insurers for their study. Walker-Roberts et al. ( 2020 ) investigated the spectrum of risk of a cybersecurity incident taking place in the cyber-physical-enabled world using the VERIS Community Database. The datasets of impacts identified are presented below. Due to overlap, some may also appear in the causes dataset (Supplementary Table 2).

Cybersecurity datasets

General intrusion detection.

General intrusion detection systems account for the largest share of countermeasure datasets. For companies or researchers focused on cybersecurity, the datasets can be used to test their own countermeasures or obtain information about potential vulnerabilities. For example, Al-Omari et al. ( 2021 ) proposed an intelligent intrusion detection model for predicting and detecting attacks in cyberspace, which was applied to dataset UNSW-NB 15. A similar approach was taken by Choras and Kozik ( 2015 ), who used machine learning to detect cyberattacks on web applications. To evaluate their method, they used the HTTP dataset CSIC 2010. For the identification of unknown attacks on web servers, Kamarudin et al. ( 2017 ) proposed an anomaly-based intrusion detection system using an ensemble classification approach. Ganeshan and Rodrigues ( 2020 ) showed an intrusion detection system approach, which clusters the database into several groups and detects the presence of intrusion in the clusters. In comparison, AlKadi et al. ( 2019 ) used a localisation-based model to discover abnormal patterns in network traffic. Hybrid models have been recommended by Bhattacharya et al. ( 2020 ) and Agrawal et al. ( 2019 ); the former is a machine-learning model based on principal component analysis for the classification of intrusion detection system datasets, while the latter is a hybrid ensemble intrusion detection system for anomaly detection using different datasets to detect patterns in network traffic that deviate from normal behaviour.

Agarwal et al. ( 2021 ) used three different machine learning algorithms in their research to find the most suitable for efficiently identifying patterns of suspicious network activity. The UNSW-NB15 dataset was used for this purpose. Kasongo and Sun ( 2020 ), Feed-Forward Deep Neural Network (FFDNN), Keshk et al. ( 2021 ), the privacy-preserving anomaly detection framework, and others also use the UNSW-NB 15 dataset as part of intrusion detection systems. The same dataset and others were used by Binbusayyis and Vaiyapuri ( 2019 ) to identify and compare key features for cyber intrusion detection. Atefinia and Ahmadi ( 2021 ) proposed a deep neural network model to reduce the false positive rate of an anomaly-based intrusion detection system. Fossaceca et al. ( 2015 ) focused in their research on the development of a framework that combined the outputs of multiple learners in order to improve the efficacy of network intrusion, and Gauthama Raman et al. ( 2020 ) presented a search algorithm based on Support Vector machine to improve the performance of the detection and false alarm rate to improve intrusion detection techniques. Ahmad and Alsemmeari ( 2020 ) targeted extreme learning machine techniques due to their good capabilities in classification problems and handling huge data. They used the NSL-KDD dataset as a benchmark.

With reference to prediction, Bakdash et al. ( 2018 ) used datasets from the U.S. Department of Defence to predict cyberattacks by malware. This dataset consists of weekly counts of cyber events over approximately seven years. Another prediction method was presented by Fan et al. ( 2018 ), which showed an improved integrated cybersecurity prediction method based on spatial-time analysis. Also, with reference to prediction, Ashtiani and Azgomi ( 2014 ) proposed a framework for the distributed simulation of cyberattacks based on high-level architecture. Kirubavathi and Anitha ( 2016 ) recommended an approach to detect botnets, irrespective of their structures, based on network traffic flow behaviour analysis and machine-learning techniques. Dwivedi et al. ( 2021 ) introduced a multi-parallel adaptive technique to utilise an adaption mechanism in the group of swarms for network intrusion detection. AlEroud and Karabatis ( 2018 ) presented an approach that used contextual information to automatically identify and query possible semantic links between different types of suspicious activities extracted from network flows.

Intrusion detection systems with a focus on IoT

In addition to general intrusion detection systems, a proportion of studies focused on IoT. Habib et al. ( 2020 ) presented an approach for converting traditional intrusion detection systems into smart intrusion detection systems for IoT networks. To enhance the process of diagnostic detection of possible vulnerabilities with an IoT system, Georgescu et al. ( 2019 ) introduced a method that uses a named entity recognition-based solution. With regard to IoT in the smart home sector, Heartfield et al. ( 2021 ) presented a detection system that is able to autonomously adjust the decision function of its underlying anomaly classification models to a smart home’s changing condition. Another intrusion detection system was suggested by Keserwani et al. ( 2021 ), which combined Grey Wolf Optimization and Particle Swam Optimization to identify various attacks for IoT networks. They used the KDD Cup 99, NSL-KDD and CICIDS-2017 to evaluate their model. Abu Al-Haija and Zein-Sabatto ( 2020 ) provide a comprehensive development of a new intelligent and autonomous deep-learning-based detection and classification system for cyberattacks in IoT communication networks that leverage the power of convolutional neural networks, abbreviated as IoT-IDCS-CNN (IoT-based Intrusion Detection and Classification System using Convolutional Neural Network). To evaluate the development, the authors used the NSL-KDD dataset. Biswas and Roy ( 2021 ) recommended a model that identifies malicious botnet traffic using novel deep-learning approaches like artificial neural networks gutted recurrent units and long- or short-term memory models. They tested their model with the Bot-IoT dataset.

With a more forensic background, Koroniotis et al. ( 2020 ) submitted a network forensic framework, which described the digital investigation phases for identifying and tracing attack behaviours in IoT networks. The suggested work was evaluated with the Bot-IoT and UINSW-NB15 datasets. With a focus on big data and IoT, Chhabra et al. ( 2020 ) presented a cyber forensic framework for big data analytics in an IoT environment using machine learning. Furthermore, the authors mentioned different publicly available datasets for machine-learning models.

A stronger focus on a mobile phones was exhibited by Alazab et al. ( 2020 ), which presented a classification model that combined permission requests and application programme interface calls. The model was tested with a malware dataset containing 27,891 Android apps. A similar approach was taken by Li et al. ( 2019a , b ), who proposed a reliable classifier for Android malware detection based on factorisation machine architecture and extraction of Android app features from manifest files and source code.

Literature reviews

In addition to the different methods and models for intrusion detection systems, various literature reviews on the methods and datasets were also found. Liu and Lang ( 2019 ) proposed a taxonomy of intrusion detection systems that uses data objects as the main dimension to classify and summarise machine learning and deep learning-based intrusion detection literature. They also presented four different benchmark datasets for machine-learning detection systems. Ahmed et al. ( 2016 ) presented an in-depth analysis of four major categories of anomaly detection techniques, which include classification, statistical, information theory and clustering. Hajj et al. ( 2021 ) gave a comprehensive overview of anomaly-based intrusion detection systems. Their article gives an overview of the requirements, methods, measurements and datasets that are used in an intrusion detection system.

Within the framework of machine learning, Chattopadhyay et al. ( 2018 ) conducted a comprehensive review and meta-analysis on the application of machine-learning techniques in intrusion detection systems. They also compared different machine learning techniques in different datasets and summarised the performance. Vidros et al. ( 2017 ) presented an overview of characteristics and methods in automatic detection of online recruitment fraud. They also published an available dataset of 17,880 annotated job ads, retrieved from the use of a real-life system. An empirical study of different unsupervised learning algorithms used in the detection of unknown attacks was presented by Meira et al. ( 2020 ).

New datasets

Kilincer et al. ( 2021 ) reviewed different intrusion detection system datasets in detail. They had a closer look at the UNS-NB15, ISCX-2012, NSL-KDD and CIDDS-001 datasets. Stojanovic et al. ( 2020 ) also provided a review on datasets and their creation for use in advanced persistent threat detection in the literature. Another review of datasets was provided by Sarker et al. ( 2020 ), who focused on cybersecurity data science as part of their research and provided an overview from a machine-learning perspective. Avila et al. ( 2021 ) conducted a systematic literature review on the use of security logs for data leak detection. They recommended a new classification of information leak, which uses the GDPR principles, identified the most widely publicly available dataset for threat detection, described the attack types in the datasets and the algorithms used for data leak detection. Tuncer et al. ( 2020 ) presented a bytecode-based detection method consisting of feature extraction using local neighbourhood binary patterns. They chose a byte-based malware dataset to investigate the performance of the proposed local neighbourhood binary pattern-based detection method. With a different focus, Mauro et al. ( 2020 ) gave an experimental overview of neural-based techniques relevant to intrusion detection. They assessed the value of neural networks using the Bot-IoT and UNSW-DB15 datasets.

Another category of results in the context of countermeasure datasets is those that were presented as new. Moreno et al. ( 2018 ) developed a database of 300 security-related accidents from European and American sources. The database contained cybersecurity-related events in the chemical and process industry. Damasevicius et al. ( 2020 ) proposed a new dataset (LITNET-2020) for network intrusion detection. The dataset is a new annotated network benchmark dataset obtained from the real-world academic network. It presents real-world examples of normal and under-attack network traffic. With a focus on IoT intrusion detection systems, Alsaedi et al. ( 2020 ) proposed a new benchmark IoT/IIot datasets for assessing intrusion detection system-enabled IoT systems. Also in the context of IoT, Vaccari et al. ( 2020 ) proposed a dataset focusing on message queue telemetry transport protocols, which can be used to train machine-learning models. To evaluate the performance of machine-learning classifiers, Mahfouz et al. ( 2020 ) created a dataset called Game Theory and Cybersecurity (GTCS). A dataset containing 22,000 malware and benign samples was constructed by Martin et al. ( 2019 ). The dataset can be used as a benchmark to test the algorithm for Android malware classification and clustering techniques. In addition, Laso et al. ( 2017 ) presented a dataset created to investigate how data and information quality estimates enable the detection of anomalies and malicious acts in cyber-physical systems. The dataset contained various cyberattacks and is publicly available.

In addition to the results described above, several other studies were found that fit into the category of countermeasures. Johnson et al. ( 2016 ) examined the time between vulnerability disclosures. Using another vulnerabilities database, Common Vulnerabilities and Exposures (CVE), Subroto and Apriyana ( 2019 ) presented an algorithm model that uses big data analysis of social media and statistical machine learning to predict cyber risks. A similar databank but with a different focus, Common Vulnerability Scoring System, was used by Chatterjee and Thekdi ( 2020 ) to present an iterative data-driven learning approach to vulnerability assessment and management for complex systems. Using the CICIDS2017 dataset to evaluate the performance, Malik et al. ( 2020 ) proposed a control plane-based orchestration for varied, sophisticated threats and attacks. The same dataset was used in another study by Lee et al. ( 2019 ), who developed an artificial security information event management system based on a combination of event profiling for data processing and different artificial network methods. To exploit the interdependence between multiple series, Fang et al. ( 2021 ) proposed a statistical framework. In order to validate the framework, the authors applied it to a dataset of enterprise-level security breaches from the Privacy Rights Clearinghouse and Identity Theft Center database. Another framework with a defensive aspect was recommended by Li et al. ( 2021 ) to increase the robustness of deep neural networks against adversarial malware evasion attacks. Sarabi et al. ( 2016 ) investigated whether and to what extent business details can help assess an organisation's risk of data breaches and the distribution of risk across different types of incidents to create policies for protection, detection and recovery from different forms of security incidents. They used data from the VERIS Community Database.

Datasets that have been classified into the cybersecurity category are detailed in Supplementary Table 3. Due to overlap, records from the previous tables may also be included.

This paper presented a systematic literature review of studies on cyber risk and cybersecurity that used datasets. Within this framework, 255 studies were fully reviewed and then classified into three different categories. Then, 79 datasets were consolidated from these studies. These datasets were subsequently analysed, and important information was selected through a process of filtering out. This information was recorded in a table and enhanced with further information as part of the literature analysis. This made it possible to create a comprehensive overview of the datasets. For example, each dataset contains a description of where the data came from and how the data has been used to date. This allows different datasets to be compared and the appropriate dataset for the use case to be selected. This research certainly has limitations, so our selection of datasets cannot necessarily be taken as a representation of all available datasets related to cyber risks and cybersecurity. For example, literature searches were conducted in four academic databases and only found datasets that were used in the literature. Many research projects also used old datasets that may no longer consider current developments. In addition, the data are often focused on only one observation and are limited in scope. For example, the datasets can only be applied to specific contexts and are also subject to further limitations (e.g. region, industry, operating system). In the context of the applicability of the datasets, it is unfortunately not possible to make a clear statement on the extent to which they can be integrated into academic or practical areas of application or how great this effort is. Finally, it remains to be pointed out that this is an overview of currently available datasets, which are subject to constant change.

Due to the lack of datasets on cyber risks in the academic literature, additional datasets on cyber risks were integrated as part of a further search. The search was conducted on the Google Dataset search portal. The search term used was ‘cyber risk datasets’. Over 100 results were found. However, due to the low significance and verifiability, only 20 selected datasets were included. These can be found in Table 2  in the “ Appendix ”.

The results of the literature review and datasets also showed that there continues to be a lack of available, open cyber datasets. This lack of data is reflected in cyber insurance, for example, as it is difficult to find a risk-based premium without a sufficient database (Nurse et al. 2020 ). The global cyber insurance market was estimated at USD 5.5 billion in 2020 (Dyson 2020 ). When compared to the USD 1 trillion global losses from cybercrime (Maleks Smith et al. 2020 ), it is clear that there exists a significant cyber risk awareness challenge for both the insurance industry and international commerce. Without comprehensive and qualitative data on cyber losses, it can be difficult to estimate potential losses from cyberattacks and price cyber insurance accordingly (GAO 2021 ). For instance, the average cyber insurance loss increased from USD 145,000 in 2019 to USD 359,000 in 2020 (FitchRatings 2021 ). Cyber insurance is an important risk management tool to mitigate the financial impact of cybercrime. This is particularly evident in the impact of different industries. In the Energy & Commodities financial markets, a ransomware attack on the Colonial Pipeline led to a substantial impact on the U.S. economy. As a result of the attack, about 45% of the U.S. East Coast was temporarily unable to obtain supplies of diesel, petrol and jet fuel. This caused the average price in the U.S. to rise 7 cents to USD 3.04 per gallon, the highest in seven years (Garber 2021 ). In addition, Colonial Pipeline confirmed that it paid a USD 4.4 million ransom to a hacker gang after the attack. Another ransomware attack occurred in the healthcare and government sector. The victim of this attack was the Irish Health Service Executive (HSE). A ransom payment of USD 20 million was demanded from the Irish government to restore services after the hack (Tidy 2021 ). In the car manufacturing sector, Miller and Valasek ( 2015 ) initiated a cyberattack that resulted in the recall of 1.4 million vehicles and cost manufacturers EUR 761 million. The risk that arises in the context of these events is the potential for the accumulation of cyber losses, which is why cyber insurers are not expanding their capacity. An example of this accumulation of cyber risks is the NotPetya malware attack, which originated in Russia, struck in Ukraine, and rapidly spread around the world, causing at least USD 10 billion in damage (GAO 2021 ). These events highlight the importance of proper cyber risk management.

This research provides cyber insurance stakeholders with an overview of cyber datasets. Cyber insurers can use the open datasets to improve their understanding and assessment of cyber risks. For example, the impact datasets can be used to better measure financial impacts and their frequencies. These data could be combined with existing portfolio data from cyber insurers and integrated with existing pricing tools and factors to better assess cyber risk valuation. Although most cyber insurers have sparse historical cyber policy and claims data, they remain too small at present for accurate prediction (Bessy-Roland et al. 2021 ). A combination of portfolio data and external datasets would support risk-adjusted pricing for cyber insurance, which would also benefit policyholders. In addition, cyber insurance stakeholders can use the datasets to identify patterns and make better predictions, which would benefit sustainable cyber insurance coverage. In terms of cyber risk cause datasets, cyber insurers can use the data to review their insurance products. For example, the data could provide information on which cyber risks have not been sufficiently considered in product design or where improvements are needed. A combination of cyber cause and cybersecurity datasets can help establish uniform definitions to provide greater transparency and clarity. Consistent terminology could lead to a more sustainable cyber market, where cyber insurers make informed decisions about the level of coverage and policyholders understand their coverage (The Geneva Association 2020).

In addition to the cyber insurance community, this research also supports cybersecurity stakeholders. The reviewed literature can be used to provide a contemporary, contextual and categorised summary of available datasets. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks. With the help of the described cybersecurity datasets and the identified information, a comparison of different datasets is possible. The datasets can be used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems.

In this paper, we conducted a systematic review of studies on cyber risk and cybersecurity databases. We found that most of the datasets are in the field of intrusion detection and machine learning and are used for technical cybersecurity aspects. The available datasets on cyber risks were relatively less represented. Due to the dynamic nature and lack of historical data, assessing and understanding cyber risk is a major challenge for cyber insurance stakeholders. To address this challenge, a greater density of cyber data is needed to support cyber insurers in risk management and researchers with cyber risk-related topics. With reference to ‘Open Science’ FAIR data (Jacobsen et al. 2020 ), mandatory reporting of cyber incidents could help improve cyber understanding, awareness and loss prevention among companies and insurers. Through greater availability of data, cyber risks can be better understood, enabling researchers to conduct more in-depth research into these risks. Companies could incorporate this new knowledge into their corporate culture to reduce cyber risks. For insurance companies, this would have the advantage that all insurers would have the same understanding of cyber risks, which would support sustainable risk-based pricing. In addition, common definitions of cyber risks could be derived from new data.

The cybersecurity databases summarised and categorised in this research could provide a different perspective on cyber risks that would enable the formulation of common definitions in cyber policies. The datasets can help companies addressing cybersecurity and cyber risk as part of risk management assess their internal cyber posture and cybersecurity measures. The paper can also help improve risk awareness and corporate behaviour, and provides the research community with a comprehensive overview of peer-reviewed datasets and other available datasets in the area of cyber risk and cybersecurity. This approach is intended to support the free availability of data for research. The complete tabulated review of the literature is included in the Supplementary Material.

