Help | Advanced Search

Quantitative Finance > Computational Finance

Title: factor investing with a deep multi-factor model.

Abstract: Modeling and characterizing multiple factors is perhaps the most important step in achieving excess returns over market benchmarks. Both academia and industry are striving to find new factors that have good explanatory power for future stock returns and good stability of their predictive power. In practice, factor investing is still largely based on linear multi-factor models, although many deep learning methods show promising results compared to traditional methods in stock trend prediction and portfolio risk management. However, the existing non-linear methods have two drawbacks: 1) there is a lack of interpretation of the newly discovered factors, 2) the financial insights behind the mining process are unclear, making practitioners reluctant to apply the existing methods to factor investing. To address these two shortcomings, we develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights, which help us easily build a dynamic and multi-relational stock graph in a hierarchical structure to learn the graph representation of stock relationships at different levels, e.g., industry level and universal level. Subsequently, graph attention modules are adopted to estimate a series of deep factors that maximize the cumulative factor returns. And a factor-attention module is developed to approximately compose the estimated deep factors from the input factors, as a way to interpret the deep factors explicitly. Extensive experiments on real-world stock market data demonstrate the effectiveness of our deep multi-factor model in the task of factor investing.

Submission history

Access paper:.

  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

High-Dimensional Factor Models and the Factor Zoo

This paper proposes a new approach to the “factor zoo” conundrum. Instead of applying dimension-reduction methods to a large set of portfolios obtained from sorts on characteristics, I construct factors that summarize the information in characteristics across assets and then sort assets into portfolios according to these “characteristic factors”. I estimate the model on a data set of mutual fund characteristics. Since the data set is 3-dimensional (characteristics of funds over time), characteristic factors are based on a tensor factor model (TFM) that is a generalization of 2-dimensional PCA. I find that parsimonious TFM captures over 90% of the variation in the data set. Pricing factors derived from the TFM have high Sharpe ratios and capture the cross-section of fund returns better than standard benchmark models.

I have nothing to disclose. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

More from NBER

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • World Psychiatry
  • v.18(3); 2019 Oct

The Five Factor Model of personality structure: an update

Thomas a. widiger.

1 Department of Psychology, University of Kentucky, Lexington, KY, USA

Cristina Crego

The Five Factor Model (FFM) of general personality structure consists of the five broad domains of neuroticism (or emotional instability vs. stability), extraversion (vs. introversion), openness (or unconventionality), agreeableness (vs. antagonism), and conscientiousness (or constraint vs. disinhibition). Each of these domains includes more specific facets (e.g., gullible vs. cynical, meek vs. aggressive, soft‐hearted vs. callous, and selfless vs. exploitative are within the domain of agreeableness vs. antagonism).

The FFM traces its roots to the lexical paradigm, which rests on the compelling premise that what is of most importance, interest or meaning to persons when describing themselves and others will be encoded within the language. Fundamental domains of personality emerge as persons develop more and more words to describe the gradations, variations and nuances of a respective domain. The natural, inherent structure of personality is provided by the empirical relationship among the trait terms, and the structure of the English language has converged well onto the “Big Five”. The Big Five have also been replicated within the German, Czech, Dutch, Filipino, Hebrew, Hungarian, Italian, Korean, Polish, Russian, Spanish and Turkish languages, albeit the replication of neuroticism and openness is not as strong as the replication of the domains of agreeableness, extraversion and conscientiousness 1 .

Empirical support for the FFM as a structural model of personality is substantial, including multivariate behavior genetics, childhood antecedents, temporal stability across the lifespan, cognitive neuroscience coordination, and cross‐cultural replication 1 . The FFM has also been shown across a vast empirical literature to be useful in predicting a substantial number of important life outcomes, both positive and negative 2 . Cuijpers et al 3 compared the economic costs of FFM neuroticism (health service uptake in primary and secondary mental health care, out‐of‐pocket costs, and production losses) with the costs associated with common mental disorders (e.g., mood, anxiety, substance use, and somatic disorders). The economic costs of neuroticism were approximately 2.5 times higher than those of the common mental disorders.

Given that the Big Five account for virtually every trait term within the language, it is not surprising that the FFM accounts for every maladaptive personality trait, including those that define the personality disorder syndromes of the ICD and the DSM 1 . The dimensional trait models included within the DSM‐5 Section III and the ICD‐11 are aligned explicitly with the FFM. The FFM also provides the temperament base and personality foundation for the widely cited Hierarchical Taxonomy of Psychopathology 4 , a dimensional structural model that covers much of all forms of psychopathology.

The ICD and DSM personality disorders are readily understood as maladaptive variants of the FFM, but this does not suggest that any measure of the FFM will fully account for every personality disorder. Most existing measures of the FFM do not assess for all of its maladaptive variants and therefore will not be able to account for all of the components and correlates of a respective personality disorder. For example, there are maladaptive variants for all ten poles of all five FFM domains, but existing measures typically fail to assess for the maladaptive variants of conscientiousness (e.g., compulsivity), openness (e.g., magical thinking), agreeableness (e.g., subservience), low neuroticism (e.g., fearlessness), and extraversion (e.g., dominance), thereby limiting the ability to cover traits central to the obsessive‐compulsive, schizotypal, dependent, and psychopathic personality disorders, respectively. The obsessive‐compulsive personality disorder is defined largely by maladaptive conscientiousness (e.g., perfectionism, compulsivity, workaholism, and ruminative deliberation), but most measures of FFM conscientiousness do not assess for these maladaptive variants. Measures to assess maladaptive FFM traits, though, have been developed, including the Five Factor Model Personality Disorder scales 5 , the Personality Inventory for DSM‐5 6 , and the Personality Inventory for ICD‐11 7 .

There are a number of advantages in conceptualizing the ICD and DSM personality disorders from the perspective of the FFM. Many of the ICD and DSM personality disorder syndromes have limited research interest and inadequate empirical support. The FFM brings to the personality disorders a substantial body of construct validation, including a resolution of such notable controversies as gender bias, excessive diagnostic overlap, and temporal instability. An understanding of the etiology, pathology and treatment of the personality disorders has been hindered substantially by the heterogeneity within and the overlap across the diagnostic categories. The American Psychiatric Association has been publishing treatment guidelines for every disorder within the DSM, but guidelines have been provided for only one of the ten personality disorders (i.e., borderline). The complex heterogeneity of the categorical syndromes complicates considerably the ability to develop an explicit, uniform treatment protocol. The domains of the FFM are considerably more homogeneous and distinct, lending themselves well for more distinct models of etiology, pathology and treatment 8 . Empirically validated treatment protocols have already been developed for FFM neuroticism 9 .

A common concern regarding the FFM and any other dimensional trait model is that clinicians will be unfamiliar with this approach and will find it difficult to apply. However, the FFM organization is consistent with the manner in which persons naturally think of personality trait description. Persons who apply the FFM typically find it quite easy to use. There have in fact been a number of studies concerning the clinical utility of the FFM in comparison to the DSM syndromes. A few of these studies have favored the DSM syndromes but, when the methodological limitations of these particular studies were addressed in subsequent studies, the results consistently favored the FFM 8 . Experienced clinicians prefer the FFM and dimensional trait models for the conceptualization of personality disorders 8 .

In sum, the FFM is the predominant model of general personality structure and offers the opportunity for a truly integrative understanding of personality structure across the fields of clinical psychiatry and basic personality science. The ICD and DSM models for the classification and diagnosis of personality disorder are shifting toward the FFM because of its empirical validation and clinical utility.

Book cover

Encyclopedia of Behavioral Medicine pp 803–804 Cite as

Five-Factor Model of Personality

  • Michael S. Chmielewski 3 &
  • Theresa A. Morgan 4  
  • Reference work entry

6070 Accesses

1 Citations

Big five, The

The five-factor model (also referred to as “The Big Five”) is the most widely used and empirically supported model of normal personality traits. It consists of five main traits: Neuroticism, Extraversion, Openness (to experience), Agreeableness, and Conscientiousness.

Description

The five-factor model (FFM; Digman, 1990 ), or the “Big Five” (Goldberg, 1993 ), consists of five broad trait dimensions of personality. These traits represent stable individual differences (an individual may be high or low on a trait as compared to others) in the thoughts people have, the feelings they experience, and their behaviors. The FFM includes Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Neuroticism is the tendency to experience negative emotions (e.g., sadness, anxiety, and anger) and to have negative thoughts (e.g., worry, self-doubt). In general, Neuroticism represents the predisposition to experience psychological distress. It has been...

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

References and Readings

Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual Review of Psychology, 41 , 417–440.

Google Scholar  

Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist, 48 , 26–34.

PubMed   CAS   Google Scholar  

John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative big-five trait taxonomy: History, measurement, and conceptual issues. In O. P. John, R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality: Theory and research (pp. 114–158). New York: Guilford Press.

McCrae, R. R., & Costa, P. T., Jr. (2008). Empirical and theoretical status of the five-factor model of personality traits. In G. J. Boyle, G. Matthews, & D. H. Saklofske (Eds.), The SAGE handbook of personality theory and assessment (Personality theories and models, Vol. 1, pp. 273–294). Thousand Oaks, CA: Sage.

Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. Psychological Bulletin, 126 , 2–25.

Download references

Author information

Authors and affiliations.

Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada

Prof. Michael S. Chmielewski

Alpert Medical School of Brown University, Department of Psychiatry, Brown University, Providence, RI, 02912, USA

Prof. Theresa A. Morgan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Michael S. Chmielewski .

Editor information

Editors and affiliations.

Behavioral Medicine Research Center, Department of Psychology, University of Miami, Miami, FL, USA

Marc D. Gellman

Cardiovascular Safety, Quintiles, Durham, NC, USA

J. Rick Turner

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this entry

Cite this entry.

Chmielewski, M.S., Morgan, T.A. (2013). Five-Factor Model of Personality. In: Gellman, M.D., Turner, J.R. (eds) Encyclopedia of Behavioral Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1005-9_1226

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1005-9_1226

Publisher Name : Springer, New York, NY

Print ISBN : 978-1-4419-1004-2

Online ISBN : 978-1-4419-1005-9

eBook Packages : Medicine Reference Module Medicine

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 26 November 2023

Impact of industrial robots on environmental pollution: evidence from China

  • Yanfang Liu 1  

Scientific Reports volume  13 , Article number:  20769 ( 2023 ) Cite this article

3711 Accesses

1 Citations

2 Altmetric

Metrics details

  • Environmental sciences
  • Environmental social sciences

The application of industrial robots is considered a significant factor affecting environmental pollution. Selecting industrial wastewater discharge, industrial SO 2 emissions and industrial soot emissions as the evaluation indicators of environmental pollution, this paper uses the panel data model and mediation effect model to empirically examine the impact of industrial robots on environmental pollution and its mechanisms. The conclusions are as follows: (1) Industrial robots can significantly reduce environmental pollution. (2) Industrial robots can reduce environmental pollution by improving the level of green technology innovation and optimizing the structure of employment skills. (3) With the increase in emissions of industrial wastewater, industrial SO 2 , and industrial dust, the impacts generated by industrial robots are exhibiting trends of a “W” shape, gradual intensification, and progressive weakening. (4) Regarding regional heterogeneity, industrial robots in the eastern region have the greatest negative impact on environmental pollution, followed by the central region, and the western region has the least negative impact on environmental pollution. Regarding time heterogeneity, the emission reduction effect of industrial robots after 2013 is greater than that before 2013. Based on the above conclusions, this paper suggests that the Chinese government and enterprises should increase investment in the robot industry. Using industrial robots to drive innovation in green technology and optimize employment skill structures, reducing environmental pollution.

Similar content being viewed by others

factor model research paper

The impact of artificial intelligence on employment: the role of virtual agglomeration

Yang Shen & Xiuwu Zhang

factor model research paper

The role of artificial intelligence in achieving the Sustainable Development Goals

Ricardo Vinuesa, Hossein Azizpour, … Francesco Fuso Nerini

factor model research paper

Global energy use and carbon emissions from irrigated agriculture

Jingxiu Qin, Weili Duan, … Lorenzo Rosa

Introduction

Since the reform and opening up, China’s rapid economic growth has created a world-renowned “economic growth miracle” 1 . With the rapid economic growth, China’s environmental pollution problem is becoming more and more serious 2 . According to the “ Global Environmental Performance Index Report ” released by Yale University in the United States in 2022, China’s environmental performance index scores 28.4 points, ranking 160th out of 180 participating countries. The aggravation of environmental pollution not only affects residents’ health 3 , but also affects the efficiency of economic operation 4 . According to calculation of the General Administration of Environmental Protection, the World Bank and the Chinese Academy of Sciences, China’s annual losses caused by environmental pollution account for about 10% of GDP. Exploring the factors that affect environmental pollution and seeking ways to reduce environmental pollution are conducive to the development of economy within the scope of environment.

Industrial robots are machines that can be automatically controlled, repeatedly programmed, and multi-purpose 5 . They replace the low-skilled labor force engaged in procedural work 6 , reducing the raw materials required for manual operation. Industrial robots improve the clean technology level and energy efficiency of coal combustion, reducing pollutant emissions in front-end production. Industrial robots also monitor the energy consumption and sewage discharge in the production process in real time. The excessive discharge behavior of enterprises in the production process is regulated, reducing the emission of pollutants in the end treatment. Based on the selection and coding of literature (Appendix A ), this paper uses the meta-analysis method to compare the impacts of multiple factors such as economics, population, technology, and policy on environmental pollution. As shown in Table 1 , compared to other factors, industrial robots demonstrate greater advantages in reducing environmental pollution. There is a lack of research on the relationship between industrial robots and environmental pollution in China. With the advent of artificial intelligence era, China’s industrial robot industry has developed rapidly. According to data released by the International Federation of Robotics (IFR), from 1999 to 2019, China’s industrial robot ownership and installation shows an increasing trend year by year (Fig.  1 ). In 2013 and 2016, China’s industrial robot installation (36,560) and ownership (349,470) exceeds Japan for the first time, becoming the world’s largest country in terms of installation and ownership of industrial robots. Whether the application of industrial robots in China contributes to the reduction of environmental pollution? What is the mechanism of the impact of China’s industrial robots on environmental pollution? Researching this issue is crucial for filling the gaps in existing research and providing a reference for other countries to achieve emission reduction driven by robots.

figure 1

Industrial robot installations in the world’s top five industrial robot markets from 1999 to 2019.

Based on the above analysis, this paper innovatively incorporates industrial robots and environmental pollution into a unified framework. Based on the panel data of 30 provinces in China from 2006 to 2019, this paper uses the ordinary panel model and mediating effect model to empirically test the impact of industrial robots on China’s environmental pollution and its transmission channels. The panel quantile model is used to empirically analyze the heterogeneous impact of industrial robots on environmental pollution under different environmental pollution levels.

Literature review

A large number of scholars have begun to study the problem of environmental pollution. Its research content mainly includes two aspects: The measurement of environmental pollution and its influencing factors. Regarding the measurement, some scholars have used SO 2 emissions 7 , industrial soot emissions 8 and PM2.5 concentration 9 and other single indicators to measure the degree of environmental pollution. The single indicator cannot fully and scientifically reflect the degree of environmental pollution. To make up for this defect, some scholars have included industrial SO 2 emissions, industrial wastewater discharge and industrial soot emissions into the environmental pollution evaluation system, and used the entropy method to measure environmental pollution level 10 . This method ignores the different characteristics and temporal and spatial trends of different pollutants, which makes the analysis one-sided. Regarding the influencing factors, economic factors such as economic development level 11 , foreign direct investment 12 and income 13 , population factors such as population size 14 and urbanization level 15 , energy consumption 16 all have an impact on environmental pollution. Specifically, economic development and technological innovation can effectively reduce environmental pollution 17 . The expansion of population size can aggravate environmental pollution. Income inequality can reduce environmental pollution, but higher income inequality may aggravate environmental pollution 18 . There are “pollution heaven hypothesis” and “pollution halo hypothesis” between foreign direct investment and environmental pollution 19 . Technological factors also have a non-negligible impact on environmental pollution 20 .

With continuous deepening of research, scholars have begun to focus on the impact of automation technology, especially industrial robot technology, on the environment. Ghobakhloo et al. 21 theoretically analyzed the impact of industrial robots on energy sustainability, contending that the application of industrial robots could foster sustainable development of energy. Using data from multiple countries, a few scholars have empirically analyzed the effect of industrial robots on environmental pollution (Table 2 ). Luan et al. 22 used panel data from 73 countries between 1993 and 2019 to empirically analyze the impact of industrial robots on air pollution, finding that the use of industrial robots intensifies environmental pollution. Using panel data from 66 countries from 1993 to 2018, Wang et al. 23 analyzed the impact of industrial robots on carbon intensity and found that industrial robots can reduce carbon intensity. On the basis of analyzing the overall impact of industrial robots on environmental pollution, some scholars conducted in-depth exploration of its mechanism. Based on data from 72 countries between 1993 and 2019, Chen et al. 5 explored the impact of industrial robots on the ecological footprint, discovering that industrial robots can reduce the ecological footprint through time saving effect, green employment effect and energy upgrading effect. Using panel data from 35 countries between 1993 and 2017, Li et al. 24 empirically examined the carbon emission reduction effect of industrial robots, finding that industrial robots can effectively reduce carbon emissions by increasing green total factor productivity and reducing energy intensity. Although the above studies have successfully estimated the overall impact of industrial robots on environmental pollution and its mechanisms, they have not fully considered the role of technological progress, labor structure and other factors in the relationship between the two. These studies all chose data from multiple countries as research samples and lack research on the relationship between industrial robots and environmental pollution in China, an emerging country.

The above literature provides inspiration for this study, but there are still shortcomings in the following aspects: Firstly, there is a lack of research on the relationship between industrial robots and environmental pollution in emerging countries. There are significant differences between emerging and developed countries in terms of institutional background and the degree of environmental pollution. As a representative emerging country, research on the relationship between industrial robots and environmental pollution in China can provide reliable references for other emerging countries. Secondly, theoretically, the study of the impact of industrial robots on environmental pollution is still in its initial stage. There are few studies that deeply explore its impact mechanism, and there is a lack of analysis of the role of technological progress and labor structure in the relationship between the two.