This work provides directions for several paths of future work. First, there are currently few publicly available datasets for cyber risk and cybersecurity. The older datasets that are still widely used no longer reflect today's technical environment. Moreover, they can often only be used in one context, and the scope of the samples is very limited. It would be of great value if more datasets were publicly available that reflect current environmental conditions. This could help intrusion detection systems to consider current events and thus lead to a higher success rate. It could also compensate for the disadvantages of older datasets by collecting larger quantities of samples and making this contextualisation more widespread. Another area of research may be the integratability and adaptability of cybersecurity and cyber risk datasets. For example, it is often unclear to what extent datasets can be integrated or adapted to existing data. For cyber risks and cybersecurity, it would be helpful to know what requirements need to be met or what is needed to use the datasets appropriately. In addition, it would certainly be helpful to know whether datasets can be modified to be used for cyber risks or cybersecurity. Finally, the ability for stakeholders to identify machine-readable cybersecurity datasets would be useful because it would allow for even clearer delineations or comparisons between datasets. Due to the lack of publicly available datasets, concrete benchmarks often cannot be applied.

Average cost of a breach of more than 50 million records.

Aamir, M., S.S.H. Rizvi, M.A. Hashmani, M. Zubair, and J. Ahmad. 2021. Machine learning classification of port scanning and DDoS attacks: A comparative analysis. Mehran University Research Journal of Engineering and Technology 40 (1): 215–229. https://doi.org/10.22581/muet1982.2101.19 .

Article   Google Scholar  

Aamir, M., and S.M.A. Zaidi. 2019. DDoS attack detection with feature engineering and machine learning: The framework and performance evaluation. International Journal of Information Security 18 (6): 761–785. https://doi.org/10.1007/s10207-019-00434-1 .

Aassal, A. El, S. Baki, A. Das, and R.M. Verma. 2020. 2020. An in-depth benchmarking and evaluation of phishing detection research for security needs. IEEE Access 8: 22170–22192. https://doi.org/10.1109/ACCESS.2020.2969780 .

Abu Al-Haija, Q., and S. Zein-Sabatto. 2020. An efficient deep-learning-based detection and classification system for cyber-attacks in IoT communication networks. Electronics 9 (12): 26. https://doi.org/10.3390/electronics9122152 .

Adhikari, U., T.H. Morris, and S.Y. Pan. 2018. Applying Hoeffding adaptive trees for real-time cyber-power event and intrusion classification. IEEE Transactions on Smart Grid 9 (5): 4049–4060. https://doi.org/10.1109/tsg.2017.2647778 .

Agarwal, A., P. Sharma, M. Alshehri, A.A. Mohamed, and O. Alfarraj. 2021. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science . https://doi.org/10.7717/peerj-cs.437 .

Agrafiotis, I., J.R.C.. Nurse, M. Goldsmith, S. Creese, and D. Upton. 2018. A taxonomy of cyber-harms: Defining the impacts of cyber-attacks and understanding how they propagate. Journal of Cybersecurity 4: tyy006.

Agrawal, A., S. Mohammed, and J. Fiaidhi. 2019. Ensemble technique for intruder detection in network traffic. International Journal of Security and Its Applications 13 (3): 1–8. https://doi.org/10.33832/ijsia.2019.13.3.01 .

Ahmad, I., and R.A. Alsemmeari. 2020. Towards improving the intrusion detection through ELM (extreme learning machine). CMC Computers Materials & Continua 65 (2): 1097–1111. https://doi.org/10.32604/cmc.2020.011732 .

Ahmed, M., A.N. Mahmood, and J.K. Hu. 2016. A survey of network anomaly detection techniques. Journal of Network and Computer Applications 60: 19–31. https://doi.org/10.1016/j.jnca.2015.11.016 .

Al-Jarrah, O.Y., O. Alhussein, P.D. Yoo, S. Muhaidat, K. Taha, and K. Kim. 2016. Data randomization and cluster-based partitioning for Botnet intrusion detection. IEEE Transactions on Cybernetics 46 (8): 1796–1806. https://doi.org/10.1109/TCYB.2015.2490802 .

Al-Mhiqani, M.N., R. Ahmad, Z.Z. Abidin, W. Yassin, A. Hassan, K.H. Abdulkareem, N.S. Ali, and Z. Yunos. 2020. A review of insider threat detection: Classification, machine learning techniques, datasets, open challenges, and recommendations. Applied Sciences—Basel 10 (15): 41. https://doi.org/10.3390/app10155208 .

Al-Omari, M., M. Rawashdeh, F. Qutaishat, M. Alshira’H, and N. Ababneh. 2021. An intelligent tree-based intrusion detection model for cyber security. Journal of Network and Systems Management 29 (2): 18. https://doi.org/10.1007/s10922-021-09591-y .

Alabdallah, A., and M. Awad. 2018. Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System. KSII Transactions on Internet and Information Systems 12 (10): 5143–5158. https://doi.org/10.3837/tiis.2018.10.027 .

Alazab, M., M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan. 2020. Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems—the International Journal of eScience 107: 509–521. https://doi.org/10.1016/j.future.2020.02.002 .

Albahar, M.A., R.A. Al-Falluji, and M. Binsawad. 2020. An empirical comparison on malicious activity detection using different neural network-based models. IEEE Access 8: 61549–61564. https://doi.org/10.1109/ACCESS.2020.2984157 .

AlEroud, A.F., and G. Karabatis. 2018. Queryable semantics to detect cyber-attacks: A flow-based detection approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (2): 207–223. https://doi.org/10.1109/TSMC.2016.2600405 .

Algarni, A.M., V. Thayananthan, and Y.K. Malaiya. 2021. Quantitative assessment of cybersecurity risks for mitigating data breaches in business systems. Applied Sciences (switzerland) . https://doi.org/10.3390/app11083678 .

Alhowaide, A., I. Alsmadi, and J. Tang. 2021. Towards the design of real-time autonomous IoT NIDS. Cluster Computing—the Journal of Networks Software Tools and Applications . https://doi.org/10.1007/s10586-021-03231-5 .

Ali, S., and Y. Li. 2019. Learning multilevel auto-encoders for DDoS attack detection in smart grid network. IEEE Access 7: 108647–108659. https://doi.org/10.1109/ACCESS.2019.2933304 .

AlKadi, O., N. Moustafa, B. Turnbull, and K.K.R. Choo. 2019. Mixture localization-based outliers models for securing data migration in cloud centers. IEEE Access 7: 114607–114618. https://doi.org/10.1109/ACCESS.2019.2935142 .

Allianz. 2021. Allianz Risk Barometer. https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/Allianz-Risk-Barometer-2021.pdf . Accessed 15 May 2021.

Almiani, M., A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and Razaque, A. 2020. Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory 101: 102031. https://doi.org/10.1016/j.simpat.2019.102031

Alsaedi, A., N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar. 2020. TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access 8: 165130–165150. https://doi.org/10.1109/access.2020.3022862 .

Alsamiri, J., and K. Alsubhi. 2019. Internet of Things cyber attacks detection using machine learning. International Journal of Advanced Computer Science and Applications 10 (12): 627–634.

Alsharafat, W. 2013. Applying artificial neural network and eXtended classifier system for network intrusion detection. International Arab Journal of Information Technology 10 (3): 230–238.

Google Scholar  

Amin, R.W., H.E. Sevil, S. Kocak, G. Francia III., and P. Hoover. 2021. The spatial analysis of the malicious uniform resource locators (URLs): 2016 dataset case study. Information (switzerland) 12 (1): 1–18. https://doi.org/10.3390/info12010002 .

Arcuri, M.C., L.Z. Gai, F. Ielasi, and E. Ventisette. 2020. Cyber attacks on hospitality sector: Stock market reaction. Journal of Hospitality and Tourism Technology 11 (2): 277–290. https://doi.org/10.1108/jhtt-05-2019-0080 .

Arp, D., M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C.E.R.T. Siemens. 2014. Drebin: Effective and explainable detection of android malware in your pocket. In Ndss 14: 23–26.

Ashtiani, M., and M.A. Azgomi. 2014. A distributed simulation framework for modeling cyber attacks and the evaluation of security measures. Simulation 90 (9): 1071–1102. https://doi.org/10.1177/0037549714540221 .

Atefinia, R., and M. Ahmadi. 2021. Network intrusion detection using multi-architectural modular deep neural network. Journal of Supercomputing 77 (4): 3571–3593. https://doi.org/10.1007/s11227-020-03410-y .

Avila, R., R. Khoury, R. Khoury, and F. Petrillo. 2021. Use of security logs for data leak detection: A systematic literature review. Security and Communication Networks 2021: 29. https://doi.org/10.1155/2021/6615899 .

Azeez, N.A., T.J. Ayemobola, S. Misra, R. Maskeliunas, and R. Damasevicius. 2019. Network Intrusion Detection with a Hashing Based Apriori Algorithm Using Hadoop MapReduce. Computers 8 (4): 15. https://doi.org/10.3390/computers8040086 .

Bakdash, J.Z., S. Hutchinson, E.G. Zaroukian, L.R. Marusich, S. Thirumuruganathan, C. Sample, B. Hoffman, and G. Das. 2018. Malware in the future forecasting of analyst detection of cyber events. Journal of Cybersecurity . https://doi.org/10.1093/cybsec/tyy007 .

Barletta, V.S., D. Caivano, A. Nannavecchia, and M. Scalera. 2020. Intrusion detection for in-vehicle communication networks: An unsupervised Kohonen SOM approach. Future Internet . https://doi.org/10.3390/FI12070119 .

Barzegar, M., and M. Shajari. 2018. Attack scenario reconstruction using intrusion semantics. Expert Systems with Applications 108: 119–133. https://doi.org/10.1016/j.eswa.2018.04.030 .

Bessy-Roland, Y., A. Boumezoued, and C. Hillairet. 2021. Multivariate Hawkes process for cyber insurance. Annals of Actuarial Science 15 (1): 14–39.

Bhardwaj, A., V. Mangat, and R. Vig. 2020. Hyperband tuned deep neural network with well posed stacked sparse AutoEncoder for detection of DDoS attacks in cloud. IEEE Access 8: 181916–181929. https://doi.org/10.1109/ACCESS.2020.3028690 .

Bhati, B.S., C.S. Rai, B. Balamurugan, and F. Al-Turjman. 2020. An intrusion detection scheme based on the ensemble of discriminant classifiers. Computers & Electrical Engineering 86: 9. https://doi.org/10.1016/j.compeleceng.2020.106742 .

Bhattacharya, S., S.S.R. Krishnan, P.K.R. Maddikunta, R. Kaluri, S. Singh, T.R. Gadekallu, M. Alazab, and U. Tariq. 2020. A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics 9 (2): 16. https://doi.org/10.3390/electronics9020219 .

Bibi, I., A. Akhunzada, J. Malik, J. Iqbal, A. Musaddiq, and S. Kim. 2020. A dynamic DL-driven architecture to combat sophisticated android malware. IEEE Access 8: 129600–129612. https://doi.org/10.1109/ACCESS.2020.3009819 .

Biener, C., M. Eling, and J.H. Wirfs. 2015. Insurability of cyber risk: An empirical analysis. The   Geneva Papers on Risk and Insurance—Issues and Practice 40 (1): 131–158. https://doi.org/10.1057/gpp.2014.19 .

Binbusayyis, A., and T. Vaiyapuri. 2019. Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach. IEEE Access 7: 106495–106513. https://doi.org/10.1109/ACCESS.2019.2929487 .

Biswas, R., and S. Roy. 2021. Botnet traffic identification using neural networks. Multimedia Tools and Applications . https://doi.org/10.1007/s11042-021-10765-8 .

Bouyeddou, B., F. Harrou, B. Kadri, and Y. Sun. 2021. Detecting network cyber-attacks using an integrated statistical approach. Cluster Computing—the Journal of Networks Software Tools and Applications 24 (2): 1435–1453. https://doi.org/10.1007/s10586-020-03203-1 .

Bozkir, A.S., and M. Aydos. 2020. LogoSENSE: A companion HOG based logo detection scheme for phishing web page and E-mail brand recognition. Computers & Security 95: 18. https://doi.org/10.1016/j.cose.2020.101855 .

Brower, D., and M. McCormick. 2021. Colonial pipeline resumes operations following ransomware attack. Financial Times .

Cai, H., F. Zhang, and A. Levi. 2019. An unsupervised method for detecting shilling attacks in recommender systems by mining item relationship and identifying target items. The Computer Journal 62 (4): 579–597. https://doi.org/10.1093/comjnl/bxy124 .

Cebula, J.J., M.E. Popeck, and L.R. Young. 2014. A Taxonomy of Operational Cyber Security Risks Version 2 .

Chadza, T., K.G. Kyriakopoulos, and S. Lambotharan. 2020. Learning to learn sequential network attacks using hidden Markov models. IEEE Access 8: 134480–134497. https://doi.org/10.1109/ACCESS.2020.3011293 .

Chatterjee, S., and S. Thekdi. 2020. An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems. Reliability Engineering and System Safety . https://doi.org/10.1016/j.ress.2019.106664 .

Chattopadhyay, M., R. Sen, and S. Gupta. 2018. A comprehensive review and meta-analysis on applications of machine learning techniques in intrusion detection. Australasian Journal of Information Systems 22: 27.

Chen, H.S., and J. Fiscus. 2018. The inhospitable vulnerability: A need for cybersecurity risk assessment in the hospitality industry. Journal of Hospitality and Tourism Technology 9 (2): 223–234. https://doi.org/10.1108/JHTT-07-2017-0044 .

Chhabra, G.S., V.P. Singh, and M. Singh. 2020. Cyber forensics framework for big data analytics in IoT environment using machine learning. Multimedia Tools and Applications 79 (23–24): 15881–15900. https://doi.org/10.1007/s11042-018-6338-1 .

Chiba, Z., N. Abghour, K. Moussaid, A. Elomri, and M. Rida. 2019. Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms. Computers and Security 86: 291–317. https://doi.org/10.1016/j.cose.2019.06.013 .

Choras, M., and R. Kozik. 2015. Machine learning techniques applied to detect cyber attacks on web applications. Logic Journal of the IGPL 23 (1): 45–56. https://doi.org/10.1093/jigpal/jzu038 .

Chowdhury, S., M. Khanzadeh, R. Akula, F. Zhang, S. Zhang, H. Medal, M. Marufuzzaman, and L. Bian. 2017. Botnet detection using graph-based feature clustering. Journal of Big Data 4 (1): 14. https://doi.org/10.1186/s40537-017-0074-7 .

Cost Of A Cyber Incident: Systematic Review And Cross-Validation, Cybersecurity & Infrastructure Agency , 1, https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf (2020).

D’Hooge, L., T. Wauters, B. Volckaert, and F. De Turck. 2019. Classification hardness for supervised learners on 20 years of intrusion detection data. IEEE Access 7: 167455–167469. https://doi.org/10.1109/access.2019.2953451 .

Damasevicius, R., A. Venckauskas, S. Grigaliunas, J. Toldinas, N. Morkevicius, T. Aleliunas, and P. Smuikys. 2020. LITNET-2020: An annotated real-world network flow dataset for network intrusion detection. Electronics 9 (5): 23. https://doi.org/10.3390/electronics9050800 .

De Giovanni, A.L.D., and M. Pirra. 2020. On the determinants of data breaches: A cointegration analysis. Decisions in Economics and Finance . https://doi.org/10.1007/s10203-020-00301-y .

Deng, L., D. Li, X. Yao, and H. Wang. 2019. Retracted Article: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Computing 22 (4): 9889–9904. https://doi.org/10.1007/s10586-018-1847-2 .

Donkal, G., and G.K. Verma. 2018. A multimodal fusion based framework to reinforce IDS for securing Big Data environment using Spark. Journal of Information Security and Applications 43: 1–11. https://doi.org/10.1016/j.jisa.2018.10.001 .

Dunn, C., N. Moustafa, and B. Turnbull. 2020. Robustness evaluations of sustainable machine learning models against data Poisoning attacks in the Internet of Things. Sustainability 12 (16): 17. https://doi.org/10.3390/su12166434 .

Dwivedi, S., M. Vardhan, and S. Tripathi. 2021. Multi-parallel adaptive grasshopper optimization technique for detecting anonymous attacks in wireless networks. Wireless Personal Communications . https://doi.org/10.1007/s11277-021-08368-5 .

Dyson, B. 2020. COVID-19 crisis could be ‘watershed’ for cyber insurance, says Swiss Re exec. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/covid-19-crisis-could-be-watershed-for-cyber-insurance-says-swiss-re-exec-59197154 . Accessed 7 May 2020.

EIOPA. 2018. Understanding cyber insurance—a structured dialogue with insurance companies. https://www.eiopa.europa.eu/sites/default/files/publications/reports/eiopa_understanding_cyber_insurance.pdf . Accessed 28 May 2018

Elijah, A.V., A. Abdullah, N.Z. JhanJhi, M. Supramaniam, and O.B. Abdullateef. 2019. Ensemble and deep-learning methods for two-class and multi-attack anomaly intrusion detection: An empirical study. International Journal of Advanced Computer Science and Applications 10 (9): 520–528.

Eling, M., and K. Jung. 2018. Copula approaches for modeling cross-sectional dependence of data breach losses. Insurance Mathematics & Economics 82: 167–180. https://doi.org/10.1016/j.insmatheco.2018.07.003 .

Eling, M., and W. Schnell. 2016. What do we know about cyber risk and cyber risk insurance? Journal of Risk Finance 17 (5): 474–491. https://doi.org/10.1108/jrf-09-2016-0122 .

Eling, M., and J. Wirfs. 2019. What are the actual costs of cyber risk events? European Journal of Operational Research 272 (3): 1109–1119. https://doi.org/10.1016/j.ejor.2018.07.021 .

Eling, M. 2020. Cyber risk research in business and actuarial science. European Actuarial Journal 10 (2): 303–333.

Elmasry, W., A. Akbulut, and A.H. Zaim. 2019. Empirical study on multiclass classification-based network intrusion detection. Computational Intelligence 35 (4): 919–954. https://doi.org/10.1111/coin.12220 .

Elsaid, S.A., and N.S. Albatati. 2020. An optimized collaborative intrusion detection system for wireless sensor networks. Soft Computing 24 (16): 12553–12567. https://doi.org/10.1007/s00500-020-04695-0 .

Estepa, R., J.E. Díaz-Verdejo, A. Estepa, and G. Madinabeitia. 2020. How much training data is enough? A case study for HTTP anomaly-based intrusion detection. IEEE Access 8: 44410–44425. https://doi.org/10.1109/ACCESS.2020.2977591 .

European Council. 2021. Cybersecurity: how the EU tackles cyber threats. https://www.consilium.europa.eu/en/policies/cybersecurity/ . Accessed 10 May 2021

Falco, G. et al. 2019. Cyber risk research impeded by disciplinary barriers. Science (American Association for the Advancement of Science) 366 (6469): 1066–1069.

Fan, Z.J., Z.P. Tan, C.X. Tan, and X. Li. 2018. An improved integrated prediction method of cyber security situation based on spatial-time analysis. Journal of Internet Technology 19 (6): 1789–1800. https://doi.org/10.3966/160792642018111906015 .

Fang, Z.J., M.C. Xu, S.H. Xu, and T.Z. Hu. 2021. A framework for predicting data breach risk: Leveraging dependence to cope with sparsity. IEEE Transactions on Information Forensics and Security 16: 2186–2201. https://doi.org/10.1109/tifs.2021.3051804 .

Farkas, S., O. Lopez, and M. Thomas. 2021. Cyber claim analysis using Generalized Pareto regression trees with applications to insurance. Insurance: Mathematics and Economics 98: 92–105. https://doi.org/10.1016/j.insmatheco.2021.02.009 .

Farsi, H., A. Fanian, and Z. Taghiyarrenani. 2019. A novel online state-based anomaly detection system for process control networks. International Journal of Critical Infrastructure Protection 27: 11. https://doi.org/10.1016/j.ijcip.2019.100323 .

Ferrag, M.A., L. Maglaras, S. Moschoyiannis, and H. Janicke. 2020. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications 50: 19. https://doi.org/10.1016/j.jisa.2019.102419 .

Field, M. 2018. WannaCry cyber attack cost the NHS £92m as 19,000 appointments cancelled. https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/ . Accessed 9 May 2018.

FitchRatings. 2021. U.S. Cyber Insurance Market Update (Spike in Claims Leads to Decline in 2020 Underwriting Performance). https://www.fitchratings.com/research/insurance/us-cyber-insurance-market-update-spike-in-claims-leads-to-decline-in-2020-underwriting-performance-26-05-2021 .

Fossaceca, J.M., T.A. Mazzuchi, and S. Sarkani. 2015. MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of network intrusion detection. Expert Systems with Applications 42 (8): 4062–4080. https://doi.org/10.1016/j.eswa.2014.12.040 .

Franke, U., and J. Brynielsson. 2014. Cyber situational awareness–a systematic review of the literature. Computers & security 46: 18–31.

Freeha, K., K.J. Hwan, M. Lars, and M. Robin. 2021. Data breach management: An integrated risk model. Information & Management 58 (1): 103392. https://doi.org/10.1016/j.im.2020.103392 .

Ganeshan, R., and P. Rodrigues. 2020. Crow-AFL: Crow based adaptive fractional lion optimization approach for the intrusion detection. Wireless Personal Communications 111 (4): 2065–2089. https://doi.org/10.1007/s11277-019-06972-0 .

GAO. 2021. CYBER INSURANCE—Insurers and policyholders face challenges in an evolving market. https://www.gao.gov/assets/gao-21-477.pdf . Accessed 16 May 2021.

Garber, J. 2021. Colonial Pipeline fiasco foreshadows impact of Biden energy policy. https://www.foxbusiness.com/markets/colonial-pipeline-fiasco-foreshadows-impact-of-biden-energy-policy . Accessed 4 May 2021.

Gauthama Raman, M.R., N. Somu, S. Jagarapu, T. Manghnani, T. Selvam, K. Krithivasan, and V.S. Shankar Sriram. 2020. An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artificial Intelligence Review 53 (5): 3255–3286. https://doi.org/10.1007/s10462-019-09762-z .

Gavel, S., A.S. Raghuvanshi, and S. Tiwari. 2021. Distributed intrusion detection scheme using dual-axis dimensionality reduction for Internet of things (IoT). Journal of Supercomputing . https://doi.org/10.1007/s11227-021-03697-5 .

GDPR.EU. 2021. FAQ. https://gdpr.eu/faq/ . Accessed 10 May 2021.

Georgescu, T.M., B. Iancu, and M. Zurini. 2019. Named-entity-recognition-based automated system for diagnosing cybersecurity situations in IoT networks. Sensors (switzerland) . https://doi.org/10.3390/s19153380 .

Giudici, P., and E. Raffinetti. 2020. Cyber risk ordering with rank-based statistical models. AStA Advances in Statistical Analysis . https://doi.org/10.1007/s10182-020-00387-0 .

Goh, J., S. Adepu, K.N. Junejo, and A. Mathur. 2016. A dataset to support research in the design of secure water treatment systems. In CRITIS.

Gong, X.Y., J.L. Lu, Y.F. Zhou, H. Qiu, and R. He. 2021. Model uncertainty based annotation error fixing for web attack detection. Journal of Signal Processing Systems for Signal Image and Video Technology 93 (2–3): 187–199. https://doi.org/10.1007/s11265-019-01494-1 .

Goode, S., H. Hoehle, V. Venkatesh, and S.A. Brown. 2017. USER compensation as a data breach recovery action: An investigation of the sony playstation network breach. MIS Quarterly 41 (3): 703–727.

Guo, H., S. Huang, C. Huang, Z. Pan, M. Zhang, and F. Shi. 2020. File entropy signal analysis combined with wavelet decomposition for malware classification. IEEE Access 8: 158961–158971. https://doi.org/10.1109/ACCESS.2020.3020330 .

Habib, M., I. Aljarah, and H. Faris. 2020. A Modified multi-objective particle swarm optimizer-based Lévy flight: An approach toward intrusion detection in Internet of Things. Arabian Journal for Science and Engineering 45 (8): 6081–6108. https://doi.org/10.1007/s13369-020-04476-9 .

Hajj, S., R. El Sibai, J.B. Abdo, J. Demerjian, A. Makhoul, and C. Guyeux. 2021. Anomaly-based intrusion detection systems: The requirements, methods, measurements, and datasets. Transactions on Emerging Telecommunications Technologies 32 (4): 36. https://doi.org/10.1002/ett.4240 .

Heartfield, R., G. Loukas, A. Bezemskij, and E. Panaousis. 2021. Self-configurable cyber-physical intrusion detection for smart homes using reinforcement learning. IEEE Transactions on Information Forensics and Security 16: 1720–1735. https://doi.org/10.1109/tifs.2020.3042049 .

Hemo, B., T. Gafni, K. Cohen, and Q. Zhao. 2020. Searching for anomalies over composite hypotheses. IEEE Transactions on Signal Processing 68: 1181–1196. https://doi.org/10.1109/TSP.2020.2971438

Hindy, H., D. Brosset, E. Bayne, A.K. Seeam, C. Tachtatzis, R. Atkinson, and X. Bellekens. 2020. A taxonomy of network threats and the effect of current datasets on intrusion detection systems. IEEE Access 8: 104650–104675. https://doi.org/10.1109/ACCESS.2020.3000179 .

Hong, W., D. Huang, C. Chen, and J. Lee. 2020. Towards accurate and efficient classification of power system contingencies and cyber-attacks using recurrent neural networks. IEEE Access 8: 123297–123309. https://doi.org/10.1109/ACCESS.2020.3007609 .

Husák, M., M. Zádník, V. Bartos, and P. Sokol. 2020. Dataset of intrusion detection alerts from a sharing platform. Data in Brief 33: 106530.

IBM Security. 2020. Cost of a Data breach Report. https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf . Accessed 19 May 2021.

IEEE. 2021. IEEE Quick Facts. https://www.ieee.org/about/at-a-glance.html . Accessed 11 May 2021.

Kilincer, I.F., F. Ertam, and S. Abdulkadir. 2021. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks 188: 107840. https://doi.org/10.1016/j.comnet.2021.107840 .

Jaber, A.N., and S. Ul Rehman. 2020. FCM-SVM based intrusion detection system for cloud computing environment. Cluster Computing—the Journal of Networks Software Tools and Applications 23 (4): 3221–3231. https://doi.org/10.1007/s10586-020-03082-6 .

Jacobs, J., S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid. 2019. Exploit prediction scoring system (epss). arXiv:1908.04856

Jacobsen, A. et al. 2020. FAIR principles: Interpretations and implementation considerations. Data Intelligence 2 (1–2): 10–29. https://doi.org/10.1162/dint_r_00024 .

Jahromi, A.N., S. Hashemi, A. Dehghantanha, R.M. Parizi, and K.K.R. Choo. 2020. An enhanced stacked LSTM method with no random initialization for malware threat hunting in safety and time-critical systems. IEEE Transactions on Emerging Topics in Computational Intelligence 4 (5): 630–640. https://doi.org/10.1109/TETCI.2019.2910243 .

Jang, S., S. Li, and Y. Sung. 2020. FastText-based local feature visualization algorithm for merged image-based malware classification framework for cyber security and cyber defense. Mathematics 8 (3): 13. https://doi.org/10.3390/math8030460 .

Javeed, D., T.H. Gao, and M.T. Khan. 2021. SDN-enabled hybrid DL-driven framework for the detection of emerging cyber threats in IoT. Electronics 10 (8): 16. https://doi.org/10.3390/electronics10080918 .

Johnson, P., D. Gorton, R. Lagerstrom, and M. Ekstedt. 2016. Time between vulnerability disclosures: A measure of software product vulnerability. Computers & Security 62: 278–295. https://doi.org/10.1016/j.cose.2016.08.004 .

Johnson, P., R. Lagerström, M. Ekstedt, and U. Franke. 2018. Can the common vulnerability scoring system be trusted? A Bayesian analysis. IEEE Transactions on Dependable and Secure Computing 15 (6): 1002–1015. https://doi.org/10.1109/TDSC.2016.2644614 .

Junger, M., V. Wang, and M. Schlömer. 2020. Fraud against businesses both online and offline: Crime scripts, business characteristics, efforts, and benefits. Crime Science 9 (1): 13. https://doi.org/10.1186/s40163-020-00119-4 .

Kalutarage, H.K., H.N. Nguyen, and S.A. Shaikh. 2017. Towards a threat assessment framework for apps collusion. Telecommunication Systems 66 (3): 417–430. https://doi.org/10.1007/s11235-017-0296-1 .

Kamarudin, M.H., C. Maple, T. Watson, and N.S. Safa. 2017. A LogitBoost-based algorithm for detecting known and unknown web attacks. IEEE Access 5: 26190–26200. https://doi.org/10.1109/ACCESS.2017.2766844 .

Kasongo, S.M., and Y.X. Sun. 2020. A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Computers & Security 92: 15. https://doi.org/10.1016/j.cose.2020.101752 .

Keserwani, P.K., M.C. Govil, E.S. Pilli, and P. Govil. 2021. A smart anomaly-based intrusion detection system for the Internet of Things (IoT) network using GWO–PSO–RF model. Journal of Reliable Intelligent Environments 7 (1): 3–21. https://doi.org/10.1007/s40860-020-00126-x .

Keshk, M., E. Sitnikova, N. Moustafa, J. Hu, and I. Khalil. 2021. An integrated framework for privacy-preserving based anomaly detection for cyber-physical systems. IEEE Transactions on Sustainable Computing 6 (1): 66–79. https://doi.org/10.1109/TSUSC.2019.2906657 .

Khan, I.A., D.C. Pi, A.K. Bhatia, N. Khan, W. Haider, and A. Wahab. 2020. Generating realistic IoT-based IDS dataset centred on fuzzy qualitative modelling for cyber-physical systems. Electronics Letters 56 (9): 441–443. https://doi.org/10.1049/el.2019.4158 .

Khraisat, A., I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab. 2020. Hybrid intrusion detection system based on the stacking ensemble of C5 decision tree classifier and one class support vector machine. Electronics 9 (1): 18. https://doi.org/10.3390/electronics9010173 .

Khraisat, A., I. Gondal, P. Vamplew, and J. Kamruzzaman. 2019. Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity 2 (1): 20. https://doi.org/10.1186/s42400-019-0038-7 .

Kilincer, I.F., F. Ertam, and A. Sengur. 2021. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks 188: 16. https://doi.org/10.1016/j.comnet.2021.107840 .

Kim, D., and H.K. Kim. 2019. Automated dataset generation system for collaborative research of cyber threat analysis. Security and Communication Networks 2019: 10. https://doi.org/10.1155/2019/6268476 .

Kim, G., C. Lee, J. Jo, and H. Lim. 2020. Automatic extraction of named entities of cyber threats using a deep Bi-LSTM-CRF network. International Journal of Machine Learning and Cybernetics 11 (10): 2341–2355. https://doi.org/10.1007/s13042-020-01122-6 .

Kirubavathi, G., and R. Anitha. 2016. Botnet detection via mining of traffic flow characteristics. Computers & Electrical Engineering 50: 91–101. https://doi.org/10.1016/j.compeleceng.2016.01.012 .

Kiwia, D., A. Dehghantanha, K.K.R. Choo, and J. Slaughter. 2018. A cyber kill chain based taxonomy of banking Trojans for evolutionary computational intelligence. Journal of Computational Science 27: 394–409. https://doi.org/10.1016/j.jocs.2017.10.020 .

Koroniotis, N., N. Moustafa, and E. Sitnikova. 2020. A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework. Future Generation Computer Systems 110: 91–106. https://doi.org/10.1016/j.future.2020.03.042 .

Kruse, C.S., B. Frederick, T. Jacobson, and D. Kyle Monticone. 2017. Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care 25 (1): 1–10.

Kshetri, N. 2018. The economics of cyber-insurance. IT Professional 20 (6): 9–14. https://doi.org/10.1109/MITP.2018.2874210 .

Kumar, R., P. Kumar, R. Tripathi, G.P. Gupta, T.R. Gadekallu, and G. Srivastava. 2021. SP2F: A secured privacy-preserving framework for smart agricultural Unmanned Aerial Vehicles. Computer Networks . https://doi.org/10.1016/j.comnet.2021.107819 .

Kumar, R., and R. Tripathi. 2021. DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Transactions on Emerging Telecommunications Technologies 32 (4): 27. https://doi.org/10.1002/ett.4222 .

Laso, P.M., D. Brosset, and J. Puentes. 2017. Dataset of anomalies and malicious acts in a cyber-physical subsystem. Data in Brief 14: 186–191. https://doi.org/10.1016/j.dib.2017.07.038 .

Lee, J., J. Kim, I. Kim, and K. Han. 2019. Cyber threat detection based on artificial neural networks using event profiles. IEEE Access 7: 165607–165626. https://doi.org/10.1109/ACCESS.2019.2953095 .

Lee, S.J., P.D. Yoo, A.T. Asyhari, Y. Jhi, L. Chermak, C.Y. Yeun, and K. Taha. 2020. IMPACT: Impersonation attack detection via edge computing using deep Autoencoder and feature abstraction. IEEE Access 8: 65520–65529. https://doi.org/10.1109/ACCESS.2020.2985089 .

Leong, Y.-Y., and Y.-C. Chen. 2020. Cyber risk cost and management in IoT devices-linked health insurance. The Geneva Papers on Risk and Insurance—Issues and Practice 45 (4): 737–759. https://doi.org/10.1057/s41288-020-00169-4 .

Levi, M. 2017. Assessing the trends, scale and nature of economic cybercrimes: overview and Issues: In Cybercrimes, cybercriminals and their policing, in crime, law and social change. Crime, Law and Social Change 67 (1): 3–20. https://doi.org/10.1007/s10611-016-9645-3 .

Li, C., K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi. 2019a. Android malware detection based on factorization machine. IEEE Access 7: 184008–184019. https://doi.org/10.1109/ACCESS.2019.2958927 .

Li, D.Q., and Q.M. Li. 2020. Adversarial deep ensemble: evasion attacks and defenses for malware detection. IEEE Transactions on Information Forensics and Security 15: 3886–3900. https://doi.org/10.1109/tifs.2020.3003571 .

Li, D.Q., Q.M. Li, Y.F. Ye, and S.H. Xu. 2021. A framework for enhancing deep neural networks against adversarial malware. IEEE Transactions on Network Science and Engineering 8 (1): 736–750. https://doi.org/10.1109/tnse.2021.3051354 .

Li, R.H., C. Zhang, C. Feng, X. Zhang, and C.J. Tang. 2019b. Locating vulnerability in binaries using deep neural networks. IEEE Access 7: 134660–134676. https://doi.org/10.1109/access.2019.2942043 .

Li, X., M. Xu, P. Vijayakumar, N. Kumar, and X. Liu. 2020. Detection of low-frequency and multi-stage attacks in industrial Internet of Things. IEEE Transactions on Vehicular Technology 69 (8): 8820–8831. https://doi.org/10.1109/TVT.2020.2995133 .

Liu, H.Y., and B. Lang. 2019. Machine learning and deep learning methods for intrusion detection systems: A survey. Applied Sciences—Basel 9 (20): 28. https://doi.org/10.3390/app9204396 .

Lopez-Martin, M., B. Carro, and A. Sanchez-Esguevillas. 2020. Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications . https://doi.org/10.1016/j.eswa.2019.112963 .

Loukas, G., D. Gan, and Tuan Vuong. 2013. A review of cyber threats and defence approaches in emergency management. Future Internet 5: 205–236.

Luo, C.C., S. Su, Y.B. Sun, Q.J. Tan, M. Han, and Z.H. Tian. 2020. A convolution-based system for malicious URLs detection. CMC—Computers Materials Continua 62 (1): 399–411.

Mahbooba, B., M. Timilsina, R. Sahal, and M. Serrano. 2021. Explainable artificial intelligence (XAI) to enhance trust management in intrusion detection systems using decision tree model. Complexity 2021: 11. https://doi.org/10.1155/2021/6634811 .

Mahdavifar, S., and A.A. Ghorbani. 2020. DeNNeS: Deep embedded neural network expert system for detecting cyber attacks. Neural Computing & Applications 32 (18): 14753–14780. https://doi.org/10.1007/s00521-020-04830-w .

Mahfouz, A., A. Abuhussein, D. Venugopal, and S. Shiva. 2020. Ensemble classifiers for network intrusion detection using a novel network attack dataset. Future Internet 12 (11): 1–19. https://doi.org/10.3390/fi12110180 .

Maleks Smith, Z., E. Lostri, and J.A. Lewis. 2020. The hidden costs of cybercrime. https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf . Accessed 16 May 2021.

Malik, J., A. Akhunzada, I. Bibi, M. Imran, A. Musaddiq, and S.W. Kim. 2020. Hybrid deep learning: An efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access 8: 134695–134706. https://doi.org/10.1109/ACCESS.2020.3009849 .

Manimurugan, S. 2020. IoT-Fog-Cloud model for anomaly detection using improved Naive Bayes and principal component analysis. Journal of Ambient Intelligence and Humanized Computing . https://doi.org/10.1007/s12652-020-02723-3 .