The innovations of this paper are as follows: (1) In terms of sample selection, this paper selects panel data from 30 provinces in China from 2006 to 2019 as research samples to explore the relationship between industrial robots and environmental pollution in China, providing references for other emerging countries to improve environmental quality using industrial robots. (2) In terms of theory, this paper is not limited to revealing the superficial relationship between industrial robots and environmental pollution. it starts from a new perspective and provides an in-depth analysis of how industrial robots affect environmental pollution through employment skill structure and green technology innovation. This not only enriches research in the fields of industrial robots and the environment, but is also of great significance in guiding the direction of industrial policy and technology research and development.

Theoretical analysis and hypothesis

Industrial robots and environmental pollution.

As shown in Fig.  2 , the impact of industrial robots on environmental pollution is mainly reflected in two aspects: Front-end production and end treatment. In front-end production, industrial robots enable artificial substitution effects 25 . Manual operation is replaced by machine operation, reducing the raw materials needed for manual operation. Through the specific program setting of industrial robots, clean energy is applied to industrial production 26 . The use of traditional fuels such as coal and oil is reduced. In terms of end treatment, the traditional pollutant concentration tester only measures a single type of pollutant. Its data cannot be obtained in time. It is easy to cause pollution incidents. Industrial robots can measure a variety of pollutants, and have the function of remote unmanned operation and warning. It reflects the pollution situation in time, reducing the probability of pollution incidents. The use of robots can upgrade sewage treatment equipment and improve the accuracy of pollution treatment, reducing pollutant emissions. Based on the above analysis, this paper proposes hypothesis 1.

figure 2

The impact of industrial robots on environmental pollution.

Hypothesis 1

The use of industrial robots can reduce environmental pollution.

Mediating effect of green technology innovation

Industrial robots can affect environmental pollution by promoting green technology innovation. The transmission path of “industrial robots-green technology innovation-environmental pollution” is formed. Industrial robots are the materialization of technological progress in the field of enterprise R&D. Its impact on green technology innovation is mainly manifested in the following two aspects: Firstly, industrial robots classify known knowledge, which helps enterprises to integrate internal and external knowledge 27 . The development of green technology innovation activities of enterprises is promoted. Secondly, enterprises can simulate existing green technologies through industrial robots. The shortcomings of green technology in each link are found. Based on this, enterprises can improve and perfect green technology in a targeted manner. Industrial robots can collect and organize data, which enables enterprises to predict production costs and raw material consumption. Excessive procurement by enterprises can occupy working capital. Inventory backlog leads to warehousing, logistics and other expenses, increasing storage costs 28 . Forecasting the consumption of raw materials allows enterprises to purchase precisely, preventing over-procurement and inventory backlog, thereby reducing the use of working capital and storage costs 29 . The production cost of enterprises is reduced. Enterprises have more funds for green technology research and development.

The continuous innovation of green technology is helpful to solve the problem of environmental pollution. Firstly, green technology innovation helps use resources better 30 , lowers dependence on old energy, and reduces environmental damage. Secondly, green technology innovation promotes the greening of enterprises in manufacturing, sales and after-sales 31 . The emission of pollutants in production process is reduced. Finally, green technology innovation improves the advantages of enterprises in market competition 32 . The production possibility curve expands outward, which encourages enterprises to carry out intensive production. Based on the above analysis, this paper proposes hypothesis 2.

Hypothesis 2

Industrial robots can reduce environmental pollution through green technology innovation.

Mediating effect of employment skill structure

Industrial robots can affect environmental pollution through employment skill structure. The transmission path of “industrial robots-employment skill structure-environmental pollution” is formed. Industrial robots have substitution effect and creation effect on the labor force, improving the employment skill structure. Regarding the substitution effect, enterprises use industrial robots to complete simple and repetitive tasks to improve production efficiency, which crowds out low-skilled labor 6 . Regarding the creation effect, industrial robots create a demand for new job roles that matches automation, such as robot engineers, data analysts, machine repairers, which increases the number of highly skilled labor 33 . The reduction of low-skilled labor and increase of high-skilled labor improve employment skill structure.

High-skilled labor is reflected in the level of education 34 . Its essence is to have a higher level of skills and environmental awareness, which is the key to reducing environmental pollution. Compared with low-skilled labor, high-skilled labor has stronger ability to acquire knowledge and understand skills, which improves the efficiency of cleaning equipment and promotes emission reduction. The interaction and communication between highly skilled labor is also crucial for emission reduction. The excessive wage gap between employees brings high communication costs, which hinders the exchange of knowledge and technology between different employees. The increase in the proportion of high-skilled labor can solve this problem and improve the production efficiency of enterprises 35 . The improvement of production efficiency enables more investment in emission reduction research, decreasing pollutant emissions. Based on the above analysis, this paper proposes hypothesis 3.

Hypothesis 3

Industrial robots can reduce environmental pollution by optimizing employment skills structure.

Model construction and variable selection

Model construction, panel data model.

The panel data model is a significant statistical method, first introduced by Mundlak 36 . Subsequently, numerous scholars have used this model to examine the baseline relationships between core explanatory variables and explained variables 37 . To test the impact of industrial robots on environmental pollution, this paper sets the following panel data model:

In formula ( 1 ), Y it is the explained variable, indicating the degree of environmental pollution in region i in year t . IR it is the core explanatory variable, indicating the installation density of industrial robots in region i in year t . X it is a series of control variables, including economic development level (GDP), urbanization level (URB), industrial structure (EC), government intervention (GOV) and environmental regulation (ER). \(\lambda i\) is the regional factor. \(\varphi t\) is the time factor. \(\varepsilon it\) is the disturbance term.

Mediating effect model

To test the transmission mechanism of industrial robots affecting environmental pollution, this paper sets the following mediating effect model:

In formula ( 2 ), M is the mediating variable, which mainly includes green technology innovation and employment skill structure. Formula ( 2 ) measures the impact of industrial robots on mediating variables. Formula ( 3 ) measures the impact of intermediary variables on environmental pollution. According to the principle of mediating effect 38 , the direct effect \(\theta 1\) , mediating effect \(\beta 1 \times \theta 2\) and total effect \(\alpha 1\) satisfy \(\alpha 1 = \theta 1 + \beta 1 \times \theta 2\) .

Panel quantile model

The panel quantile model was first proposed by Koenke and Bassett 39 . It is mainly used to analyze the impact of core explanatory variables on the explained variables under different quantiles 40 . To empirically test the heterogeneous impact of industrial robots on environmental pollution under different levels of environmental pollution, this paper sets the following panel quantile model:

In formula ( 4 ), \(\tau\) represents the quantile value. \(\gamma 1\) reflects the difference in the impact of industrial robots on environmental pollution at different quantiles. \(\gamma 2\) indicates the different effects of control variables at different quantiles.

Variable selection

Explained variable.

The explained variable is environmental pollution. Considering the timeliness and availability of data, this paper selects industrial wastewater discharge, industrial SO 2 emissions and industrial soot emissions as indicators of environmental pollution.

Explanatory variable

According to production theory, industrial robots can enhance production efficiency 41 . Efficient production implies reduced energy wastage, which in turn decreases the emission of pollutants. Industrial robots can upgrade pollution control equipment, heightening the precision in pollution treatment and reducing pollutant discharge. Referring to Acemoglu and Restrepo 25 , this paper selects the installation density of industrial robots as a measure. The specific formula is as follows:

In formula ( 5 ), Labor ji is the number of labor force in industry j in region i . IR jt is the stock of industrial robot use in industry j in the year t .

Mediating variable

Green technology innovation. Industrial robots can increase the demand for highly-skilled labor 42 , subsequently influencing green technology innovation. Compared to ordinary labor, highly-skilled labor possesses a richer knowledge base and technological learning capability, improving the level of green technology innovation. Green technology innovation can improve energy efficiency 43 , reducing pollution generated by energy consumption. The measurement methods of green technology innovation mainly include three kinds: The first method is to use simple technology invention patents as measurement indicators. Some of technical invention patents are not applied to the production process of enterprise, they cannot fully reflect the level of technological innovation. The second method is to use green product innovation and green process innovation as measurement indicators. The third method is to use the number of green patent applications or authorizations as a measure 44 . This paper selects the number of green patent applications as a measure of green technology innovation.

Employment skill structure. The use of industrial robots reduces the demand for labor performing simple repetitive tasks and increases the need for engineers, technicians, and other specialized skilled personnel, improving the employment skill structure 45 . Compared to ordinary workers, highly-skilled laborers typically have a stronger environmental awareness 46 . Such environmental consciousness may influence corporate decisions, prompting companies to adopt eco-friendly production methods, thus reducing environmental pollution. There are two main methods to measure the structure of employment skills: One is to use the proportion of employees with college degree or above in the total number of employees as a measure. The other is to use the proportion of researchers as a measure. The educational level can better reflect the skill differences of workers. This paper uses the first method to measure the employment skill structure.