Martin, A., R. Lara-Cabrera, and D. Camacho. 2019. Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. Information Fusion 52: 128–142. https://doi.org/10.1016/j.inffus.2018.12.006 .

Mauro, M.D., G. Galatro, and A. Liotta. 2020. Experimental review of neural-based approaches for network intrusion management. IEEE Transactions on Network and Service Management 17 (4): 2480–2495. https://doi.org/10.1109/TNSM.2020.3024225 .

McLeod, A., and D. Dolezel. 2018. Cyber-analytics: Modeling factors associated with healthcare data breaches. Decision Support Systems 108: 57–68. https://doi.org/10.1016/j.dss.2018.02.007 .

Meira, J., R. Andrade, I. Praca, J. Carneiro, V. Bolon-Canedo, A. Alonso-Betanzos, and G. Marreiros. 2020. Performance evaluation of unsupervised techniques in cyber-attack anomaly detection. Journal of Ambient Intelligence and Humanized Computing 11 (11): 4477–4489. https://doi.org/10.1007/s12652-019-01417-9 .

Miao, Y., J. Ma, X. Liu, J. Weng, H. Li, and H. Li. 2019. Lightweight fine-grained search over encrypted data in Fog computing. IEEE Transactions on Services Computing 12 (5): 772–785. https://doi.org/10.1109/TSC.2018.2823309 .

Miller, C., and C. Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (S 91).

Mireles, J.D., E. Ficke, J.H. Cho, P. Hurley, and S.H. Xu. 2019. Metrics towards measuring cyber agility. IEEE Transactions on Information Forensics and Security 14 (12): 3217–3232. https://doi.org/10.1109/tifs.2019.2912551 .

Mishra, N., and S. Pandya. 2021. Internet of Things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review. IEEE Access . https://doi.org/10.1109/ACCESS.2021.3073408 .

Monshizadeh, M., V. Khatri, B.G. Atli, R. Kantola, and Z. Yan. 2019. Performance evaluation of a combined anomaly detection platform. IEEE Access 7: 100964–100978. https://doi.org/10.1109/ACCESS.2019.2930832 .

Moreno, V.C., G. Reniers, E. Salzano, and V. Cozzani. 2018. Analysis of physical and cyber security-related events in the chemical and process industry. Process Safety and Environmental Protection 116: 621–631. https://doi.org/10.1016/j.psep.2018.03.026 .

Moro, E.D. 2020. Towards an economic cyber loss index for parametric cover based on IT security indicator: A preliminary analysis. Risks . https://doi.org/10.3390/risks8020045 .

Moustafa, N., E. Adi, B. Turnbull, and J. Hu. 2018. A new threat intelligence scheme for safeguarding industry 4.0 systems. IEEE Access 6: 32910–32924. https://doi.org/10.1109/ACCESS.2018.2844794 .

Moustakidis, S., and P. Karlsson. 2020. A novel feature extraction methodology using Siamese convolutional neural networks for intrusion detection. Cybersecurity . https://doi.org/10.1186/s42400-020-00056-4 .

Mukhopadhyay, A., S. Chatterjee, K.K. Bagchi, P.J. Kirs, and G.K. Shukla. 2019. Cyber Risk Assessment and Mitigation (CRAM) framework using Logit and Probit models for cyber insurance. Information Systems Frontiers 21 (5): 997–1018. https://doi.org/10.1007/s10796-017-9808-5 .

Murphey, H. 2021a. Biden signs executive order to strengthen US cyber security. https://www.ft.com/content/4d808359-b504-4014-85f6-68e7a2851bf1?accessToken=zwAAAXl0_ifgkc9NgINZtQRAFNOF9mjnooUb8Q.MEYCIQDw46SFWsMn1iyuz3kvgAmn6mxc0rIVfw10Lg1ovJSfJwIhAK2X2URzfSqHwIS7ddRCvSt2nGC2DcdoiDTG49-4TeEt&sharetype=gift?token=fbcd6323-1ecf-4fc3-b136-b5b0dd6a8756 . Accessed 7 May 2021.

Murphey, H. 2021b. Millions of connected devices have security flaws, study shows. https://www.ft.com/content/0bf92003-926d-4dee-87d7-b01f7c3e9621?accessToken=zwAAAXnA7f2Ikc8L-SADkm1N7tOH17AffD6WIQ.MEQCIDjBuROvhmYV0Mx3iB0cEV7m5oND1uaCICxJu0mzxM0PAiBam98q9zfHiTB6hKGr1gGl0Azt85yazdpX9K5sI8se3Q&sharetype=gift?token=2538218d-77d9-4dd3-9649-3cb556a34e51 . Accessed 6 May 2021.

Murugesan, V., M. Shalinie, and M.H. Yang. 2018. Design and analysis of hybrid single packet IP traceback scheme. IET Networks 7 (3): 141–151. https://doi.org/10.1049/iet-net.2017.0115 .

Mwitondi, K.S., and S.A. Zargari. 2018. An iterative multiple sampling method for intrusion detection. Information Security Journal 27 (4): 230–239. https://doi.org/10.1080/19393555.2018.1539790 .

Neto, N.N., S. Madnick, A.M.G. De Paula, and N.M. Borges. 2021. Developing a global data breach database and the challenges encountered. ACM Journal of Data and Information Quality 13 (1): 33. https://doi.org/10.1145/3439873 .

Nurse, J.R.C., L. Axon, A. Erola, I. Agrafiotis, M. Goldsmith, and S. Creese. 2020. The data that drives cyber insurance: A study into the underwriting and claims processes. In 2020 International conference on cyber situational awareness, data analytics and assessment (CyberSA), 15–19 June 2020.

Oliveira, N., I. Praca, E. Maia, and O. Sousa. 2021. Intelligent cyber attack detection and classification for network-based intrusion detection systems. Applied Sciences—Basel 11 (4): 21. https://doi.org/10.3390/app11041674 .

Page, M.J. et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews 10 (1): 89. https://doi.org/10.1186/s13643-021-01626-4 .

Pajouh, H.H., R. Javidan, R. Khayami, A. Dehghantanha, and K.R. Choo. 2019. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks. IEEE Transactions on Emerging Topics in Computing 7 (2): 314–323. https://doi.org/10.1109/TETC.2016.2633228 .

Parra, G.D., P. Rad, K.K.R. Choo, and N. Beebe. 2020. Detecting Internet of Things attacks using distributed deep learning. Journal of Network and Computer Applications 163: 13. https://doi.org/10.1016/j.jnca.2020.102662 .

Paté-Cornell, M.E., M. Kuypers, M. Smith, and P. Keller. 2018. Cyber risk management for critical infrastructure: A risk analysis model and three case studies. Risk Analysis 38 (2): 226–241. https://doi.org/10.1111/risa.12844 .

Pooser, D.M., M.J. Browne, and O. Arkhangelska. 2018. Growth in the perception of cyber risk: evidence from U.S. P&C Insurers. The Geneva Papers on Risk and Insurance—Issues and Practice 43 (2): 208–223. https://doi.org/10.1057/s41288-017-0077-9 .

Pu, G., L. Wang, J. Shen, and F. Dong. 2021. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Science and Technology 26 (2): 146–153. https://doi.org/10.26599/TST.2019.9010051 .

Qiu, J., W. Luo, L. Pan, Y. Tai, J. Zhang, and Y. Xiang. 2019. Predicting the impact of android malicious samples via machine learning. IEEE Access 7: 66304–66316. https://doi.org/10.1109/ACCESS.2019.2914311 .

Qu, X., L. Yang, K. Guo, M. Sun, L. Ma, T. Feng, S. Ren, K. Li, and X. Ma. 2020. Direct batch growth hierarchical self-organizing mapping based on statistics for efficient network intrusion detection. IEEE Access 8: 42251–42260. https://doi.org/10.1109/ACCESS.2020.2976810 .

Rahman, Md.S., S. Halder, Md. Ashraf Uddin, and U.K. Acharjee. 2021. An efficient hybrid system for anomaly detection in social networks. Cybersecurity 4 (1): 10. https://doi.org/10.1186/s42400-021-00074-w .

Ramaiah, M., V. Chandrasekaran, V. Ravi, and N. Kumar. 2021. An intrusion detection system using optimized deep neural network architecture. Transactions on Emerging Telecommunications Technologies 32 (4): 17. https://doi.org/10.1002/ett.4221 .

Raman, M.R.G., K. Kannan, S.K. Pal, and V.S.S. Sriram. 2016. Rough set-hypergraph-based feature selection approach for intrusion detection systems. Defence Science Journal 66 (6): 612–617. https://doi.org/10.14429/dsj.66.10802 .

Rathore, S., J.H. Park. 2018. Semi-supervised learning based distributed attack detection framework for IoT. Applied Soft Computing 72: 79–89. https://doi.org/10.1016/j.asoc.2018.05.049 .

Romanosky, S., L. Ablon, A. Kuehn, and T. Jones. 2019. Content analysis of cyber insurance policies: How do carriers price cyber risk? Journal of Cybersecurity (oxford) 5 (1): tyz002.

Sarabi, A., P. Naghizadeh, Y. Liu, and M. Liu. 2016. Risky business: Fine-grained data breach prediction using business profiles. Journal of Cybersecurity 2 (1): 15–28. https://doi.org/10.1093/cybsec/tyw004 .

Sardi, Alberto, Alessandro Rizzi, Enrico Sorano, and Anna Guerrieri. 2021. Cyber risk in health facilities: A systematic literature review. Sustainability 12 (17): 7002.

Sarker, Iqbal H., A.S.M. Kayes, Shahriar Badsha, Hamed Alqahtani, Paul Watters, and Alex Ng. 2020. Cybersecurity data science: An overview from machine learning perspective. Journal of Big Data 7 (1): 41. https://doi.org/10.1186/s40537-020-00318-5 .

Scopus. 2021. Factsheet. https://www.elsevier.com/__data/assets/pdf_file/0017/114533/Scopus_GlobalResearch_Factsheet2019_FINAL_WEB.pdf . Accessed 11 May 2021.

Sentuna, A., A. Alsadoon, P.W.C. Prasad, M. Saadeh, and O.H. Alsadoon. 2021. A novel Enhanced Naïve Bayes Posterior Probability (ENBPP) using machine learning: Cyber threat analysis. Neural Processing Letters 53 (1): 177–209. https://doi.org/10.1007/s11063-020-10381-x .

Shaukat, K., S.H. Luo, V. Varadharajan, I.A. Hameed, S. Chen, D.X. Liu, and J.M. Li. 2020. Performance comparison and current challenges of using machine learning techniques in cybersecurity. Energies 13 (10): 27. https://doi.org/10.3390/en13102509 .

Sheehan, B., F. Murphy, M. Mullins, and C. Ryan. 2019. Connected and autonomous vehicles: A cyber-risk classification framework. Transportation Research Part a: Policy and Practice 124: 523–536. https://doi.org/10.1016/j.tra.2018.06.033 .

Sheehan, B., F. Murphy, A.N. Kia, and R. Kiely. 2021. A quantitative bow-tie cyber risk classification and assessment framework. Journal of Risk Research 24 (12): 1619–1638.

Shlomo, A., M. Kalech, and R. Moskovitch. 2021. Temporal pattern-based malicious activity detection in SCADA systems. Computers & Security 102: 17. https://doi.org/10.1016/j.cose.2020.102153 .

Singh, K.J., and T. De. 2020. Efficient classification of DDoS attacks using an ensemble feature selection algorithm. Journal of Intelligent Systems 29 (1): 71–83. https://doi.org/10.1515/jisys-2017-0472 .

Skrjanc, I., S. Ozawa, T. Ban, and D. Dovzan. 2018. Large-scale cyber attacks monitoring using Evolving Cauchy Possibilistic Clustering. Applied Soft Computing 62: 592–601. https://doi.org/10.1016/j.asoc.2017.11.008 .

Smart, W. 2018. Lessons learned review of the WannaCry Ransomware Cyber Attack. https://www.england.nhs.uk/wp-content/uploads/2018/02/lessons-learned-review-wannacry-ransomware-cyber-attack-cio-review.pdf . Accessed 7 May 2021.

Sornette, D., T. Maillart, and W. Kröger. 2013. Exploring the limits of safety analysis in complex technological systems. International Journal of Disaster Risk Reduction 6: 59–66. https://doi.org/10.1016/j.ijdrr.2013.04.002 .

Sovacool, B.K. 2008. The costs of failure: A preliminary assessment of major energy accidents, 1907–2007. Energy Policy 36 (5): 1802–1820. https://doi.org/10.1016/j.enpol.2008.01.040 .

SpringerLink. 2021. Journal Search. https://rd.springer.com/search?facet-content-type=%22Journal%22 . Accessed 11 May 2021.

Stojanovic, B., K. Hofer-Schmitz, and U. Kleb. 2020. APT datasets and attack modeling for automated detection methods: A review. Computers & Security 92: 19. https://doi.org/10.1016/j.cose.2020.101734 .

Subroto, A., and A. Apriyana. 2019. Cyber risk prediction through social media big data analytics and statistical machine learning. Journal of Big Data . https://doi.org/10.1186/s40537-019-0216-1 .

Tan, Z., A. Jamdagni, X. He, P. Nanda, R.P. Liu, and J. Hu. 2015. Detection of denial-of-service attacks based on computer vision techniques. IEEE Transactions on Computers 64 (9): 2519–2533. https://doi.org/10.1109/TC.2014.2375218 .

Tidy, J. 2021. Irish cyber-attack: Hackers bail out Irish health service for free. https://www.bbc.com/news/world-europe-57197688 . Accessed 6 May 2021.

Tuncer, T., F. Ertam, and S. Dogan. 2020. Automated malware recognition method based on local neighborhood binary pattern. Multimedia Tools and Applications 79 (37–38): 27815–27832. https://doi.org/10.1007/s11042-020-09376-6 .

Uhm, Y., and W. Pak. 2021. Service-aware two-level partitioning for machine learning-based network intrusion detection with high performance and high scalability. IEEE Access 9: 6608–6622. https://doi.org/10.1109/ACCESS.2020.3048900 .

Ulven, J.B., and G. Wangen. 2021. A systematic review of cybersecurity risks in higher education. Future Internet 13 (2): 1–40. https://doi.org/10.3390/fi13020039 .

Vaccari, I., G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso. 2020. MQTTset, a new dataset for machine learning techniques on MQTT. Sensors 20 (22): 17. https://doi.org/10.3390/s20226578 .

Valeriano, B., and R.C. Maness. 2014. The dynamics of cyber conflict between rival antagonists, 2001–11. Journal of Peace Research 51 (3): 347–360. https://doi.org/10.1177/0022343313518940 .

Varghese, J.E., and B. Muniyal. 2021. An Efficient IDS framework for DDoS attacks in SDN environment. IEEE Access 9: 69680–69699. https://doi.org/10.1109/ACCESS.2021.3078065 .

Varsha, M. V., P. Vinod, K.A. Dhanya. 2017 Identification of malicious android app using manifest and opcode features. Journal of Computer Virology and Hacking Techniques 13 (2): 125–138. https://doi.org/10.1007/s11416-016-0277-z

Velliangiri, S., and H.M. Pandey. 2020. Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms. Future Generation Computer Systems—the International Journal of Escience 110: 80–90. https://doi.org/10.1016/j.future.2020.03.049 .

Verma, A., and V. Ranga. 2020. Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications 111 (4): 2287–2310. https://doi.org/10.1007/s11277-019-06986-8 .

Vidros, S., C. Kolias, G. Kambourakis, and L. Akoglu. 2017. Automatic detection of online recruitment frauds: Characteristics, methods, and a public dataset. Future Internet 9 (1): 19. https://doi.org/10.3390/fi9010006 .

Vinayakumar, R., M. Alazab, K.P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman. 2019. Deep learning approach for intelligent intrusion detection system. IEEE Access 7: 41525–41550. https://doi.org/10.1109/access.2019.2895334 .

Walker-Roberts, S., M. Hammoudeh, O. Aldabbas, M. Aydin, and A. Dehghantanha. 2020. Threats on the horizon: Understanding security threats in the era of cyber-physical systems. Journal of Supercomputing 76 (4): 2643–2664. https://doi.org/10.1007/s11227-019-03028-9 .

Web of Science. 2021. Web of Science: Science Citation Index Expanded. https://clarivate.com/webofsciencegroup/solutions/webofscience-scie/ . Accessed 11 May 2021.

World Economic Forum. 2020. WEF Global Risk Report. http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf . Accessed 13 May 2020.

Xin, Y., L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang. 2018. Machine learning and deep learning methods for cybersecurity. IEEE Access 6: 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950 .

Xu, C., J. Zhang, K. Chang, and C. Long. 2013. Uncovering collusive spammers in Chinese review websites. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management.

Yang, J., T. Li, G. Liang, W. He, and Y. Zhao. 2019. A Simple recurrent unit model based intrusion detection system with DCGAN. IEEE Access 7: 83286–83296. https://doi.org/10.1109/ACCESS.2019.2922692 .

Yuan, B.G., J.F. Wang, D. Liu, W. Guo, P. Wu, and X.H. Bao. 2020. Byte-level malware classification based on Markov images and deep learning. Computers & Security 92: 12. https://doi.org/10.1016/j.cose.2020.101740 .

Zhang, S., X.M. Ou, and D. Caragea. 2015. Predicting cyber risks through national vulnerability database. Information Security Journal 24 (4–6): 194–206. https://doi.org/10.1080/19393555.2015.1111961 .

Zhang, Y., P. Li, and X. Wang. 2019. Intrusion detection for IoT based on improved genetic algorithm and deep belief network. IEEE Access 7: 31711–31722.

Zheng, Muwei, Hannah Robbins, Zimo Chai, Prakash Thapa, and Tyler Moore. 2018. Cybersecurity research datasets: taxonomy and empirical analysis. In 11th {USENIX} workshop on cyber security experimentation and test ({CSET} 18).

Zhou, X., W. Liang, S. Shimizu, J. Ma, and Q. Jin. 2021. Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Transactions on Industrial Informatics 17 (8): 5790–5798. https://doi.org/10.1109/TII.2020.3047675 .

Zhou, Y.Y., G. Cheng, S.Q. Jiang, and M. Dai. 2020. Building an efficient intrusion detection system based on feature selection and ensemble classifier. Computer Networks 174: 17. https://doi.org/10.1016/j.comnet.2020.107247 .

Download references

Open Access funding provided by the IReL Consortium.

Author information

Authors and affiliations.

University of Limerick, Limerick, Ireland

Frank Cremer, Barry Sheehan, Arash N. Kia, Martin Mullins & Finbarr Murphy

TH Köln University of Applied Sciences, Cologne, Germany

Michael Fortmann & Stefan Materne

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Barry Sheehan .

Ethics declarations

Conflict of interest.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 334 kb)

Supplementary file1 (docx 418 kb), rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cremer, F., Sheehan, B., Fortmann, M. et al. Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap Risk Insur Issues Pract 47 , 698–736 (2022). https://doi.org/10.1057/s41288-022-00266-6

Download citation

Received : 15 June 2021

Accepted : 20 January 2022

Published : 17 February 2022

Issue Date : July 2022

DOI : https://doi.org/10.1057/s41288-022-00266-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Cyber insurance
  • Systematic review
  • Cybersecurity
  • Find a journal
  • Publish with us
  • Track your research

digitalsecurityworld

Empowering Protection in the Digital Age

The Importance of Cyber Security in Today’s World

  • By: Samuel Norris
  • Time to read: 24 min.

' src=

With the rapid advancement of technology and the increasing reliance on digital systems, the need for cyber security has become more crucial than ever. In this essay, we will explore the importance of cyber security in protecting our personal information, securing businesses and governments from cyber threats, and maintaining the trust and stability of our online world.

The importance of cyber security in protecting personal information

essay on cyber security policy

In today’s digital age, the importance of cyber security in protecting personal information cannot be overstated. With the increasing prevalence of cybercrime and the ever-growing threat landscape, individuals and organizations must be vigilant in safeguarding their sensitive data. Cyber security measures are crucial not only to protect personal information from unauthorized access but also to maintain the integrity and confidentiality of data.

One of the primary reasons why cyber security is essential is the rising number of cyber threats, including hacking, phishing, malware, and ransomware. These malicious activities can result in identity theft, financial loss, reputational damage, and even legal consequences. By implementing robust cyber security measures, individuals can minimize the risk of falling victim to such cyber threats and ensure the safety of their personal information.

Moreover, the increasing reliance on digital platforms and online services has made personal information more vulnerable than ever before. From online banking to social media accounts, individuals store a wealth of personal data on various digital platforms. Without proper cyber security measures in place, this information is at risk of being exploited by cybercriminals. Therefore, individuals must take proactive steps to secure their personal information and prevent unauthorized access.

Furthermore, cyber security is not just the responsibility of individuals but also of organizations. Businesses, government agencies, and other institutions hold vast amounts of personal information for their clients and customers. Failing to protect this data can lead to severe consequences, not only for the individuals whose information is compromised but also for the organization’s reputation and financial stability. By investing in robust cyber security measures, organizations can demonstrate their commitment to protecting personal information and build trust with their stakeholders.

In conclusion, the importance of cyber security in protecting personal information cannot be understated. With the increasing prevalence of cyber threats, individuals and organizations must prioritize the implementation of comprehensive cyber security measures. By doing so, they can safeguard personal data, minimize the risk of cybercrime, and maintain the trust and confidence of their customers and clients.

Cyber attacks and their impact on businesses and economies

essay on cyber security policy

Cyber attacks have emerged as a major threat to businesses and economies across the globe. These malicious acts of hacking, data breaches, and online fraud have a profound impact on the stability and growth of businesses, as well as the overall health of economies. The perplexing nature of cyber attacks is evident in their ability to exploit vulnerabilities in digital systems, often catching businesses off guard. With burstiness, cyber attacks can occur suddenly and unexpectedly, causing significant disruption, financial losses, and reputational damage. Furthermore, the low predictability of these attacks makes it difficult for businesses to effectively safeguard their digital assets and stay one step ahead of cybercriminals. As businesses increasingly rely on technology for daily operations and economic transactions, the importance of strong cyber security measures cannot be overstated. Implementing robust security protocols, such as firewalls, encryption, and multi-factor authentication, is crucial for businesses to mitigate the risks posed by cyber attacks. Additionally, investing in employee training and awareness programs can help build a cyber-aware workforce, reducing the likelihood of successful attacks. In conclusion, the impact of cyber attacks on businesses and economies is undeniable, with a high level of perplexity and burstiness, and a low level of predictability. By prioritizing cyber security, businesses can protect their operations, customer data, and financial stability, ultimately contributing to the resilience and success of economies worldwide.

The role of cyber security in safeguarding national security

essay on cyber security policy

In today’s interconnected world, the role of cyber security in safeguarding national security has become increasingly vital. With the rapid advancement of technology and the proliferation of digital systems, the potential threats to a nation’s security have also multiplied. Cyber attacks can target critical infrastructure, government networks, and even military systems, causing widespread disruption and damage. Therefore, it is imperative for governments to prioritize cyber security measures to protect their nations from these evolving threats.

Cyber security plays a crucial role in safeguarding national security by preventing unauthorized access to sensitive information and networks. It involves the implementation of robust cybersecurity protocols, such as firewalls, encryption, and multi-factor authentication, to defend against cyber threats. By securing networks and systems, governments can ensure the confidentiality, integrity, and availability of critical data, thereby safeguarding national secrets, defense strategies, and citizen information.

Moreover, cyber security helps to maintain the stability and functionality of a nation’s infrastructure. As more critical services, such as power grids, transportation systems, and healthcare facilities, rely on digital networks, they become vulnerable to cyber attacks. By investing in cyber security measures, governments can mitigate the risk of disruption to these essential services, thereby protecting the safety and well-being of their citizens. Additionally, cyber security plays a pivotal role in defending against attacks on financial systems, preventing economic instability and preserving national prosperity.

Furthermore, cyber security is crucial for protecting national defense capabilities. Military networks and command and control systems are prime targets for cyber attacks, which can compromise operational readiness, disrupt communications, and undermine strategic planning. By implementing stringent cyber security measures, governments can ensure the resilience and effectiveness of their military forces, thereby safeguarding national defense capabilities and deterring potential adversaries.

In conclusion, the role of cyber security in safeguarding national security is of utmost importance in today’s digital age. By prioritizing and investing in robust cyber security measures, governments can protect critical infrastructure, defend against cyber attacks, and ensure the confidentiality and integrity of sensitive data. As the threat landscape continues to evolve, it is imperative for nations to stay ahead by continuously enhancing their cyber security capabilities and collaborating with international partners to combat cyber threats.

essay on cyber security policy

Click here to preview your posts with PRO themes ››

The evolving threat landscape and the need for stronger cyber security measures

essay on cyber security policy

In today’s rapidly evolving digital landscape, the threat of cyber attacks looms larger than ever before. As technology continues to advance, so do the tactics and sophistication of cyber criminals. This escalating threat landscape has necessitated the implementation of stronger and more robust cyber security measures .

Gone are the days when simple antivirus software and firewalls were enough to protect sensitive information. In the face of constantly evolving threats such as ransomware, phishing scams, and data breaches, organizations and individuals alike must stay one step ahead to safeguard their digital assets.

The first reason why we need stronger cyber security measures is the sheer volume and complexity of cyber threats. Cyber criminals are constantly devising new ways to exploit vulnerabilities in software, networks, and even human behavior. From malware that can invade our devices without detection to social engineering techniques that manipulate individuals into revealing sensitive information, the tactics used by cyber criminals are becoming more sophisticated and harder to predict. Without robust cyber security measures in place, organizations are at risk of falling victim to these evolving threats.

Furthermore, the increasing interconnectedness of devices and systems through the Internet of Things (IoT) has created new avenues for cyber attacks. From smart homes to critical infrastructure, any device connected to the internet can potentially be compromised. This highlights the need for stronger cyber security measures to protect not only personal information but also the safety and functionality of essential services.

Another crucial reason for stronger cyber security measures is the potential impact of a successful cyber attack. The consequences can be devastating, both financially and reputationally. Organizations can face significant financial losses due to stolen data, disruption of operations, and the cost of remediation. Moreover, the loss of customer trust and the damage to a company’s reputation can be irreparable.

In conclusion, the ever-evolving threat landscape necessitates the adoption of stronger cyber security measures . The increasing volume and complexity of cyber threats, the expanding IoT, and the potential consequences of a successful attack all underscore the importance of prioritizing cyber security. Investing in robust cyber security measures is not only a proactive approach to protecting sensitive data and systems but also a vital step in safeguarding the overall well-being of organizations and individuals in our digital world.

Cyber security best practices for individuals and organizations

essay on cyber security policy

Cyber security is not just a concern for governments and large corporations; it is equally crucial for individuals and small organizations. In today’s digital age, where cyber threats are constantly evolving, implementing best practices is essential to protect sensitive information and maintain data integrity. This article will discuss some of the top cyber security best practices that individuals and organizations should follow.

  • Strong and Unique Passwords: One of the simplest yet most effective ways to enhance cyber security is by using strong and unique passwords. Avoid using common passwords or personal information that can be easily guessed. Consider using a password manager to generate and securely store complex passwords.
  • Two-Factor Authentication: Enable two-factor authentication (2FA) whenever possible. This adds an extra layer of security by requiring a second verification step, such as a code sent to your mobile device, in addition to your password.
  • Regular Software Updates: Keeping all software and operating systems up to date is crucial. Software updates often include patches for known vulnerabilities, which hackers can exploit. Set up automatic updates to ensure that you are always running the latest versions.
  • Secure Wi-Fi Networks: Protect your home or office Wi-Fi network with a strong and unique password. Additionally, consider enabling network encryption, such as WPA2, to secure the communication between devices and the network.
  • Employee Training and Awareness: Organizations should prioritize cyber security training and awareness programs for their employees. This helps ensure that everyone understands the importance of following security protocols and recognizes potential threats like phishing emails or suspicious links.
  • Regular Data Backups: Regularly backing up important data is crucial in case of a cyber attack or data loss. Store backups on separate devices or in the cloud, and test the restoration process periodically to ensure the data can be recovered.
  • Firewalls and Antivirus Software: Install and regularly update firewalls and antivirus software on all devices. These security tools provide an additional layer of protection against malware, viruses, and other cyber threats.
  • Secure Web Browsing: Be cautious when browsing the internet. Avoid clicking on suspicious links or downloading files from untrusted sources. Use reputable web browsers and consider using browser extensions that provide additional security features.

By implementing these cyber security best practices, individuals and organizations can significantly reduce the risk of falling victim to cyber attacks and protect sensitive information from unauthorized access. Stay vigilant, stay informed, and stay secure!

The cost of cyber attacks and the value of investing in cyber security

In today’s digital age, the cost of cyber attacks is staggering. The value of investing in cyber security cannot be overstated. Cyber attacks not only lead to significant financial losses for businesses, but also result in reputational damage, legal consequences, and potential customer distrust. It is crucial for organizations to understand the true extent of the impact cyber attacks can have on their bottom line.

The financial cost of cyber attacks is multifaceted. The direct expenses include incident response, recovery, and potential ransom payments. However, the long-term financial repercussions often extend far beyond these immediate costs. Companies may suffer from lost revenue due to downtime, loss of intellectual property, or the need to invest in new security measures to prevent future attacks. Additionally, there are legal expenses and fines that can result from non-compliance with data protection regulations.

Furthermore, the intangible costs of cyber attacks are equally significant. A breach of customer data can lead to a loss of trust and loyalty, impacting customer retention and acquisition. The damage to reputation may result in decreased brand value and a loss of competitive advantage. Rebuilding trust and repairing a damaged reputation can be a time-consuming and expensive process.

Investing in cyber security is essential to mitigate the risks posed by cyber attacks. By implementing robust security measures and proactive monitoring, organizations can greatly reduce the likelihood and impact of successful attacks. The investment in cyber security is not just a cost, but rather an investment in the longevity and resilience of the business.

Cyber security measures include securing networks, implementing strong access controls, regularly updating and patching software, educating employees about security best practices, and conducting regular security audits. By staying ahead of evolving threats and investing in the right technology and expertise, organizations can enhance their ability to detect, respond to, and recover from cyber attacks.

In conclusion, the cost of cyber attacks is not limited to immediate financial losses. The long-term consequences, including reputational damage and legal ramifications, can be equally devastating. Investing in cyber security is not only a smart financial decision, but also a critical step in safeguarding the future of any organization. By understanding the true cost of cyber attacks and the value of investing in cyber security, businesses can make informed decisions to protect themselves and their stakeholders.

The correlation between cyber security and privacy in the digital age

In the fast-paced digital age, the correlation between cyber security and privacy has become increasingly intricate and crucial. As technology continues to evolve, so do the threats posed by cybercriminals, making it imperative to prioritize both security and privacy measures.

Cyber security serves as the first line of defense against malicious attacks and unauthorized access. It encompasses a range of practices, protocols, and technologies designed to safeguard computer systems, networks, and data from potential threats. By implementing robust cyber security measures, individuals and organizations can protect their sensitive information, prevent data breaches, and maintain the confidentiality and integrity of their digital assets.

However, cyber security is not solely about protecting data; it is also closely intertwined with the concept of privacy. In the digital landscape, privacy refers to an individual’s right to control their personal information and determine how and when it is shared. With the proliferation of online platforms, social media, and e-commerce, maintaining privacy has become more challenging than ever before.

The advancements in technology have allowed for the collection, storage, and analysis of vast amounts of personal data. This data, when in the wrong hands, can lead to identity theft, financial fraud, and other serious privacy breaches. Therefore, ensuring robust cyber security measures is directly linked to safeguarding privacy in the digital age.

The correlation between cyber security and privacy becomes even more significant when considering the potential consequences of a breach. A single data breach can have far-reaching implications, both on an individual level and for organizations. It can result in reputational damage, financial losses, legal liabilities, and erosion of trust. Such breaches can also compromise national security, disrupt critical infrastructure, and impact the overall stability of the digital ecosystem.

To address these challenges, individuals and organizations must adopt a proactive approach to cyber security and privacy. This includes staying informed about the latest threats and vulnerabilities, regularly updating software and security protocols, implementing strong passwords and encryption techniques, and being cautious while sharing personal information online.

In conclusion, the correlation between cyber security and privacy is undeniable in the digital age. Both aspects are intertwined and essential for safeguarding sensitive information, maintaining online trust, and preserving the integrity of the digital ecosystem. By prioritizing cyber security and privacy, individuals and organizations can navigate the digital landscape with confidence and mitigate the risks posed by cyber threats.

The role of government in promoting and enforcing cyber security regulations

In today’s digital age, the role of government in promoting and enforcing cyber security regulations is of paramount importance. With the increasing frequency and sophistication of cyber threats, it has become imperative for governments to actively intervene and safeguard their nations’ vital digital infrastructure and sensitive information. This article delves into the reasons why the government plays a crucial role in ensuring cyber security and the impact of their regulations on protecting individuals, businesses, and national security.

First and foremost, the government has the authority and resources to establish robust cyber security regulations that set standards and guidelines for all sectors. By creating a legal framework, they enforce compliance and hold organizations accountable for implementing appropriate security measures. This helps to create a culture of cyber security awareness and ensures that businesses prioritize the protection of valuable data.

Moreover, governments have access to intelligence and information sharing networks that enable them to identify emerging threats and vulnerabilities. By actively monitoring cyber activities, they can proactively respond to potential attacks and prevent major security breaches. This proactive approach not only protects individuals and businesses but also strengthens the overall resilience of the nation’s digital infrastructure.

Additionally, the government plays a vital role in promoting international cooperation and establishing global cyber security standards. Since cyber threats transcend national boundaries, collaboration between governments is essential to address these challenges collectively. By participating in international forums and treaties, governments can foster information exchange, capacity building, and joint efforts to combat cybercrime.

Furthermore, the government’s involvement in cyber security regulations is crucial for national security. Cyber attacks have the potential to disrupt critical infrastructure, compromise defense systems, and even manipulate elections. By establishing stringent regulations and investing in cyber defense capabilities, governments can safeguard their nation’s sovereignty and protect against potential cyber warfare.

However, it is important to strike a balance between promoting cyber security and ensuring individual privacy rights. Governments need to find the right balance between collecting necessary data for security purposes and protecting citizens’ privacy. This requires transparent and accountable governance, with checks and balances in place to prevent misuse of power.

In conclusion, the role of government in promoting and enforcing cyber security regulations is vital in today’s interconnected world. With the increasing complexity and severity of cyber threats, governments need to take proactive measures to protect their nations’ digital assets. By establishing robust regulations, fostering international cooperation, and investing in cyber defense capabilities, governments can create a safe and secure digital environment for individuals, businesses, and national security.

Emerging technologies and their impact on cyber security challenges

In today’s rapidly evolving technological landscape, emerging technologies have brought about immense advancements and opportunities. However, along with these advancements, there also arises a new set of challenges and concerns, particularly in the realm of cyber security. The impact of emerging technologies on cyber security cannot be underestimated, as they introduce novel vulnerabilities and risks that need to be addressed proactively.

One of the main reasons why emerging technologies pose such challenges to cyber security is their inherent complexity. These technologies, such as artificial intelligence , cloud computing , Internet of Things (IoT) , and blockchain , often operate in intricate and interconnected ecosystems. This complexity increases the attack surface for cyber criminals, making it harder to detect and mitigate potential threats.

Furthermore, emerging technologies are constantly evolving, which adds another layer of difficulty to cyber security efforts. As new innovations are introduced, cyber criminals adapt and find new ways to exploit vulnerabilities. This dynamic and ever-evolving nature of emerging technologies requires cyber security professionals to stay ahead of the curve, constantly updating their knowledge and skills to effectively combat emerging threats.

Moreover, the rapid pace at which emerging technologies are being adopted and integrated into various sectors further amplifies the cyber security challenges. Organizations are often quick to embrace these technologies to gain a competitive edge, but fail to adequately address the associated security risks. This creates a gap that cyber criminals can exploit, potentially leading to data breaches, financial losses, and reputational damage.

Another aspect of the impact of emerging technologies on cyber security is the increased scale of connectivity and data sharing. With the proliferation of interconnected devices and systems, the volume of data being generated and transmitted has skyrocketed. This vast amount of data creates new opportunities for cyber attacks, as cyber criminals can target and exploit weak points in the data flow.

In conclusion, emerging technologies have undoubtedly revolutionized various industries, but they have also introduced complex cyber security challenges. The inherent complexity, constant evolution, rapid adoption, and increased scale of connectivity all contribute to the perplexity and burstiness of these challenges. To effectively address these challenges, organizations and individuals must prioritize cyber security and invest in robust measures to protect their systems, data, and networks.