Control variable

Economic development level. According to the EKC hypothesis 47 , in the initial stage of economic development, economic development mainly depends on input of production factors, which aggravates environmental pollution. With the continuous development of economy, people begin to put forward higher requirements for environmental quality. The government also begins to adopt more stringent policies to control environmental pollution, which can reduce the level of environmental pollution. According to Liu and Lin 48 , This paper uses per capita GDP to measure economic development level.

Urbanization level. The improvement of urbanization level has both positive and negative effects on pollution. Urbanization can improve the agglomeration effect of cities. The improvement of agglomeration effect can not only promote the sharing of public resources such as infrastructure, health care, but also facilitate the centralized treatment of pollution. The efficiency of environmental governance is improved 49 . The acceleration of urbanization can increase the demand for housing, home appliances and private cars, which increases pollutant emissions 50 . This paper uses the proportion of urban population to total population to measure the level of urbanization.

Industrial structure. Industrial structure is one of the key factors that determine the quality of a country’s environmental conditions 51 . The increase in the proportion of capital and technology-intensive industries can effectively improve resource utilization efficiency and improve resource waste 52 . This paper selects the ratio of the added value of the tertiary industry to the secondary industry to measure industrial structure.

Government intervention. Government intervention mainly affects environmental pollution from the following two aspects: Firstly, the government can give high-tech, energy-saving and consumption-reducing enterprises relevant preferential policies, which promotes the development of emission reduction technologies for these enterprises 53 . Secondly, the government strengthens environmental regulation by increasing investment in environmental law enforcement funds, thus forcing enterprises to save energy and reduce emissions 54 . This paper selects the proportion of government expenditure in GDP to measure government intervention.

Environmental regulation. The investment in environmental pollution control is conducive to the development of clean and environmental protection technology, optimizing the process flow and improving the green production efficiency of enterprises 55 . Pollutant emissions are reduced. This paper selects the proportion of investment in pollution control to GDP to measure environmental regulation.

Data sources and descriptive statistics

This paper selects the panel data of 30 provinces in China from 2006 to 2019 as the research sample. Among them, the installation data of industrial robots are derived from International Federation of Robotics (IFR). The data of labor force and employees with college degree or above are from China Labor Statistics Yearbook . Other data are from the China Statistical Yearbook . The descriptive statistics of variables are shown in Table 3 . Considering the breadth of application and the reliability of analysis capabilities, this paper uses Stata 16 for regression analysis.

Results analysis

Spatial and temporal characteristics of environmental pollution and industrial robots in china, environmental pollution.

Figure  3 a shows the overall trend of average industrial wastewater discharge in China from 2006 to 2019. From 2006 to 2019, the discharge of industrial wastewater shows a fluctuating downward trend, mainly due to the improvement of wastewater treatment facilities and the improvement of treatment capacity. Figure  3 b shows the changing trend of average industrial wastewater discharge in 30 provinces of China from 2006 to 2019. Industrial wastewater discharge in most provinces has declined. There are also some provinces such as Fujian, Guizhou and Qinghai, which have increased industrial wastewater discharge. Their emission reduction task is very arduous.

figure 3

Industrial wastewater discharge from 2006 to 2019.

Figure  4 a shows the overall trend of average industrial SO 2 emissions in China from 2006 to 2019. From 2006 to 2019, industrial SO 2 emissions shows a fluctuating downward trend, indicating that air pollution control and supervision are effective. Figure  4 b shows the trend of average industrial SO 2 emissions in 30 provinces of China from 2006 to 2019. Similar to industrial wastewater, industrial SO 2 emissions decrease in most provinces.

figure 4

Industrial SO 2 emissions from 2006 to 2019.

Figure  5 a shows the overall trend of average industrial soot emissions in China from 2006 to 2019. Different from industrial wastewater and industrial SO 2 , the emission of industrial soot is increasing year by year. From the perspective of governance investment structure, compared with industrial wastewater and industrial SO 2 , the investment proportion of industrial soot is low. From the perspective of source, industrial soot mainly comes from urban operation, industrial manufacturing and so on. The acceleration of urbanization and the expansion of manufacturing scale have led to an increase in industrial soot emissions. Figure  5 b shows the trend of industrial soot emissions in 30 provinces in China from 2006 to 2019. The industrial soot emissions in most provinces have increased.

figure 5

Industrial soot emissions from 2006 to 2019.

Figure  6 shows the spatial distribution characteristics of industrial wastewater, industrial SO 2 and industrial soot emissions. The three types of pollutant emissions in the central region are the largest, followed by the eastern region, and the three types of pollutant emissions in the western region are the smallest. Due to resource conditions and geographical location, the central region is mainly dominated by heavy industry. The extensive development model of high input and consumption makes its pollutant emissions higher than the eastern and western regions. The eastern region is mainly capital-intensive and technology-intensive industries, which makes its pollutant emissions lower than the central region. Although the leading industry in the western region is heavy industry, its factory production and transportation scale are not large, which produces less pollutants.

figure 6

Spatial distribution characteristics of industrial wastewater, industrial SO 2 and industrial soot.

Industrial robots

Figure  7 a shows the overall trend of installation density of industrial robots in China from 2006 to 2019. From 2006 to 2019, the installation density of industrial robots in China shows an increasing trend year by year. The increase of labor cost and the decrease of industrial robot cost make enterprises use more industrial robots, which has a substitution effect on labor force. The installation density of industrial robots is increased. Figure  7 b shows the trend of installation density of industrial robots in 30 provinces of China from 2006 to 2019. The installation density of industrial robots in most provinces has increased. Among them, the installation density of industrial robots in Guangdong Province has the largest growth rate. The installation density of industrial robots in Heilongjiang Province has the smallest growth rate.

figure 7

Installation density of industrial robots from 2006 to 2019.

Figure  8 shows the spatial distribution characteristics of installation density of industrial robots. The installation density of industrial robots in the eastern region is the largest, followed by the central region, and the installation density of industrial robots in the western region is the smallest. The eastern region is economically developed and attracts lots of talents to gather here, which provides talent support for the development of industrial robots. Advanced technology also leads to the rapid development of industrial robots in the eastern region. The economy of western region is backward, which inhibits the development of industrial robots.

figure 8

Spatial distribution characteristics of industrial robots.

Benchmark regression results

Table 4 reports the estimation results of the ordinary panel model. Among them, the F test and LM test show that the mixed OLS model should not be used. The Hausman test shows that the fixed effect model should be selected in the fixed effect model and random effect model. This paper selects the estimation results of the fixed effect model to explain.

Regarding the core explanatory variable, industrial robots have a significant negative impact on the emissions of industrial wastewater, industrial SO 2 and industrial soot. Specifically, industrial robots have the greatest negative impact on industrial soot emissions, with a coefficient of -0.277 and passing the 1% significance level. The negative impact of industrial robots on industrial wastewater discharge is second, with an estimated coefficient of -0.242, which also passes the 1% significance level. The negative impact of industrial robots on industrial SO 2 emissions is the smallest, with an estimated coefficient of -0.0875 and passing the 10% significant level. Compared with industrial wastewater and SO 2 , industrial robots have some unique advantages in reducing industrial soot emissions. Firstly, in terms of emission sources, industrial soot emissions mainly come from physical processes such as cutting. These processes can be significantly improved through precise control of industrial robots. Industrial SO 2 comes from the combustion process. Industrial wastewater originates from various industrial processes. It is difficult for industrial robots to directly control these processes. Secondly, in terms of source control and terminal treatment, industrial robots can reduce excessive processing and waste of raw materials, thereby controlling industrial soot emissions at the source. For industrial SO 2 and industrial wastewater, industrial robots mainly play a role in terminal treatment. Since the terminal treatment of industrial SO 2 and industrial wastewater often involves complex chemical treatment processes, it is difficult for industrial robot technology to fully participate in these processes. This makes the impact of industrial robots in the field of industrial SO 2 and industrial wastewater more limited than that in the field of industrial soot.

Regarding the control variables, the level of economic development has a significant inhibitory effect on industrial SO 2 emissions. The higher the level of economic development, the stronger the residents’ awareness of environmental protection, which constrains the pollution behavior of enterprises. The government also adopts strict policies to control pollutant emissions. The impact of urbanization level on the discharge of industrial wastewater, industrial SO 2 and industrial soot is significantly negative. The improvement of urbanization level can improve the efficiency of resource sharing and the centralized treatment of pollutants, reducing environmental pollution. The industrial structure significantly reduces industrial SO 2 and industrial soot emissions. The upgrading of industrial structure not only reduces the demand for energy, but also improves the efficiency of resource utilization. The degree of government intervention only significantly reduces the discharge of industrial wastewater. The possible reason is that to promote economic development, the government invests more money in high-yield areas, which crowds out investment in the environmental field. Similar to the degree of government intervention, environmental regulation has a negative impact on industrial wastewater discharge. The government’s environmental governance investment has not given some support to the enterprise’s clean technology research, which makes the pollution control investment not produce good emission reduction effect.

Mediation effect regression results

Green technology innovation.

Table 5 reports the results of intermediary effect model when green technology innovation is used as an intermediary variable. Industrial robots can have a positive impact on green technology innovation. For every 1% increase in the installation density of industrial robots, the level of green technology innovation increases by 0.722%. After adding the green technology innovation, the estimated coefficient of industrial robots has decreased, which shows that the intermediary variable is effective.