The future of cyber security: trends and predictions

The future of cyber security is an enigmatic landscape that is constantly evolving, filled with both promising advancements and daunting challenges. As technology continues to advance at an unprecedented rate, the need for robust cyber security measures becomes increasingly vital. With the rise of artificial intelligence , the Internet of Things , and the ever-expanding digital landscape, our reliance on technology has become both a blessing and a curse, opening new doors of opportunity while leaving us vulnerable to cyber threats.

In this rapidly changing environment, the future of cyber security will be characterized by perplexity and burstiness. Perplexity, as the complexity and sophistication of cyber threats continue to outpace traditional security measures. Burstiness, as malicious actors constantly adapt their tactics, techniques, and procedures to exploit vulnerabilities in our digital infrastructure.

To effectively navigate this uncertain future, a proactive and adaptive approach to cyber security is crucial. Organizations need to embrace a holistic and multi-layered approach that encompasses not only technology but also people and processes. This includes investing in cutting-edge technologies such as advanced threat intelligence , machine learning , and behavioral analytics to detect and respond to emerging threats in real time.

Additionally, collaboration and information sharing will play a pivotal role in bolstering cyber security defenses. Governments, private sector companies, and individuals must come together to exchange best practices, threat intelligence, and lessons learned. By fostering a collective defense mindset, we can stay one step ahead of cyber criminals and minimize the impact of future attacks.

The future of cyber security is uncertain, with new threats and vulnerabilities emerging on a regular basis. However, by embracing innovation, collaboration, and a proactive mindset, we can build a more secure digital future. It is essential that we invest in research and development, education and awareness, and the cultivation of a skilled cyber security workforce to tackle the challenges that lie ahead. Together, we can shape a future where technology and security coexist harmoniously, protecting our digital assets and ensuring a safer online world for generations to come.

What is cyber security?

Cyber security refers to the practice of protecting computer systems, networks, and devices from digital attacks, unauthorized access, and data breaches.

Why do we need cyber security?

We need cyber security to safeguard our sensitive information, such as personal data, financial details, and business secrets, from being stolen, misused, or manipulated by cybercriminals.

What are the common cyber threats?

Common cyber threats include malware (such as viruses and ransomware), phishing attacks, social engineering, hacking, and denial-of-service (DoS) attacks.

How can cyber security help individuals?

Cyber security helps individuals by providing protection against identity theft, online scams, and unauthorized access to personal accounts or devices. It allows for safe online banking, shopping, and communication.

Why is cyber security important for businesses?

Cyber security is crucial for businesses to protect their valuable data, maintain customer trust, comply with regulations, prevent financial losses, and avoid reputational damage caused by cyber incidents.

What are some best practices for cyber security?

Some best practices for cyber security include using strong and unique passwords, keeping software and devices up to date, being cautious of suspicious emails or links, regularly backing up data, and using reliable antivirus software.

Is cyber security a constant concern?

Yes, cyber security is an ongoing concern as cyber threats evolve and become more sophisticated. It requires continuous updates, monitoring, and proactive measures to stay protected.

Can individuals contribute to cyber security?

Yes, individuals can contribute to cyber security by practicing good cyber hygiene, educating themselves about online risks, using secure networks, and reporting any suspicious activities or incidents to appropriate authorities.

In conclusion, cyber security is crucial in today’s digital age. It plays a vital role in protecting individuals, businesses, and governments from cyber threats. With the increasing reliance on technology and the rise of sophisticated cyber attacks, having robust cyber security measures in place is essential. It not only safeguards sensitive information but also ensures the integrity and availability of data. By investing in cyber security, we can mitigate risks, safeguard privacy, and maintain trust in the digital ecosystem. Therefore, it is imperative that individuals and organizations prioritize cyber security to prevent and combat cyber threats effectively.

Related Posts

why is cyber security training so important

The Significance of Cyber Security Training

In today’s digital world, cyber security training has become crucial. With increasing cyber threats, organizations need to ensure their employees are equipped with the necessary skills to detect and prevent attacks. Training helps create awareness about potential risks, teaches best practices, and promotes a culture of security. It empowers individuals to safeguard sensitive data, mitigate threats, and contribute to a safe online environment.

why does cyber security matter

The Importance of Cyber Security

Cyber security is more important than ever in today’s digital age. With the increasing number of cyber threats and attacks, it is crucial for individuals and businesses to protect their sensitive data. From financial transactions to personal information, cyber security ensures confidentiality, integrity, and availability. Learn why cyber security matters and how it impacts our daily lives.

what is cyber security month

Understanding Cyber Security Month: Importance and Impact

October is designated as Cyber Security Month, an annual campaign to raise awareness about the importance of online safety. Throughout the month, various organizations and individuals come together to promote cybersecurity practices and educate the public on how to protect themselves from cyber threats. Stay tuned for exciting events, informative resources, and practical tips to enhance your digital security this Cyber Security Month!

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Main Question Paper
  • JEE Main Cutoff
  • JEE Main Answer Key
  • SRMJEEE Result
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • JEE Advanced Registration
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Registration
  • TS ICET 2024 Registration
  • CMAT Exam Date 2024
  • MAH MBA CET Cutoff 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • DNB CET College Predictor
  • DNB PDCET College Predictor
  • NEET Admit Card 2024
  • NEET PG Application Form 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • LSAT India 2024
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top Law Collages in Indore
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • AIBE 18 Result 2023
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Fashion Design Colleges in Bangalore
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET Exam City Intimation Slip 2024
  • IGNOU Date Sheet
  • CUET Mock Test 2024
  • CUET Admit card 2024
  • CUET PG Syllabus 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Syllabus 2024
  • IGNOU Exam Form 2024
  • IGNOU Result
  • CUET Courses List 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Cyber Security Essay

Cyber security is one of the most important topics in today’s digital world. With technology evolving at an unprecedented pace and more companies going online than ever before, it’s essential that everyone understands the basics of cyber security. Here are some sample essays on cyber security.

  • 100 Words Essay On Cyber Security

As a student in today's digital world, it's important to remember the importance of cyber security. Today, almost everything that we do is done online or through the internet, and that means our personal information, like our passwords, banking information, and even our school work, is vulnerable to cyber security threats.

200 Words Essay On Cyber Security

500 words essay on cyber security.

Cyber Security Essay

Cyber security is the practice of protecting networks, systems, and programs from digital attacks. These attacks can come from many different sources, including hackers, viruses, and even from other people. In order to stay safe online, it's essential to understand the basics of cyber security. Cyber security is an ever-evolving field, and it's important for school students to stay informed and take the necessary steps to protect themselves online.

School students are the future of our society, and it's important to teach them the importance of cyber security from an early age. Cyber security is an ever-increasing problem in our digital world, and it's up to us to ensure that our students are aware of the risks and dangers that come with the internet.

What Is Cyber Security?

Cyber security is the practice of protecting digital devices and networks from unauthorised access and malicious activities. With the rise of technology and its integration into our lives, cyber security has become an integral part of our lives, and it's important for school students to understand the need for cyber security measures.

How To Protect Yourself From Cyber Crime?

One of the most important ways to protect your devices and networks from cyber threats is to create strong passwords and never share them with anyone else. Passwords are the first line of defence against cyber attacks, and it's important that school students understand how to create and use strong passwords. Additionally, students should be taught to never share personal information online, such as passwords, credit card numbers, and bank account information.

Staying informed is the best way to stay ahead of the latest threats, and it's important for students to stay up-to-date on the latest cyber security news and updates.

Cyber security is the use of antivirus and anti-malware software. These programs are designed to detect and block malicious programs, such as viruses, worms, and Trojans, before they can do any damage to your devices and networks. By teaching our students about the importance of cyber security, we can ensure that they will be better prepared to protect themselves and their devices from cyber threats.

Cyber Security is essential for all those who regularly and frequently use electronic devices. With so much of our sensitive data and documents stored on these gadgets, it is essential to ensure their protection. There are several ways to protect your devices from cyber threats, such as using Antivirus and Antimalware software, and implementing End-User Protection solutions. Taking the necessary steps to secure your devices can help keep your data safe and secure.

Causes Of Cyber Crime

There are many different causes of cybercrime, but most can be categorised into one of three categories:

Personal gain | This is perhaps the most common motivation for cybercrime, as it can be very lucrative. Cybercriminals may engage in activities such as identity theft, phishing scams, and credit card fraud in order to make money.

Revenge or vandalism | Some cybercriminals commit crimes out of a desire for revenge or simply to cause havoc. They may engage in activities such as denial of service attacks, website defacement, or even doxxing (releasing personal information online).

Political or ideological motivations | In some cases, cybercrime is committed for political or ideological reasons. For example, hackers may attack a website in order to protest its content or disrupt its operations.

How To Increase Cyber Security

For school students, cyber security is especially important. Many students use the internet for their studies, making them more vulnerable to cyberattacks. Hackers may try to access school networks, steal student data, or even disrupt classes. It’s important for students to know how to protect themselves from cyber threats. There are some simple steps that you can take to ensure your safety and security.

The first step is to create strong passwords for all of your accounts. Passwords should be hard to guess and should never be shared with anyone. Make sure to use a combination of upper and lowercase letters, numbers, and symbols. It's also important to change your passwords regularly.

Next, you should be sure to protect your personal information. This means making sure that you don't share your passwords or other sensitive information online. Be sure to use an up-to-date antivirus program to scan your computer regularly for malicious software.

Finally, be sure to stay informed about the latest cyber security threats. Keeping up with the news and reading articles on cyber security can help you stay aware of the latest threats and how to protect yourself against them.

By following these tips, you can stay safe online and protect your personal information. Cyber security is an important issue and it's important to take it seriously. If you take the time to learn more about cyber security and make sure you take steps to protect yourself, you can stay safe online and enjoy the benefits of today's digital world.

Applications for Admissions are open.

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

UPES School of Liberal Studies

UPES School of Liberal Studies

Ranked #52 Among Universities in India by NIRF | Up to 30% Merit-based Scholarships | Lifetime placement assistance

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

PACE IIT & Medical, Financial District, Hyd

PACE IIT & Medical, Financial District, Hyd

Enrol in PACE IIT & Medical, Financial District, Hyd for JEE/NEET preparation

ALLEN JEE Exam Prep

ALLEN JEE Exam Prep

Start your JEE preparation with ALLEN

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

Logo

Essay on Cyber Security

Students are often asked to write an essay on Cyber Security in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Cyber Security

Understanding cyber security.

Cyber security is about protecting computers, servers, mobile devices, electronic systems, networks, and data from digital attacks. It’s a critical area as our daily life, economic vitality, and national security rely on a stable, safe, and resilient cyberspace.

The Importance of Cyber Security

Cyber security is important because it helps protect sensitive information, like our personal data and banking details, from being stolen by hackers. It also safeguards against harmful viruses that can damage our devices.

Types of Cyber Threats

Common threats include malware, phishing, and ransomware. Malware is harmful software, phishing tricks people into revealing sensitive information, and ransomware locks users out until they pay a ransom.

Cyber Security Practices

Good practices include using strong passwords, regularly updating software, and not clicking on suspicious links. These can help protect us from cyber threats.

Also check:

  • Paragraph on Cyber Security
  • Speech on Cyber Security

250 Words Essay on Cyber Security

Introduction to cyber security.

Cybersecurity, a term that has gained paramount importance in the digital age, refers to the practice of protecting internet-connected systems, including hardware, software, and data, from digital attacks. Its significance is amplified by the increasing reliance on technology, which, while offering numerous benefits, also opens up new avenues for potential threats.

The digital landscape is a double-edged sword. On one hand, it facilitates communication, commerce, and innovation. On the other, it provides a fertile ground for cybercriminals to exploit vulnerabilities. Cybersecurity thus becomes crucial in safeguarding sensitive information, preventing unauthorized access, and maintaining system integrity.

Challenges in Cyber Security

However, the complexity and sophistication of cyber threats are growing at an alarming pace. Cybercriminals are using advanced techniques, such as AI and machine learning, to bypass traditional security measures. This necessitates the development of more robust, adaptive cybersecurity strategies.

The Future of Cyber Security

The future of cybersecurity lies in proactive defense mechanisms. By leveraging technologies like AI, predictive analytics, and blockchain, we can anticipate and neutralize threats before they cause harm. Furthermore, fostering a culture of cybersecurity awareness is equally important to empower individuals and organizations against cyber threats.

In conclusion, cybersecurity is a vital aspect of our digital existence. Its importance, challenges, and future prospects underline the need for continuous research, development, and education in this field. As the digital landscape evolves, so too must our approach to cybersecurity.

500 Words Essay on Cyber Security

Cyber security, also known as information technology security, focuses on protecting computers, networks, programs, and data from unintended or unauthorized access, damage, or destruction. In the digital era, the importance of cyber security is growing exponentially due to the increasing reliance on computer systems, the internet, and wireless network standards such as Bluetooth and Wi-Fi, and due to the growth of smart devices like smartphones and televisions.

The significance of robust cyber security measures cannot be understated. Cyber attacks can lead to serious consequences like identity theft, extortion attempts, deletion of important data, and even the disruption of normal business operations. In more extreme cases, they can lead to the compromise of national security. Hence, cyber security is not just a concern for businesses or governments, but it is a potential threat to all internet users.

Cyber threats can be broadly divided into three categories: Cybercrime includes single actors or groups targeting systems for financial gain or to cause disruption; Cyber-attack often involves politically motivated information gathering; and Cyberterrorism is intended to undermine electronic systems to cause panic or fear. Examples of these threats are malware, phishing, ransomware, and social engineering.

Cyber Security Measures

In response to these threats, several cyber security measures are being employed. These include firewalls, intrusion detection systems, anti-virus software, and encryption. Furthermore, organizations are increasingly recognizing the importance of information assurance, where data integrity, confidentiality, and availability are assured.

As technology evolves, so does the complexity and sophistication of cyber threats. Hence, the future of cyber security lies in constant evolution and adaptation. Artificial Intelligence (AI) and Machine Learning (ML) are becoming integral in combating cyber threats. These technologies can learn and adapt to new threats, making them more efficient than traditional security measures.

In conclusion, cyber security is a crucial aspect of our digital lives, and its importance will only increase with time. To ensure a secure digital environment, individuals, organizations, and governments must understand the potential threats and employ robust security measures to counter them. The future of cyber security is promising, with the advent of AI and ML, but the road ahead is challenging, requiring constant vigilance and adaptation to new threats.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Cyber Bullying
  • Essay on Customer Service
  • Essay on Tourism in Kerala

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

essay on cyber security policy

Cyber Security Management and Policy

Cybersecurity threats should be a concern for any company and especially for businesses that employ a large number of people and collect substantial quantities of data. The ability of a company to ensure the security of the information they store is an essential component of the brand image and its credibility. COBIT 5 can help companies address the potential cybersecurity threats and mitigate the reputational risks because this framework allows governing the IT system of the entire organization.

COBIT 5 is a control objectives for information and related yechnology framework. The main goal of COBIT is to allow orgnizations to create an alignment between their business goals and the IT systems they are using. According to White (2019), “COBIT is an IT management framework developed by the ISACA to help businesses develop, organize and implement strategies around information management and governance” (para. 10). The use of IT for business activities is routine, and COBIT 5 is designed to help companies reach their objectives.

The more data a company collects and stores, the more difficulties it may face when protecting it from misuse. Moreover, in large companies with more than 1000 employees, it may be difficult to implement an IT system that would address all business needs and align with the IT strategy of the firm. A cybersecurity attack can threaten the businesses’ integrity because of a data breach, and this attack may expose personal information about the firm’s customers or employees. By using a framework, managers can address this issue—they can create a unified system for the business and monitor and prevent cybersecurity attacks.

COBIT 5 and its add-on were released in 2013 and specifically target information governance for businesses and risk management strategies. Moreover, it aligns with other frameworks and systems, such as ITIL or ISO (“COBIT® 5 – the framework for the governance of enterprise IT,” n.d.). This allows the management to support and develop their IT and business objectives.

Under COBIT 5, there are different add-ons that allow addressing different parts of organizational management. For example, COBI 5 for Risk Management is designed to address issues with the implementation of IT systems in a company (Astuti et al., 2017). At the same time, establishing a new IT system for a company of 50 people is easy. Completing the same task for 1000 employees is challenging and time-consuming. The COBIT 5 framework can aid in this task because it provides “guidance and tools to support businesses when developing a “best-fit governance system” (White, 2019, para. 20). Hence, large companies should use COBIT 5 to adequately integrate IT systems into their operations and to address the potential cybersecurity attack.

In summary, modern businesses face a threat of cybersecurity attacks that can damage their reputation and credibility. By using COBIT 5, companies that employ 1000 people or more can establish an alignment across the IT systems of the business because the amount of data these organizations possess is substantial. COBIT 5 helps managers create an alignment between their goals and IT systems.

Astuti, H., Muqtadiroh, F., Tyas Darmaningrat, E., & Putri, C. (2017). Risks assessment of information technology processes based on COBIT 5 framework: A case study of ITS service desk. Procedia Computer Science, 124, 569-576. Web.

COBIT® 5 – the framework for the governance of enterprise IT. (n.d.). Web.

White, S. (2021). What is COBIT? A framework for alignment and governance. Web.

Cite this paper

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2022, September 6). Cyber Security Management and Policy. https://studycorgi.com/cyber-security-management-and-policy/

"Cyber Security Management and Policy." StudyCorgi , 6 Sept. 2022, studycorgi.com/cyber-security-management-and-policy/.

StudyCorgi . (2022) 'Cyber Security Management and Policy'. 6 September.

1. StudyCorgi . "Cyber Security Management and Policy." September 6, 2022. https://studycorgi.com/cyber-security-management-and-policy/.

Bibliography

StudyCorgi . "Cyber Security Management and Policy." September 6, 2022. https://studycorgi.com/cyber-security-management-and-policy/.

StudyCorgi . 2022. "Cyber Security Management and Policy." September 6, 2022. https://studycorgi.com/cyber-security-management-and-policy/.

This paper, “Cyber Security Management and Policy”, was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

Before publication, the StudyCorgi editorial team proofread and checked the paper to make sure it meets the highest standards in terms of grammar, punctuation, style, fact accuracy, copyright issues, and inclusive language. Last updated: September 6, 2022 .

If you are the author of this paper and no longer wish to have it published on StudyCorgi, request the removal . Please use the “ Donate your paper ” form to submit an essay.

A Study of Cyber Security Issues and Challenges

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Cyber Security Technologies Evaluation Essay

Introduction, emerging technologies.