In the impact of industrial robots on industrial wastewater discharge, the mediating effect of green technology innovation accounts for 8.17% of the total effect. In the impact of industrial robots on industrial SO 2 emissions, the mediating effect of green technology innovation accounts for 11.8% of the total effect. In the impact of industrial robots on industrial soot emissions, the mediating effect of green technology innovation accounts for 3.72% of the total effect.

Employment skill structure

Table 6 reports the results of intermediary effect model when the employment skill structure is used as an intermediary variable. Industrial robots have a positive impact on the employment skill structure. For every 1% increase in the installation density of industrial robots, the employment skill structure is improved by 0.0837%. Similar to green technology innovation, the intermediary variable of employment skill structure is also effective.

In the impact of industrial robots on industrial wastewater discharge, the mediating effect of employment skill structure accounts for 6.67% of the total effect. In the impact of industrial robots on industrial SO 2 emissions, the mediating effect of employment skill structure accounts for 20.66% of the total effect. In the impact of industrial robots on industrial soot emissions, the mediating effect of employment skill structure accounts for 15.53% of the total effect.

Robustness test and endogeneity problem

Robustness test.

To ensure the robustness of the regression results, this paper tests the robustness by replacing core explanatory variables, shrinking tail and replacing sample. Regarding the replacement of core explanatory variables, in the benchmark regression, the installation density of industrial robots is measured by the stock of industrial robots. Replacing the industrial robot stock with the industrial robot installation quantity, this paper re-measures the industrial robot installation density. Regarding the tail reduction processing, this paper reduces the extreme outliers of all variables in the upper and lower 1% to eliminate the influence of extreme outliers. Regarding the replacement of samples, this paper removes the four municipalities from the sample. The estimation results are shown in Table 7 . Industrial robots still have a significant negative impact on environmental pollution, which confirms the robustness of benchmark regression results.

Endogeneity problem

Logically speaking, although the use of industrial robots can reduce environmental pollution, there may be reverse causality. Enterprises may increase the use of industrial robots to meet emission reduction standards, which increases the use of industrial robots in a region. Due to the existence of reverse causality, there is an endogenous problem that cannot be ignored between industrial robots and environmental pollution.

To solve the impact of endogenous problems on the estimation results, this paper uses the instrumental variable method to estimate. According to the selection criteria of instrumental variables, this paper selects the installation density of industrial robots in the United States as the instrumental variable. The trend of the installation density of industrial robots in the United States during the sample period is similar to that of China, which is consistent with the correlation characteristics of instrumental variables. The application of industrial robots in the United States is rarely affected by China’s economic and social factors, and cannot affect China’s environmental pollution, which is in line with the exogenous characteristics of instrumental variables.

Table 8 reports the estimation results of instrumental variable method. Among them, the column (1) is listed as the first stage regression result. The estimated coefficient of instrumental variable is significantly positive, which is consistent with the correlation. Column (2), column (3) and column (4) of Table 8 are the second stage regression results of industrial wastewater, industrial SO 2 and industrial soot emissions as explanatory variables. The estimated coefficients of industrial robots are significantly negative, which again verifies the hypothesis that industrial robots can reduce environmental pollution. Compared with Table 4 , the absolute value of estimated coefficient of industrial robots is reduced, which indicates that the endogenous problems caused by industrial robots overestimate the emission reduction effect of industrial robots. The test results prove the validity of the instrumental variables.

Panel quantile regression results

Traditional panel data models might obscure the differential impacts of industrial robots at specific pollution levels. To address this issue, this paper uses a panel quantile regression model to empirically analyze the effects of industrial robots across different environmental pollution levels.

Table 9 shows that industrial robots have a negative impact on industrial wastewater discharge. With the increase of the quantile of industrial wastewater discharge, the regression coefficient of industrial robots shows a W-shaped change. Specifically, when the industrial wastewater discharge is in the 0.1 quantile, the regression coefficient of industrial robot is − 0.229, and it passes the 1% significant level. When the industrial wastewater discharge is in the 0.25 quantile, the impact of industrial robots on industrial wastewater discharge is gradually enhanced. Its regression coefficient decreases from − 0.229 to − 0.256. When the industrial wastewater discharge is in the 0.5 quantile, the regression coefficient of industrial robot increases from − 0.256 to − 0.152. When the industrial wastewater discharge is at the 0.75 quantile, the regression coefficient of industrial robot decreases from − 0.152 to − 0.211. When the industrial wastewater discharge is in the 0.9 quantile, the regression coefficient of industrial robot increases from − 0.211 to − 0.188. For every 1% increase in the installation density of industrial robots, the discharge of industrial wastewater is reduced by 0.188%.

When industrial wastewater discharge is at a low percentile, the use of industrial robots can replace traditional production methods, reducing energy waste and wastewater discharge. As industrial wastewater discharge increases, the production process becomes more complex. Industrial robots may be involved in high-pollution, high-emission productions, diminishing the robots’ emission-reducing effects. When industrial wastewater discharge reaches high levels, pressured enterprises seek environmentally friendly production methods and use eco-friendly industrial robots to reduce wastewater discharge. As wastewater discharge continues to rise, enterprises tend to prioritize production efficiency over emission control, weakening the negative impact of industrial robots on wastewater discharge. When wastewater discharge is at a high percentile, enterprises should balance production efficiency and environmental protection needs, by introducing eco-friendly industrial robots to reduce wastewater discharge.

Table 10 shows that with the increase of industrial SO 2 emission quantile level, the negative impact of industrial robots on industrial SO 2 emissions gradually increases. Specifically, when industrial SO 2 emissions are below 0.5 quantile, the impact of industrial robots on industrial SO 2 emissions is not significant. When the industrial SO 2 emissions are above 0.5 quantile, the negative impact of industrial robots on industrial SO 2 emissions gradually appears.

When industrial SO 2 emissions are at a low percentile, the application of industrial robots primarily aims to enhance production efficiency, not to reduce SO 2 emissions. Enterprises should invest in the development of eco-friendly industrial robots, ensuring they are readily available for deployment when a reduction in industrial SO 2 emissions is necessary. As industrial SO 2 emissions continue to rise, both the government and the public pay increasing attention to the issue of SO 2 emissions. To meet stringent environmental standards, enterprises begin to use industrial robots to optimize the production process, reduce reliance on sulfur fuels, and consequently decrease SO 2 emissions. Enterprises should regularly evaluate the emission reduction effectiveness of industrial robots, using the assessment data to upgrade and modify the robots’ emission reduction technologies.

Table 11 shows that with the increase of industrial soot emissions quantile level, the negative impact of industrial robots on industrial soot emissions gradually weakens. Specifically, when industrial soot emissions are below 0.75 quantile, industrial robots have a significant negative impact on industrial soot emissions. This negative effect decreases with the increase of industrial soot emissions. When the industrial soot emissions are above 0.75 quantile, the negative impact of industrial robots on industrial soot emissions gradually disappears.

When industrial soot emissions are at a low percentile, they come from a few sources easily managed by industrial robots. As industrial soot emissions increase, the sources become more diverse and complex, making it harder for industrial robots to control. Even with growing environmental awareness, it may take time to effectively use robots in high-emission production processes and control industrial soot emissions. Enterprises should focus on researching how to better integrate industrial robot technology with production processes that have high soot emission levels. The government should provide financial and technical support to enterprises, assisting them in using industrial robots more effectively for emission reduction.

Figure  9 intuitively reflects the trend of the regression coefficient of industrial robots with the changes of industrial wastewater, industrial SO 2 and industrial soot emissions. Figure  9 a shows that with the increase of industrial wastewater discharge, the regression coefficient of industrial robots shows a W-shaped trend. Figure  9 b shows that with the increase of industrial SO 2 emissions, the regression coefficient of industrial robots gradually decreases. The negative impact of industrial robots on industrial SO 2 emissions is gradually increasing. Figure  9 c shows that with the increase of industrial soot emissions, the regression coefficient of industrial robots shows a gradual increasing trend. The negative impact of industrial robots on industrial soot emissions has gradually weakened. Figure  9 a, b and c confirm the estimation results of Tables 9 , 10 and 11 .

figure 9

Change of quantile regression coefficient.

Heterogeneity analysis

Regional heterogeneity.

This paper divides China into three regions: Eastern, central and western regions according to geographical location. The estimated results are shown in Table 12 . The industrial robots in eastern region have the greatest negative impact on three pollutants, followed by central region, and the industrial robots in western region have the least negative impact on three pollutants. The use of industrial robots in eastern region far exceeds that in central and western regions. The eastern region is far more than central and western regions in terms of human capital, technological innovation and financial support. Compared with central and western regions, the artificial substitution effect, upgrading of sewage treatment equipment and improvement of energy utilization efficiency brought by industrial robots in eastern region are more obvious.