Advanced cyber attacks that target both public and private sectors at the international level have provoked an increase in research and funding for the establishment of novel cyber security technologies.

Government and private institutions are investing in technologies that dynamically appraise networks through real-time and remote agent forensic investigations. Besides, organizations are coming up with cyber security technologies like moving target defense, which prevent hackers from spotting attack surface of a network.

The moving target defense allows a network to alter its variables dynamically, therefore, making it hard for hackers to predict or spot attack surface. Other emerging cyber security technologies include tailored trustworthy spaces and searchable encryption.

The responsibility to guard public and private assets on the state and global level should not fall exclusively on the government. Public and private institutions should work with the government to establish network security measures.

The federal government has taken an active role in curbing cyber crimes by investing in research programs aimed at creating awareness of possible threats and how to address them. Currently, the federal government is trying to fine-tune existing cyber security technologies and to develop novel ones to safeguard networks from emerging threats.

The federal government is working to ensure that private and public institutions install novel cyber security technologies in their networks as a way to boost state economy and curb cyber attacks.

Recent events like the Georgian incursion and the revelation that hackers have stolen billions of dollars from banks globally have created an indulgence that cyber security does not only involve protecting one’s computer. It has devastating repercussions to state defense and economic interests.

For this reason, cyber security is one of the challenges facing contemporary digital community. Today, majority of cyber work is not automated, and hence, it is done by people (Garfinkel, 2014). Besides, many countries do not have qualified cyber experts. Thus, it is difficult for countries to rely on people bestowed the duty to control cyber attacks.

In addition, “The one consistent theme is that cyber defenses commonly used today are simply not effective against most forms of advanced cyber attacks” (Garfinkel, 2014, p. 568). Currently, state and private institutions are collaborating to plan and create cyber security technologies that aid in the fight against cyber crimes.

The technologies are aimed at detecting and combating any authorized intrusion into both government and private corporations’ networks.

Emerging cyber threats and susceptibilities have “Created challenges amounting to financial damages to governments and businesses” (Speicher, 2014, p. 65). Present digitally linked planet offers immense benefits to countries.

Public and private corporations transmit data across the globe within a short period enhancing their efficiency and productivity. Nevertheless, the digital platform is open to cyber attacks subjecting companies to insecurity. Cases of advanced persistent threats (APTs) among the state and key private organizations are rampant across the globe.

Moreover, hackers are targeting modern technologies like Big Data, Smart Grid, and High-End Computing. Another budding trend in cyber attacks is focusing on data found on social networks. Many people use social networks to share confidential information.

However, they do not know that social networks are prone to cyber attacks. Hackers have capitalized on people’s ignorance to perpetrate cyber crimes (Speicher, 2014). Social networks like LinkedIn have subjected national security agents to problems.

It is these threats that have prompted the government and private agencies to work together to combat cyber attacks. This article will discuss emerging cyber security technologies and government’s role in nurturing the development of these technologies.

Moving Target Defense

One of the modern cyber security technologies is moving target defense (MTD). The technology is regularly designed to alter the attack surface of a network, making it hard for attackers to access a system and reducing the susceptibilities and predictabilities available at any time.

According to Jajodia, Ghosh, Swarup, Wang and Wang (2014), hackers use network’s attack surface to determine its vulnerability. They allege that majority of the systems are static. Consequently, it is easy for hackers to access them.

Moving target defense enables organizations to “Change the network IP addresses, operating systems, open ports and protocols, and many other areas of the environment” (Jajodia et al., 2014, p, 35). Jajodia et al. (2014) recommend that it is imperative to make sure that events are not predictable.

Systems do this by making IP addresses’ movements as unpredictable and random as possible. Increase in randomness confuses a hacker making it hard for him or her to access a network. When an attacker inspects a system, he or she does not get consistent information that can help to launch an attack.

Moreover, MTD reduces chances of penetrating into a network because it regularly changes the network’s environment. Additionally, it fights an attack by lowering the number of components of a system that an attacker is familiar with or can access (Jajodia et al., 2014).

Plans are underway to develop Internet Protocol version 6 (IPv6), which will allow organizations to run unlimited number of IP addresses. Besides, IPv6 will make it easy for networks randomly to change their internet addresses, which is a fundamental feature of moving target defense.

Today, if organizations want to use 100 different IP addresses weekly, they require setting aside at least 400 addresses every month. It translates to 4800 IP addresses annually (Jang-Jaccard & Surya, 2014).

Assuming that 1000 corporations wish to change their IP addresses, it would be difficult for the existing IP versions to hold such a huge number of IP addresses. However, IPv6 can hold such a number of IP addresses and execute their requests without difficulties.

Moving target defense is implemented in two ways, which are high-level and low-level behaviors. Jang-Jaccard and Surya (2014) state “Low-level behavior is where the standard semantics of the programming language are preserved, but its undefined semantics are changed” (p. 975).

The primary benefit of low-level behavior is that undefined semantics are mechanically changed. The demerit is that low-level behavior is only applicable to an indeterminate definition. Low-level MTD helps to avert memory encryption and code injection attacks.

High-level behavior entails preventing high-level attacks. It requires system administrators to have knowledge of the system’s functionality and its attack surface. The disadvantage of high-level behavior is that it is resource intensive. Besides, it requires skilled personnel to change the variables of a program.

Uses of Moving Target Defense

One of the challenges of using MTD is upholding a functional network for clients during transformations and reducing the associated costs. Nevertheless, there are companies that have created cost-effective and efficient moving target defenses. One of the companies is JumpSoft Company.

The company has developed subscription-based MTD software known as “JumpCenter” (Jang-Jaccard & Surya, 2014). The software utilizes “Adaptive and reactive mechanized systems, which lower the range of the attack surface” (Jang-Jaccard & Surya, 2014, p. 976).

The idea behind JumpCenter and MTD is to reduce the cost and vulnerability to attack. The software is planted in the application layer to guarantee that a network remains operational during the software’s transformations.

The Department of Homeland Security is already using moving target defense to protect its systems against cyber attacks. The security agency is in the process of developing a complex Internet Protocol (IP) Hopper.

The IP hopper will “Use the available network data and hopping algorithms to allow for the constant switching of both source and destination IP addresses” (Jang-Jaccard & Surya, 2014, p. 981). Once complete, the IP hopper will improve the possibility of a network to interchange continuously and arbitrarily up to 340 IP addresses.

The move will make it tricky for hackers to identify which IP address to target. Besides, it will be hard for hackers to screen a network.

Role of Federal Government

The federal government has spent in improvement of MTD. The Homeland Security is currently running a project aimed at strengthening MTD functionalities to fight cyber attacks. The Homeland Security’s Cyber Security Division is working with other institutions like National Science Foundation and National Security Agency to develop MTD.

The Homeland Security has already awarded research contracts aimed at developing algorithms that facilitate systematic reasoning in MTD systems (Speicher, 2014). Besides, the Homeland Security seeks to create a control technique that will ease the intricacy of Moving target defense system and automate some of its tasks.

In 2011, the Air Force Office of Scientific Research donated $1million to facilitate in development of moving target defense system. One of the benefits of government’s involvement is that it will contribute to making both public and private networks unpredictable, therefore, protecting them from cyber attacks.

One of the demerits of government involvement is that it has focused on protecting military networks and ignored corporate networks, which contribute to economic development (Lynn, 2014). Nonetheless, there is hope that the fight against cyber attacks will be a concerted effort between the government and private institutions.

The federal government is working in partnership with private sectors to enhance cyber security. Currently, it has funded a research by Networking and Information Technology Research Development (NITRD), which aims to transform cyber safety in the country.

Remote Agents Technology

Remote agents or what are commonly referred to as mobile agents are used to keep an eye dynamically on a network’s safety. Dynamic monitoring is essential since a system that is not equipped with current patches has proved vulnerable and unable to withstand modern cyber attacks.

In addition, it is hard for a system administrator to monitor large networks. Large systems comprise numerous nodes, each with regular system changes and clients (Kundur et al., 2014). Remote agents help to execute localized analysis of network security from a remote server or user without relying on timid firewall procedures.

Currently, most public and private corporations use network screening tools that use Simple Network Management Protocol (SNMP) or the “Occasional discharge of scripts built based on network threats which require tedious and complicated updates in order to remain current and valid” (Kundur et al., 2014, p. 7).

The primary difference between conventional Simple Network Management Protocol (SNMP) screening systems and remote agents is that the latter can relate different activities within the system, trigger a warning in the log file, and elevate responsiveness or intensity of danger of other agents.

For instance, systems with remote agents detect security or password threat if a person attempts to log into multiple accounts using the same login details (Kundur et al., 2014).

Additionally, remote agents help system administrators to raise the alert level whenever a root login incidence happens and exceeds a predefined threshold. A system executes all these functions without the need for an administrator.

Use of Remote Agent Technology

Both script and SNMP screening techniques tender inadequate functionality and need trained personnel to search through systems and write updates. A group of scholars at the University of Minnesota sought to solve the challenge of using SNMP and script based screening techniques by creating mobile agents.

The students developed Ajanta mobile agent program (Kundur et al., 2014). The program can distantly sort data and change system’s tasks. In addition, Ajanta mobile agent utilizes localized database to sense and evaluate policy actions to make sure that guidelines are observed.

Using Ajanta, network administrators can steadily impose changes on a system’s screening and sorting plan and easily insert or eliminate agents from a section of the network depending on actions triggered.

After the Wiki Leaks incidence, the federal government realized the importance of using remote monitoring techniques to manage its networks across the globe. Consequently, the government has already reviewed the United States’ international cyber laws as a step to help it use remote monitoring tools to manage its global cyberspace.

Investment in remote agent technologies will benefit not only the government, but also private investors (Kundur et al., 2014). It will assist private investors to subcontract their operations and control them from a distance, thus enhancing their efficiencies.

One demerit of the federal government’s involvement in the development of remote agents is that it might trigger animosity between countries. The federal government and private organizations will be able to spy on other countries or firms secretly.

There are claims that Kaspersky Lab; a Russian company has already discovered that the United States has been surreptitiously spying on a number of countries for quite some time. The company alleges that the United States installed a malware in many computers across the world.

The malware attacks firmware of a computer hard drive and go round security measures (Kundur et al., 2014). With the malware, the United States gathers security intelligence and other classified information from unknowing companies and countries.

Such a technology may lead to conflicts between states. Moreover, it would be disastrous if attackers get hold of the technology.

Real-Time Forensic Analysis

In modern digital world “Criminal proceedings are made easy through the use of computer forensic tools” (Casey, 2014, p. 15). Also associated with network screening is real-time forensic analysis. It is an investigative method used to create situational awareness and regular surveillance of a network.

Casey (2014) alleges “While remote access monitoring actively monitors the network and takes necessary action to correlate threats and increase defenses, real-time forensic analysis allows for an incident to be reproduced and the effects of the event to be analyzed further” (p. 17).

Real-time forensic analysis uses Network Forensic Analysis Tools (NFAT). Garfinkel (2014) asserts “The NFAT prepare a system for forensic examination and make it possible to screen and identify security breach and configuration errors” (p. 560).

The data gathered during the screening process can be used to analyze other events. Apart from filtering a network, real-time forensics has numerous practical applications.

For instance, health care facilities use real-time forensics to assess data moving from one department to another. Additionally, they use NFAT to recover lost data (Garfinkel, 2014).

According to Garfinkel (2014), it is hard to find proof of a risk that has never been detected before. Therefore, it is important to have a real-time picture of all activities that are going on in a network.

Real-time forensic analysis applies advanced methods of risk screening that include “Pervasive network recording, better visibility into network traffic, and deeper understanding of application state to monitor and report on deviant implementation and system behavior” (Casey, 2014, p. 21).

Through real-time forensic analysis, organizations document all network traffics, which assist them to monitor events taking place in a system. It becomes easy for organizations to detect illegal events and handle them before they affect their operations.

Organizations are buying sophisticated infringement deterrence, next-generation firewalls, Security Information Event Management (SIEM) and other apparatuses to boost their network security.

Uses of Real-Time Forensic Analysis

The United States’ Department of State uses real-time forensic analysis technique in its iPost system. The department uses iPost system to measure threats levels by pooling together information gathered from numerous sources like Active Directory and Short Message Services (SMS).

Moreover, the department collects information using a commercial liability analysis tool (Casey, 2014). The information assists managers and engineers to select sections of the network that have high levels of threat and counter risks against these sections correctly.

For over seven years now, the federal government has worked in partnership with private corporations to create real-time forensic software that can help to detect and mitigate cyber attacks.

One of the benefits of government involvement in the development of real-time forensic analysis tools is that it has helped companies to recognize and respond to possible attacks before they happen.

The federal government, through National Science Foundation, has developed an Email Mining Toolkit that facilitates in analysis of email traffics (Casey, 2014). The toolkit aids organizations to isolate and discard illegal emails. Casey (2014) alleges that forensic analysis is a daily activity in legal proceedings.

Therefore, the federal government has established a department that is responsible for computer forensics. The department has trained the public how to detect and deal with emerging network threats, thus, lowering cases of cyber attacks.

Tailored Trustworthy Spaces

The use of cyberspace and Internet has grown to an extent that it is difficult for people and institutions to operate without these two vital communication assets. For people and corporations to interact, they require Internet and cyberspace.

Lynn (2014) alleges that some corporate and personal interactions do not require security, while for some, safety is a must. The challenge is, institutional and individual interactions are treated equally. It is imperative to create various platforms with different levels of security. The approach is known as tailored trustworthy spaces (TTS).

The primary concern with managing programs in a common pool is that every user has access to all the available programs. Lynn (2014) claims “This ‘one size fits all’ methodology creates a lot of potential for attackers to find exploits in the environment where they can use untrusted applications to access trusted application data” (p. 100).

She asserts that the problem can be solved by creating varied trustworthy spaces, which are aligned to demands of programs or information that clients can access.

Privacy, reliability, and accessibility requirements vary from one program to another, one client to another and even from one situation to another. As a result, the objective of TTS is to establish a protected environment for safe programs while tolerating the use of untrusted programs without any restrictions (Lynn, 2014).

Research is underway to determine how to execute tailored trustworthy spaces. Computer programmers are looking for the possibility of creating a safe implementation window that matches the security needs of individual programs, clients, contexts, and circumstances.

In this approach, each secure program will be executed on a separate and safe window where it does not interact with other programs and system software that may retrieve private data without clients’ consent. If this research goes through, it will prevent hackers from using unsecured programs to access private and protected data.

With this method, it is vital to create not only a safe system and execution of the window, but also a safe termination. If not, the method would be prone to data leakage or hacking (Lynn, 2014).

Use of Tailored Trustworthy Spaces

Organizations are likely to benefit from tailored trustworthy spaces. One way that institutions can exploit it is through utilization of self-protecting data. Self-protecting data arises when data guards itself against unauthorized users. Companies achieve this by assigning security rule to each data.

The security rule is designed such that no application can breach it (Geers, 2014). A program can have both secure and insecure facets. However, it has no track or access of the protected data. For instance, a pharmaceutical company can have a recipe for a novel medicine that is extremely classified.

Conventionally, the company would be compelled to hoard the recipe either in a protected program or a safe space. Using self-protecting data, a pharmaceutical company can encrypt the recipe and fix it in any program that can also have unprotected data like a Microsoft Word file (Geers, 2014).

Anyone who intends to use the file can only access the unsecured information stored in the dossier, but not the recipe. It is hard for unauthorized users to access the recipe because it is encrypted. Only those with the right key can have access to the recipe. The recipe can be copied to people through emails and other programs but remain secure.

Another group that can use TTS is Journalists who operate in hostile conditions. Majority of these journalists have to use Internet cafes to communicate with their head offices. Therefore, their information is susceptible to hacking.

Besides, the journalists are frequently subjected to censorship practices such as the Great Firewall of China, which curtails transmission of particular information outside China (Geers, 2014). Majority of these censorship practices stop the transmission of completely encrypted files.

Using tailored trustworthy spaces, journalists can transmit encrypted data by attaching it to unsecured data. It is possible for the encrypted data to go around censorship and reach the planned destination.

Besides, the method can allow journalists to send sensitive information without fear of intimidation as the encrypted data would not be noticed.

Role of the Federal Government

Geers (2014) claims “The federal government has prioritized the research of tailored trustworthy spaces” (p. 299). He alleges that in 2011, the federal government, through the Office of Science and Technology Policy launched a research program aimed at improving the security of digital communications networks.

The federal government is focusing on Transistor-Transistor Logic (TTL) (Lynn, 2014).

It intends to use the “TTL technology in smart grid, which is a fundamental constituent of the national electrical power infrastructure….the federal government has organized for a number of workshops aimed at determining how TTL could protect smart grid from cyber attacks” (Lynn, 2014, p. 98).

The workshops established that TTL can help to develop reliable, safe and vibrant solutions to communications.

Transistor-transistor logic can allow neutral communications providers to run most of the smart grid functions, therefore, eliminating the need for individual power companies to undertake their safety measures (Kundur et al., 2014). Additionally, it can help a country to develop a secure and stable smart grid.

The United States government has already integrated TTL technology in its smart grid. The technology has helped the country to manage its power system and secure it from cyber attacks.

The major drawback of the technology is that it can be disastrous if hackers happen to penetrate it. They would have control of national electric grid system and cause a lot of damage to the country.

Searchable Encryption

The number of people that use cloud computing is growing by the day. The growth has weakened the security of data hoarded in cloud servers and exposed it to hackers.

A major issue is that people can no longer rely on these servers in their present condition. Abdalla et al. (2014) allege “Hackers who can acquire root rights and managers of cloud hosting institutions have unlimited admittance to data on cloud servers” (p. 352).

Therefore, the data is subject to various insecurity concerns since its bearer has no control over how it is utilized or accessed. One method of solving the problem of probing an encrypted cloud server is to get rid of all of the unprotected data through encryption. It gives data owners’ complete control of the encryption technique.

Full encryption constrains database explore abilities. The constraint can be addressed using a conventional approach such as transferring the whole database to a local server, decrypting it and executing the search. The approach is entirely unworkable and resource intensive.

Alternatively, data bearers can allow a server to decrypt information, run the search and transmit the outcomes to clients (Abdalla et al., 2014). The principal challenge of this approach is that the server can ultimately know the data a client is looking for, and thus, render encryption less efficient.

Technologists have come up with a technique that allows clients to access information from a server without having to necessarily decrypt a data. The technique is referred to as searchable encryption, and it addresses security challenges in cloud computing.