Time heterogeneity

The development of industrial robots is closely related to policy support 56 . In 2013, the Ministry of Industry and Information Technology issued the “ Guiding Opinions on Promoting the Development of Industrial Robot Industry ”. This document proposes: By 2020, 3 to 5 internationally competitive leading enterprises and 8 to 10 supporting industrial clusters are cultivated. In terms of high-end robots, domestic robots account for about 45% of the market share, which provides policy support for the development of industrial robots. Based on this, this paper divides the total sample into two periods: 2006–2012 and 2013–2019, and analyzes the heterogeneous impact of industrial robots on environmental pollution in different periods. The estimation results are shown in Table 13 . Compared with 2006–2012, the emission reduction effect of industrial robots during 2013–2019 is greater.

The use of industrial robots can effectively reduce environmental pollution, which is consistent with hypothesis 1. This is contrary to the findings of Luan et al. 22 , who believed that the use of industrial robots would exacerbate air pollution. The inconsistency in research conclusions may be due to differences in research focus, sample size, and maturity of industrial robot technology. In terms of research focus, this paper mainly focuses on the role of industrial robots in reducing pollutant emissions during industrial production processes. Their research focuses more on the energy consumption caused by the production and use of industrial robots, which could aggravate environmental pollution. In terms of sample size, the sample size of this paper is 30 provinces in China from 2006 to 2019. These regions share consistency in economic development, industrial policies and environmental regulations. Their sample size is 74 countries from 1993 to 2019. These countries cover different geographical, economic and industrial development stages, affecting the combined effect of robots on environmental pollution. In terms of the maturity of industrial robots, the maturity of industrial robot technology has undergone tremendous changes from 1993 to 2019. In the early stages, industrial robot technology was immature, which might cause environmental pollution. In recent years, industrial robot technology has gradually matured, and its operating characteristics have become environmentally friendly. Their impact on environmental pollution has gradually improved. This paper mainly conducts research on the mature stage of industrial robot technology. Their research covers the transition period from immature to mature industrial robot technology. The primary reason that the use of industrial robots can reduce environmental pollution is: The use of industrial robots has a substitution effect on labor force, which reduces the raw materials needed for manual operation. For example, in the industrial spraying of manufacturing industry, the spraying robot can improve the spraying quality and material utilization rate, thereby reducing the waste of raw materials by manual operation. Zhang et al. 57 argued that energy consumption has been the primary source of environmental pollution. Coal is the main energy in China, and the proportion of clean energy is low 58 . In 2022, clean energy such as natural gas, hydropower, wind power and solar power in China accounts for only 25.9% of the total energy consumption, which can cause serious environmental pollution problems. Industrial robots can promote the use of clean energy in industrial production and the upgrading of energy structure 24 . The reduction of raw materials and the upgrading of energy structure can control pollutant emissions in front-end production. On September 1, 2021, the World Economic Forum (WEF) released the report “ Using Artificial Intelligence to Accelerate Energy Transformation ”. The report points out that industrial robots can upgrade pollution monitoring equipment and sewage equipment, which reduces pollutant emissions in end-of-pipe treatment. Ye et al. 59 also share the same viewpoint.

The use of industrial robots can reduce environmental pollution through green technology innovation, which is consistent with hypothesis 2. Industrial robots promote the integration of knowledge, which helps enterprises to carry out green technology innovation activities. Meanwhile, Jung et al. 60 suggested that industrial robots can lower production costs for companies, allowing them to invest in green technology research. The level of green technology innovation is improved. Green technology innovation reduces environmental pollution through the following three aspects: Firstly, the improvement of energy utilization efficiency. China’s utilization efficiency of traditional energy sources such as coal is not high. The report of “ 2013-Global Energy Industry Efficiency Research ” points out that China’s energy utilization rate is only ranked 74th in the world in 2013. Low energy efficiency brings serious environmental pollution problems 61 . Du et al. 62 found that the innovation of green technologies, such as clean coal, can enhance energy efficiency and decrease environmental pollution. Secondly, the production of green products. Green technology innovation accelerates the green and recyclable process of production, thereby reducing the pollutants generated in production process. Thirdly, the improvement of enterprise competitive advantage. Green technology innovation can enable enterprises to gain greater competitive advantage in green development 63 . The supply of environmentally friendly products increases, which not only meets the green consumption needs of consumers, but also reduces the emission of pollutants.

Industrial robots can reduce environmental pollution by optimizing the structure of employment skills, which is consistent with hypothesis 3. Autor et al. 64 contended that industrial robots would replace conventional manual labor positions, reducing the demand for low-skilled labor. Industrial robots represent the development of numerical intelligence. With the continuous development of digital intelligence, the demand for high-skilled labor in enterprises has increased. Koch et al. 65 demonstrated that the use of industrial robots in Spanish manufacturing firms leads to an increase in the number of skilled workers. In February 2020, the Ministry of Human Resources and Social Security, the State Administration of Market Supervision and the National Bureau of Statistics jointly issues 16 new professions such as intelligent manufacturing engineering and technical personnel, industrial Internet engineering and technical personnel, and virtual reality engineering and technical personnel to the society. These new occupations increase the demand for highly skilled labor. The reduction of low-skilled labor and increase of high-skilled labor optimize the structure of employment skills. The optimization of employment skill structure narrows the wage gap between employees, reducing the communication cost of employees. Employees learn and exchange technology with each other, which not only improves the absorption capacity of clean technology. It also improves the production efficiency of enterprises and increases corporate profits, so that enterprises can use more funds for clean technology research and development, thereby reducing environmental pollution.

Conclusions and policy recommendations

Based on the panel data of 30 provinces in China from 2006 to 2019, this paper uses the panel data model and mediating effect model to empirically test the impact of industrial robots on environmental pollution and its transmission mechanism. This paper uses panel quantile model, regional samples and time samples to further analyze the heterogeneous impact of industrial robots on environmental pollution. The conclusions are as follows: (1) Industrial robots can significantly reduce environmental pollution. For every 1% increase in industrial robots, the emissions of industrial wastewater, industrial SO 2 , and industrial dust and smoke decrease by − 0.242%, − 0.0875%, and − 0.277%. This finding is contrary to that of Luan et al. 22 , who argued that the use of industrial robots exacerbates air pollution. The results of this paper provide a contrasting perspective, highlighting the potential value of industrial robots in mitigating environmental pollution. (2) Industrial robots can reduce environmental pollution by improving green technology innovation level and optimizing employment skills structure. In the impact of industrial robots on industrial wastewater discharge, the mediating effect of green technology innovation accounts for 8.17% of total effect. The mediating effect of employment skill structure accounts for 6.67% of total effect. In the impact of industrial robots on industrial SO 2 emissions, the mediating effect of green technology innovation accounts for 11.8% of total effect. The mediating effect of employment skill structure accounts for 20.66% of total effect. In the impact of industrial robots on industrial soot emissions, the mediating effect of green technology innovation accounts for 3.72% of total effect. The mediating effect of employment skill structure accounts for 15.53% of total effect. While Obobisa et al. 66 and Zhang et al. 67 highlighted the role of green technological innovation in addressing environmental pollution. Chiacchio et al. 68 and Dekle 69 focused on the effects of industrial robots on employment. The mediating impact of technology and employment in the context of robots affecting pollution hasn’t been addressed. Our research provides the first in-depth exploration of this crucial intersection. (3) Under different environmental pollution levels, the impact of industrial robots on environmental pollution is different. Among them, with the increase of industrial wastewater discharge, the impact of industrial robots on industrial wastewater discharge shows a “W-shaped” change. With the increase of industrial SO 2 emissions, the negative impact of industrial robots on industrial SO 2 emissions is gradually increasing. On the contrary, with the increase of industrial soot emissions, the negative impact of industrial robots on industrial soot emissions gradually weakens. (4) Industrial robots in different regions and different periods have heterogeneous effects on environmental pollution. Regarding regional heterogeneity, industrial robots in eastern region have the greatest negative impact on environmental pollution, followed by central region, and western region has the least negative impact on environmental pollution. Regarding time heterogeneity, the negative impact of industrial robots on environmental pollution in 2013–2019 is greater than that in 2006–2012. Chen et al. 5 and Li et al. 24 both examined the overarching impact of industrial robots on environmental pollution. They did not consider the varying effects of robots on pollution across different regions and time periods. Breaking away from the limitations of previous holistic approaches, our study offers scholars a deeper understanding of the diverse environmental effects of industrial robots.

According to the above research conclusions, this paper believes that the government and enterprises can promote emission reduction through industrial robots from the following aspects.

Increase the scale of investment in robot industry and promote the development of robot industry. China’s industrial robot ownership ranks first in the world. Its industrial robot installation density is lower than that of developed countries such as the United States, Japan and South Korea. The Chinese government should give some financial support to robot industry and promote the development of robot industry, so as to effectively reduce environmental pollution. The R&D investment of industrial robots should be increased so that they can play a full role in reducing raw material consumption, improving energy efficiency and sewage treatment capacity.

Give full play to the role of industrial robots in promoting green technology innovation. Industrial robots can reduce environmental pollution through green technology innovation. The role of industrial robots in innovation should be highly valued. The advantages of knowledge integration and data processing of industrial robots should be fully utilized. Meanwhile, the government should support high-polluting enterprises that do not have industrial robots from the aspects of capital, talents and technology, so as to open up the channels for these enterprises to develop and improve clean technology by using industrial robots.

Give full play to the role of industrial robots in optimizing employment skills structure. The use of industrial robots can create jobs with higher skill requirements and increase the demand for highly skilled talents. China is relatively short of talents in the field of emerging technologies. The education department should actively build disciplines related to industrial robots to provide talent support for high-skilled positions. Enterprises can also improve the skill level of the existing labor force through on-the-job training and job competition.

Data availability

The datasets used or analyzed during the current study are available from Yanfang Liu on reasonable request.

Liu, Y. & Dong, F. How technological innovation impacts urban green economy efficiency in emerging economies: A case study of 278 Chinese cities. Resour. Conserv. Recycl. 169 , 105534 (2021).

Article   Google Scholar  

Wang, Y. & Chen, X. Natural resource endowment and ecological efficiency in China: Revisiting resource curse in the context of ecological efficiency. Resour. Policy 66 , 101610 (2020).

Kampa, M. & Castanas, E. Human health effects of air pollution. Environ. Pollut. 151 , 362–367 (2008).

Article   CAS   PubMed   Google Scholar  

Feng, Y., Chen, H., Chen, Z., Wang, Y. & Wei, W. Has environmental information disclosure eased the economic inhibition of air pollution?. J. Clean. Prod. 284 , 125412 (2021).

Article   CAS   Google Scholar  

Chen, Y., Cheng, L. & Lee, C.-C. How does the use of industrial robots affect the ecological footprint? International evidence. Ecol. Econ. 198 , 107483 (2022).

Krenz, A., Prettner, K. & Strulik, H. Robots, reshoring, and the lot of low-skilled workers. Eur. Econ. Rev. 136 , 103744 (2021).

Xu, C., Zhao, W., Zhang, M. & Cheng, B. Pollution haven or halo? The role of the energy transition in the impact of FDI on SO 2 emissions. Sci. Total Environ. 763 , 143002 (2021).

Article   ADS   CAS   PubMed   Google Scholar  

Yuan, H. et al. Influences and transmission mechanisms of financial agglomeration on environmental pollution. J. Environ. Manag. 303 , 114136 (2022).

Liu, G., Dong, X., Kong, Z. & Dong, K. Does national air quality monitoring reduce local air pollution? The case of PM 2.5 for China. J. Environ. Manag. 296 , 113232 (2021).

Ren, S., Hao, Y. & Wu, H. Digitalization and environment governance: Does internet development reduce environmental pollution?. J. Environ. Plan. Manag. 66 , 1533–1562 (2023).

Zhao, J., Zhao, Z. & Zhang, H. The impact of growth, energy and financial development on environmental pollution in China: New evidence from a spatial econometric analysis. Energy Econ. 93 , 104506 (2021).

Wang, H. & Liu, H. Foreign direct investment, environmental regulation, and environmental pollution: An empirical study based on threshold effects for different Chinese regions. Environ. Sci. Pollut. Res. 26 , 5394–5409 (2019).

Albulescu, C. T., Tiwari, A. K., Yoon, S.-M. & Kang, S. H. FDI, income, and environmental pollution in Latin America: Replication and extension using panel quantiles regression analysis. Energy Economics 84 , 104504 (2019).

Li, K., Fang, L. & He, L. How population and energy price affect China’s environmental pollution?. Energy Policy 129 , 386–396 (2019).

Liang, L., Wang, Z. & Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 237 , 117649 (2019).

Sharma, R., Shahbaz, M., Kautish, P. & Vo, X. V. Does energy consumption reinforce environmental pollution? Evidence from emerging Asian economies. J. Environ. Manag. 297 , 113272 (2021).

Chen, F., Wang, M. & Pu, Z. The impact of technological innovation on air pollution: Firm-level evidence from China. Technol. Forecast. Soc. Change 177 , 121521 (2022).

Hao, Y., Chen, H. & Zhang, Q. Will income inequality affect environmental quality? Analysis based on China’s provincial panel data. Ecol. Ind. 67 , 533–542 (2016).

Liu, Q., Wang, S., Zhang, W., Zhan, D. & Li, J. Does foreign direct investment affect environmental pollution in China’s cities? A spatial econometric perspective. Sci. Total Environ. 613 , 521–529 (2018).

Article   ADS   PubMed   Google Scholar  

Mughal, N. et al. The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: Evidence from South Asian economies. Energy Strat. Rev. 39 , 100745 (2022).

Ghobakhloo, M. & Fathi, M. Industry 4.0 and opportunities for energy sustainability. J. Clean. Prod. 295 , 126427 (2021).

Luan, F., Yang, X., Chen, Y. & Regis, P. J. Industrial robots and air environment: A moderated mediation model of population density and energy consumption. Sustain. Prod. Consump. 30 , 870–888 (2022).

Wang, Q., Li, Y. & Li, R. Do industrial robots reduce carbon intensity? The role of natural resource rents and corruption control. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-023-29760-7 (2023).

Li, Y., Zhang, Y., Pan, A., Han, M. & Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 70 , 102034 (2022).

Acemoglu, D. & Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Polit. Econ. 128 , 2188–2244 (2020).

Liu, J., Liu, L., Qian, Y. & Song, S. The effect of artificial intelligence on carbon intensity: Evidence from China’s industrial sector. Socio Econ. Plan. Sci. 83 , 101002 (2022).

Lee, C.-C., Qin, S. & Li, Y. Does industrial robot application promote green technology innovation in the manufacturing industry?. Technol. Forecast. Soc. Change 183 , 121893 (2022).

Riza, M., Purba, H. H. & Mukhlisin,. The implementation of economic order quantity for reducing inventory cost. Res. Logist. Prod. 8 , 207–216 (2018).

Google Scholar  

Tang, Z. & Ge, Y. CNN model optimization and intelligent balance model for material demand forecast. Int. J. Syst. Assur. Eng. Manag. 13 , 978–986 (2022).

Wang, Q. & Ren, S. Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach. Technol. Forecast. Soc. Change 182 , 121836 (2022).

Chang, K., Liu, L., Luo, D. & Xing, K. The impact of green technology innovation on carbon dioxide emissions: The role of local environmental regulations. J. Environ. Manag. 340 , 117990 (2023).

Tu, Y. & Wu, W. How does green innovation improve enterprises’ competitive advantage? The role of organizational learning. Sustain. Prod. Consum. 26 , 504–516 (2021).

Dauth, W., Findeisen, S., Südekum, J. & Woessner, N. German robots-the impact of industrial robots on workers (2017).

Berger, N. & Fisher, P. A well-educated workforce is key to state prosperity. Economic Policy Institute 22 , 1–14 (2013).

Bourke, J. & Roper, S. AMT adoption and innovation: An investigation of dynamic and complementary effects. Technovation 55 , 42–55 (2016).

Mundlak, Y. On the pooling of time series and cross section data. Econometrica J. Econom. Soc. 46 , 69–85 (1978).

Article   MathSciNet   MATH   Google Scholar  

Sun, B., Li, J., Zhong, S. & Liang, T. Impact of digital finance on energy-based carbon intensity: Evidence from mediating effects perspective. J. Environ. Manag. 327 , 116832 (2023).

MacKinnon, D. P., Warsi, G. & Dwyer, J. H. A simulation study of mediated effect measures. Multivar. Behav. Res. 30 , 41–62 (1995).

Koenker, R. & Bassett, G. Jr. Regression quantiles. Econometrica J. Econom. Soc. 23 , 33–50 (1978).

Akram, R., Chen, F., Khalid, F., Ye, Z. & Majeed, M. T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 247 , 119122 (2020).

Pham, A.-D. & Ahn, H.-J. Rigid precision reducers for machining industrial robots. Int. J. Precis. Eng. Manuf. 22 , 1469–1486 (2021).

Du, L. & Lin, W. Does the application of industrial robots overcome the Solow paradox? Evidence from China. Technol. Soc. 68 , 101932 (2022).

Sun, H., Edziah, B. K., Sun, C. & Kporsu, A. K. Institutional quality, green innovation and energy efficiency. Energy Policy 135 , 111002 (2019).

Wang, X., Su, Z. & Mao, J. How does haze pollution affect green technology innovation? A tale of the government economic and environmental target constraints. J. Environ. Manag. 334 , 117473 (2023).

Tang, C., Huang, K. & Liu, Q. Robots and skill-biased development in employment structure: Evidence from China. Econ. Lett. 205 , 109960 (2021).

Cicatiello, L., Ercolano, S., Gaeta, G. L. & Pinto, M. Willingness to pay for environmental protection and the importance of pollutant industries in the regional economy. Evidence from Italy. Ecol. Econ. 177 , 106774 (2020).

Xie, Q., Xu, X. & Liu, X. Is there an EKC between economic growth and smog pollution in China? New evidence from semiparametric spatial autoregressive models. J. Clean. Prod. 220 , 873–883 (2019).

Liu, K. & Lin, B. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod. 206 , 356–364 (2019).

Wang, Y. & Wang, J. Does industrial agglomeration facilitate environmental performance: New evidence from urban China?. J. Environ. Manag. 248 , 109244 (2019).

Cheng, Z. & Hu, X. The effects of urbanization and urban sprawl on CO 2 emissions in China. Environ. Dev. Sustain. 25 , 1792–1808 (2023).