One accepted way of using searchable encryption is through search key. Abdalla et al. (2014) state “A search key is a data structure that stores document collections while supporting efficient keyword searches” (p. 350). With this approach, a client feeds in a keyword and the key generates an indicator to the file that has the searched phrase.

They allege that the key can only be safe if the search function bears a “trapdoor” for the search phrase (Abdalla et al., 2014). Otherwise, the search function cannot reveal any information about the protected data.

One method of creating a searchable encryption system is to have the user encrypt both the information and key and send the two to the server. To look for data, the user creates and sends a trapdoor for the data, which the server applies to look for pointers to the necessary file.

Search key improves security for data stored in cloud servers. Nonetheless, the method has a number of limitations. One of the limitations is that it can reveal some information about the user’s search. Particularly, search key method can show the access pattern that tells what files hold the search question.

One can mitigate this limitation by using oblivious random access memories (RAMs), which reduce chances of data leakage.

Use of Searchable Encryption

Bosch, Hartel, Jonker and Peter (2014) claim “Anticipations are high that the worldwide cloud computing market will grow at a 36% compound annual growth rate through 2016, reaching a total market size of $19.5 billion” ( p. 3). Thus, searchable encryption has a tremendous potential.

Because security is a major problem in cloud computing, it means that people will have to look for security measures to safeguard their data. Besides, organizations go for systems that give them full control of their data without compromising its security.

Searchable encryption allows organizations to access their data without worrying about its functionality and safety. Today, few cloud computing providers use searchable encryption on their servers (Bosch et al., 2014). Consequently, many businesses dread saving their data in the cloud.

Cloud services help organizations to cut down on operations cost by enhancing operations and reducing the time that products and services take to reach the market. Once searchable encryption is introduced to the business world, majority of the enterprises will no longer worry about the safety of their data. Besides, they will integrate cloud computing in their information technology (IT) infrastructure.

Some companies have already incorporated searchable encryption in cloud computing. Hitachi, a global engineering and IT firm, has already “Incorporated a form of searchable encryption in a standard algorithm for DNA genome analysis” (Bosch et al., 2014, p. 27).

The particular tool the company is using is referred to as Basic Local Alignment Search Tool (BLAST). The tool was exclusively developed to run genome study in the cloud. Bosch et al. (2014) allege that safety was mainly essential with this assignment since the search questions repeatedly contained a lot of identical variables.

Failure to encrypt the searches would have subjected the project to security risks since it would have been easy to penetrate the server due to the few variables being searched.

The federal government is actively participating in the effort to protect cloud servers. Lately, the National Institute of Standards and Technology (NIST) issued a statement that outlined the challenges encountered in trying to secure cloud servers. The statement cited encrypted search as a primary problem.

According to NIST, it is hard to control search keys even in established systems and data centers because of the quantity of data. Additionally, the amount of cryptographic keys and need for sharing data with multiple users make securing cloud servers an uphill task (Bosch et al., 2014).

In cloud computing, logical and physical management of resources is shared among the cloud actors. Bosch et al. (2014) allege “The actors comprise the users, hosting companies, and brokers who bring together varied cloud providers” (p. 47). The federal government is helping to develop measures to address these challenges.

A fascinating feature of searchable encryption is its impacts on a state. In an unprecedented manner, the application of searchable encryption may hamper the efforts of the government. Cloud hosting makes it easy for the government to access information about different companies and individuals.

The government liaises with cloud hosting companies to get the information. For instance, in case of cyber attacks, the government works with cloud hosting companies to pursue the perpetrators (Bosch et al., 2014). Adoption of searchable encryption can limit information sharing between cloud hosting businesses and the government.

Cloud hosting companies can no longer have access to users’ data since they assume full control of their information. Hence, it is difficult for the government to obtain information that can help them prevent cyber crimes or arrest perpetrators.

Increase in cases of cyber attacks has forced public and private institutions to invest in novel cyber security technologies. Organizations have invested in moving target defense, real-time forensic analysis, searchable encryption, and remote agents technologies to protect their networks from cyber attacks.

Moving target defense allows companies dynamically to change their key variables such as IP addresses. Hence, hackers can hardly predict the pattern of network applications or spot attack surface. Searchable encryption allows companies to encrypt and transmit classified data in such a way that unauthorized users cannot access it.

The technology goes a long way to protect cloud computing from cyber attacks. Additionally, with real-time forensic analysis, institutions can monitor events in their networks and respond to any suspicious or illegal activities.

The federal government has actively supported and nurtured emerging cyber security technologies. The government has heavily invested in research and projects aimed at improving the existing technologies and developing new ones.

For instance, the federal government through the Office of Science and Technology Policy launched a research program to develop tailored trustworthy spaces for digital communication networks.

The federal government has mainly concentrated on transistor-transistor logic (TTL). In addition, the federal government is encouraging public and private institutions to integrate emerging cyber security technologies in their networks.

The government holds that tailored trustworthy spaces, Moving target defense, and searchable encryption are the only techniques that can withstand modern cyber threats. The three technologies, if further improved can combat existing and future threats.

Even though the federal government has made the fight against cyber attacks a concerted effort between public and private institutions, it is important to recognize that if not well managed, this venture may cause conflicts among the countries.

For instance, the federal government has already established a remote agent program that is capable of harvesting military intelligence and other classified information from unknowing institutions. If well managed, such a program may help to fight cyber attacks by collecting and relaying information regarding attackers.

However, if misused, it might lead to conflicts between countries or firms. Hence, it is recommended that all emerging cyber security technologies are utilized prudently. There should be an independent body that supervises implementation of the emerging technologies.

Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., & Shi, H. (2014). Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. Journal of Cryptography, 21 (3), 350-391.

Bosch, C., Hartel, P., Jonker, W., & Peter, A. (2014). Survey of provable secure Searchable Encryption. ACM Computing Surveys, 47 (2), 1-51.

Casey, E. (2014). Handbook of digital forensics and investigation . Burlington: Academic Press.

Garfinkel, S. (2014). Digital forensic research: The next ten years. Digital Investigation, 7 (3), 564-573.

Geers, K. (2014). The challenge of cyber attack deterrence. Computer Law & Security Review, 26 (3), 298-303.

Jajodia, S., Ghosh, A., Swarup, V., Wang, C., & Wang, S. (2014). Moving target defense: Creating asymmetric uncertainty for cyber threats . New York: McGraw-Hill.

Jang-Jaccard, J., & Surya, N. (2014). A survey of emerging threats in cybersecurity. Journal of Computer and System Science, 80 (5), 973-993.

Kundur, D., Feng, X., Mashayekh, S., Liu, S., Zourntos, T., & Butler-Purry, K. (2014). Towards modeling the impact of cyber attacks on smart grid. International Journal of Security and Networks, 6 (1), 2-13.

Lynn, W. (2014). Defending a new domain: The Pentagon’s cyberstrategy. Foreign Affairs, 89 (5), 97-108.

Speicher, C. (2014). Security fabric-tailored trustworthy spaces: Flexibility based on policy management . Santa Clara: Santa Clara University.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, December 15). Cyber Security Technologies. https://ivypanda.com/essays/cyber-security-technologies/

"Cyber Security Technologies." IvyPanda , 15 Dec. 2023, ivypanda.com/essays/cyber-security-technologies/.

IvyPanda . (2023) 'Cyber Security Technologies'. 15 December.

IvyPanda . 2023. "Cyber Security Technologies." December 15, 2023. https://ivypanda.com/essays/cyber-security-technologies/.

1. IvyPanda . "Cyber Security Technologies." December 15, 2023. https://ivypanda.com/essays/cyber-security-technologies/.

Bibliography

IvyPanda . "Cyber Security Technologies." December 15, 2023. https://ivypanda.com/essays/cyber-security-technologies/.

  • Learning Second Language in Kindergarten Online
  • Twitter and Its Benefits for Business
  • Symmetric Encryption: Data Encryption Standard
  • Strong Encryption as a Social Convention
  • Encryption, Information Security, and Assurance
  • Attribute-Based Encryption Overview and Benefits
  • Encryption as a Key Technological Solution to Corporate Security
  • Encryption, Stenography & Cyber Criminal Terrorist
  • How to Choose an Encryption Algorithm Cipher
  • Encryption Techniques for Protecting Big Data
  • Green Computing in Botswana
  • People Attitude about Green Computing
  • Virtual Reality Versus Augmented Reality
  • The Samsung Galaxy Tab
  • How podcasts differ from radio

Russian publisher redacts book on gay Italian director amid LGBT crackdown

  • Medium Text

A handout photo of the book about film director Pier Paolo Pasolini, published in Russia

  • Russia says LGBT issues threaten 'traditional values'
  • Book on Pasolini falls victim to Russian anti-LGBT law
  • Russian publisher blacks out key passages, book sells out
  • Italian author 'concerned' but sees irony in situation

PERFORMANCE ART?

Sign up here.

Reporting and writing by Lucy Papachristou; Editing by Mike Collett-White and Gareth Jones

Our Standards: The Thomson Reuters Trust Principles. New Tab , opens new tab

Member of the European Parliament Matthias Ecke walks in Dresden

World Chevron

Flooding due to heavy rains in Porto Alegre in Rio Grande do Sul

Death toll from rains in southern Brazil climbs to 56

Heavy rains in Brazil's southernmost state of Rio Grande do Sul this week killed at least 55 people, local authorities said on Saturday evening, while dozens remain unaccounted for.

Israeli raid in Deir al-Ghusun

IMAGES

  1. Essay on Cyber Security

    essay on cyber security policy

  2. Cyber Security Policy Essay Example

    essay on cyber security policy

  3. Write a short essay on Cyber Security

    essay on cyber security policy

  4. ⇉Cyber Security Awareness Essay Essay Example

    essay on cyber security policy

  5. Essay on Cyber Security

    essay on cyber security policy

  6. 10 lines on Cyber Security |Short essay on cyber security |English essay on cyber security awareness

    essay on cyber security policy

VIDEO

  1. CYBER SECURITY POLICY 2013 (APPSC GROUP-1 MAINS)

  2. Research Fellow (Postdoctoral)

  3. The Big Picture

  4. Cyber security challenges and solutions in pakistan|CSS|PCS|PMS|IAS

  5. Cybersecurity portfolio for business

  6. Get online Privacy And Security Protection With Digital Empowerment Courses From Delhi University!

COMMENTS

  1. Cyberattacks, cyber threats, and attitudes toward cybersecurity policies

    Civilians are notoriously weak at accurately assessing security threats—a fact that is amplified in the cyber realm due to low cybersecurity knowledge, general cognitive biases in calculating risk, and the distortion of cyber risks by the media, which focuses predominantly on spectacular yet low-likelihood attacks . Perceived risk is partly ...

  2. Cyber Security Essay for Students and Children

    Cyber Security Essay. Cybersecurity means protecting data, networks, programs and other information from unauthorized or unattended access, destruction or change. In today's world, cybersecurity is very important because of some security threats and cyber-attacks. For data protection, many companies develop software.

  3. 237 Cybersecurity Topics and Essay Samples

    Cybersecurity Necessity and Benefits. Second, the exploration of human factors in the framework of cyber-security can assist in resolving the issues of understanding a defender's cognitive state, possibilities for automation, and an attacker's subjective traits. Cybersecurity Incident Response and Risk Minimization.

  4. Cyber Security Free Essay Examples And Topic Ideas

    28 essay samples found. Cybersecurity, a critical concern in our digitally connected world, encompasses practices, technologies, and policies to protect networks, devices, programs, and data from attack or unauthorized access. Essays could delve into the myriad types of cyber threats like malware, phishing, and ransomware, exploring their ...

  5. Full article: Cyber security meets security politics: Complex

    Most states still struggle to integrate national and international cyber security policy and practice into their broader national and international security political frameworks (Weber, Citation 2018). This includes the transition from viewing cyber security as a technical issue to tackling it as a (security) political task.

  6. Evidence-based cybersecurity policy? A meta-review of security control

    This section reflects on the outlook for evidence-based cybersecurity regulation. Section 5. 1 discusses how the available evidence could be used by policymakers. Section 5. 2 identifies limitations in our meta-review. Section 5. 3 describes policy measures that might improve the evidence base in the future. 5.1.

  7. Introducing Cybersecurity Policies: Challenges and Solutions

    The cyber security policy should highlight the role of every worker in guarding the sensitive and confidential records to minimize incidents of misunderstanding. The policy must state what is under protection and why there is a need to secure it. The document must be brief, precise, and not more than two pages.

  8. PDF CYBERSECURITY: HOW SAFE ARE WE AS A NATION?

    our national security depends on a strong cyber culture. To stay ahead of the threat, cybersecurity needs to be steeped into the national consciousness through education, sustained messaging and increased cooperation among businesses and government. My research examines the vulnerabilities, and cites case studies, national policy and expert ...

  9. Free Cyber Security Essay Examples & Topic Ideas

    15 Cyber Security Essay Topics. In the following section, you will find unique ideas for your essay on cyber security. Choose the most appropriate one and create your outstanding paper. Don't forget to compose a catchy introduction, a clear thesis statement, and a dynamic conclusion. You can get more ideas by using our topic generator. Or ...

  10. Exploring National Cyber Security Strategies: Policy Approaches and

    Cyber security is a global policy challenge, and the UK government should continue to remain aware of other national approaches. It should not develop a new strategy in isolation from this global context. While this paper does not examine the UK's NCSS specifically, it is part of a wider RUSI research project on future UK cyber security strategy.

  11. Cybersecurity Essays: Examples, Topics, & Outlines

    Cybersecurity refers to a range of approaches for preventing illegal exposure to systems software and information. The paper focuses on the various definitions of cybersecurity and the dimensions and principles to protect against the data on the hardware and software from unauthorized access, harm, or misuse. The three….

  12. Cybersecurity Law, Policy, and Institutions (version 3.1)

    The second part focuses on the "offensive" perspective (meaning that there are contexts in which unauthorized access or disruption might actually be desirable as a matter of policy). In short, the book is a guided tour of the broad cyber-security landscape, suitable both for classroom use and for independent study.

  13. 127 Cyber Security Essay Topic Ideas & Examples

    Published: Jan 16, 2024. Inside This Article. 127 Cyber Security Essay Topic Ideas & Examples. With the increasing reliance on technology, cyber security has become a critical concern for individuals, organizations, and governments worldwide. As cyber threats continue to evolve and become more sophisticated, it is essential to stay informed ...

  14. Essays on Cyber Security

    In an informative essay on Cyber Security, you can cover topics such as the history of Cyber Security, the types of cyber threats, and the best practices for protecting personal and business information online. Example Thesis Statements - "The increasing frequency of cyber attacks highlights the urgent need for improved Cyber Security measures."

  15. Cyber risk and cybersecurity: a systematic review of data ...

    Cybercrime is estimated to have cost the global economy just under USD 1 trillion in 2020, indicating an increase of more than 50% since 2018. With the average cyber insurance claim rising from USD 145,000 in 2019 to USD 359,000 in 2020, there is a growing necessity for better cyber information sources, standardised databases, mandatory reporting and public awareness. This research analyses ...

  16. A comprehensive review study of cyber-attacks and cyber security

    The cyber-security policy is accepted by the regulatory framework and is officially applied lonely to the relevant areas of the regulator. Security policy components vary according to the policy spectrum (Cheng et al., 2020). The national cyber-security policy, for example, includes all citizens and perhaps foreign businessmen working in its ...

  17. The Importance of Cyber Security: Safeguarding Our Digital World

    Learn why cyber security is crucial in today's digital age and how it protects our sensitive information from hackers and cyber attacks. Explore the importance of implementing effective cyber security measures and the potential risks and consequences of neglecting them. Discover the role of cyber security in safeguarding personal privacy, business operations, and national security.

  18. Cyber Security Essay

    200 Words Essay On Cyber Security. School students are the future of our society, and it's important to teach them the importance of cyber security from an early age. Cyber security is an ever-increasing problem in our digital world, and it's up to us to ensure that our students are aware of the risks and dangers that come with the internet.

  19. Essay on Cyber Security

    250 Words Essay on Cyber Security Introduction to Cyber Security. Cybersecurity, a term that has gained paramount importance in the digital age, refers to the practice of protecting internet-connected systems, including hardware, software, and data, from digital attacks. Its significance is amplified by the increasing reliance on technology ...

  20. Cyber Security Management and Policy

    Topics: Cybersecurity, Management Words: 502 Pages: 2. Cybersecurity threats should be a concern for any company and especially for businesses that employ a large number of people and collect substantial quantities of data. The ability of a company to ensure the security of the information they store is an essential component of the brand image ...

  21. Cybersecurity: The Matter of National Security Essay

    Cybersecurity has been an evergreen subject recently. According to Daniele Irandoost, cyberspace has had many benefits in almost every important country's sector (Irandoost, 2018). The initial intention for developing cyberspace was to open avenues for people to communicate unlimitedly and promote efficiency in operations.

  22. A Study of Cyber Security Issues and Challenges

    Life has reached a stage where we cannot live without internet enabled technology. New devices and services are being invented continuously with the evolution of new technologies to improve our day-to-day lifestyle. At the same time, this opens many security vulnerabilities. There is a necessity for following proper security measures. Cybercrime may happen to any device/service at any time ...

  23. Essay

    Biden Needs to Learn From the Democrats' Disaster in '68. The lesson of that tumultuous political summer is clear: The fireworks may be on the party's left, but the votes needed for victory ...

  24. Essay

    Take the experience of a friend we'll call Brad, who is 75. He had been dreading a conversation with his older sister for months. Brad felt that she needed to move her 80-something husband into ...

  25. The Adults Are Still in Charge at the University of Florida

    Wonder Land: On April 30, 2024, Columbia's Gaza encampment invaded Hamilton Hall via Instagram. And unless Joe Biden separates himself from the violence-prone left, his candidacy could die this ...

  26. Cyber Security Technologies

    Abstract. Advanced cyber attacks that target both public and private sectors at the international level have provoked an increase in research and funding for the establishment of novel cyber security technologies. We will write a custom essay on your topic. 809 writers online.

  27. Stephen King loves 'Baby Reindeer' so much he's written an essay about

    The show already has a very high score on Rotten Tomatoes and a large viewership — but a glowing essay from one of the world's most successful writers isn't something you get every day.

  28. Russian publisher redacts book on gay Italian director amid LGBT

    The Russian publisher, AST, would agree to publish his critical essay on the openly gay Italian film director Pier Paolo Pasolini only with severe cuts. When the book hit the shelves in Russia ...