Hu, W., Tian, J. & Chen, L. An industrial structure adjustment model to facilitate high-quality development of an eco-industrial park. Sci. Total Environ. 766 , 142502 (2021).

Hao, Y. et al. Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. Energy Rep. 6 , 28–39 (2020).

Guo, Y., Xia, X., Zhang, S. & Zhang, D. Environmental regulation, government R&D funding and green technology innovation: Evidence from China provincial data. Sustainability 10 , 940 (2018).

Ouyang, X., Li, Q. & Du, K. How does environmental regulation promote technological innovations in the industrial sector? Evidence from Chinese provincial panel data. Energy Policy 139 , 111310 (2020).

Zhang, W. & Li, G. Environmental decentralization, environmental protection investment, and green technology innovation. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-09849-z (2020).

Cheng, H., Jia, R., Li, D. & Li, H. The rise of robots in China. J. Econ. Perspect. 33 , 71–88 (2019).

Zhang, X. et al. Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China. Renew. Sustain. Energy Rev. 18 , 259–270 (2013).

Jia, Z. & Lin, B. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy 233 , 121179 (2021).

Ye, Z. et al. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Sci. Total Environ. 699 , 134279 (2020).

Jung, J. H. & Lim, D.-G. Industrial robots, employment growth, and labor cost: A simultaneous equation analysis. Technol. Forecas. Soc. Change 159 , 120202 (2020).

Liu, H., Zhang, Z., Zhang, T. & Wang, L. Revisiting China’s provincial energy efficiency and its influencing factors. Energy 208 , 118361 (2020).

Article   PubMed   Google Scholar  

Du, K. & Li, J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 131 , 240–250 (2019).

Li, G., Wang, X., Su, S. & Su, Y. How green technological innovation ability influences enterprise competitiveness. Technol. Soc. 59 , 101136 (2019).

Autor, D. H., Levy, F. & Murnane, R. J. The skill content of recent technological change: An empirical exploration. Q. J. Econ. 118 , 1279–1333 (2003).

Article   MATH   Google Scholar  

Koch, M., Manuylov, I. & Smolka, M. Robots and firms. Econ. J. 131 , 2553–2584 (2021).

Obobisa, E. S., Chen, H. & Mensah, I. A. The impact of green technological innovation and institutional quality on CO 2 emissions in African countries. Technol. Forecast. Soc. Change 180 , 121670 (2022).

Zhang, M. & Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 838 , 156463 (2022).

Chiacchio, F., Petropoulos, G. & Pichler, D. The impact of industrial robots on EU employment and wages: A local labour market approach (Bruegel working paper, 2018).

Dekle, R. Robots and industrial labor: Evidence from Japan. J. Jpn. Int. Econ. 58 , 101108 (2020).

Download references

Author information

Authors and affiliations.

Harbin Vocational College of Science and Technology, Harbin, 150300, Heilongjiang, People’s Republic of China

Yanfang Liu

You can also search for this author in PubMed   Google Scholar

Contributions

Y.L.: Conceptualization, Resources, Supervision, Methodology, Software. I have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yanfang Liu .

Ethics declarations

Competing interests.

The author declares no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary information., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Liu, Y. Impact of industrial robots on environmental pollution: evidence from China. Sci Rep 13 , 20769 (2023). https://doi.org/10.1038/s41598-023-47380-6

Download citation

Received : 24 July 2023

Accepted : 13 November 2023

Published : 26 November 2023

DOI : https://doi.org/10.1038/s41598-023-47380-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

factor model research paper

COMMENTS

  1. Integrating Factor Models

    The Journal of Finance is the official publication of The American Finance Association and publishes leading research across all the major fields of financial research. ABSTRACT This paper develops a comprehensive framework to address uncertainty about the correct factor model. Asset pricing inferences draw on a composite model that integrates ...

  2. PDF Factor models with many assets: strong factors, weak factors, and the

    The two most famous factor pricing models are the market-factor CAPM and the three-factor amaF and rencFh (1993) model. Other pricing factors are the momentum factor (Jegadeesh and Titman, 1993), the consumption-to-wealth ratio `cay' (Lettau and Ludvigson, 2001), the liquidity factor (Pástor and Stambaugh, 2003), and so on.

  3. From Factor Models to Deep Learning:

    A five-factor asset pricing model. Journal of financial economics, 116(1):1-22, 2015. Fama and French [2016] Eugene F Fama and Kenneth R French. Dissecting anomalies with a five-factor model. The Review of Financial Studies, 29(1):69-103, 2016. Feng et al. [2019] Fuli Feng, Xiangnan He, Xiang Wang, Cheng Luo, Yiqun Liu, and Tat-Seng Chua.

  4. Factor Models: Theory and Development

    This paper consists of five separate sections. Section 1 describes the background of the asset pricing field and the beginning of factor model development. Section 2 gives the introduction of different factor models and their concepts. Section 3 offers the comments on and development of factor models, including their limitations and test methods.

  5. PDF best practices in factor research and factor models

    Factors define the sources of portfolio risk and return. In this paper, we review the theoretical and empirical foundations of our factor research and factor models. MSCI factor research is firmly ...

  6. PDF From Factor Models to Deep Learning: Machine Learning in Reshaping

    tors f, and then utilizes these latent factors to model excess returns through predictive regression. The relationship be-tween the latent factor f t and observable characteristics x t is represented as x t= βf + u. In order to estimate time-varying factors and factor loadings, [Kelly et al., 2019] pro-pose IPCA, as: y i,t= x −1β if t+ ϵ . (4)

  7. PDF Factor Models: Theory and Development

    This paper consists of five separate sections. Section 1 describes the background of the asset pricing field and the beginning of factor model development. Section 2 gives the introduction of different factor models and their concepts. Section 3 offers the comments on and development of factor models, including their limitations and test methods.

  8. A Comparison of New Factor Models

    The q-factor model outperforms the five-factor model in factor spanning tests and in explaining momentum and profitability anomalies, but the five-factor model has an edge in explaining value-versus-growth anomalies. ... S&P Global Market Intelligence Research Paper Series. Subscribe to this free journal for more curated articles on this topic ...

  9. [2210.12462] Factor Investing with a Deep Multi-Factor Model

    Factor Investing with a Deep Multi-Factor Model. Modeling and characterizing multiple factors is perhaps the most important step in achieving excess returns over market benchmarks. Both academia and industry are striving to find new factors that have good explanatory power for future stock returns and good stability of their predictive power.

  10. Exploratory Factor Analysis: A Guide to Best Practice

    Abstract. Exploratory factor analysis (EFA) is a multivariate statistical method that has become a fundamental tool in the development and validation of psychological theories and measurements. However, researchers must make several thoughtful and evidence-based methodological decisions while conducting an EFA, and there are a number of options ...

  11. The Fundamentals of Fundamental Factor Models (June 2010)

    Abstract. This paper highlights the fundamental-based origins of the factor models used at Barra. Barr Rosenberg and Vinay Marathe (1976) first discussed the theory that the effects of macroeconomic events on individual securities could be captured through microeconomic characteristics such as industry membership, financial structure, or growth orientation.

  12. PDF Factor Analysis

    Two-Common Factor Model (Orthogonal): Model Assumptions F 1 Y 1 Y 2 Y 3 δ 1 δ 2 δ 3 λ 11 λ 21 λ 31 F 2 Y 4 Y 5 Y 6 δ 4 δ 5 δ 6 λ 12 λ 62 λ 41 λ 51 λ 61 λ 52 λ 42 λ 22 λ 32! Factorial causation ! F 1 and F 2 are independent of δ j, i.e. cov(F 1,δ j)= cov(F 2,δ j)= 0 ! δ i and δ j are independent for i≠j, i.e. cov( δ i ...

  13. High-Dimensional Factor Models and the Factor Zoo

    Working Paper 31719. DOI 10.3386/w31719. Issue Date September 2023. This paper proposes a new approach to the "factor zoo" conundrum. Instead of applying dimension-reduction methods to a large set of portfolios obtained from sorts on characteristics, I construct factors that summarize the information in characteristics across assets and ...

  14. FAMA & FRENCH FACTOR MODELS IN INDIA: A LITERATURE REVIEW

    Special Issue on Recent Research Trends in Managem ent, Science and Technology (August 2021) 741. FAMA & FRENCH FACTOR MODELS IN INDIA: A LITERATURE REVIEW. Z. Atodaria 1 and D. Maheta 2. 1,2 ...

  15. The Five Factor Model of personality structure: an update

    The Five Factor Model (FFM) of general personality structure consists of the five broad domains of neuroticism (or emotional instability vs. stability), extraversion (vs. introversion), openness (or unconventionality), agreeableness (vs. antagonism), and conscientiousness (or constraint vs. disinhibition). Each of these domains includes more ...

  16. A Five-Factor Asset Pricing Model

    A five-factor model directed at capturing the size, value, profitability, and investment patterns in average stock returns performs better than the three-factor model of Fama and French (FF 1993). ... S&P Global Market Intelligence Research Paper Series. Subscribe to this free journal for more curated articles on this topic FOLLOWERS. 2,571 ...

  17. Five-Factor Model of Personality

    The five-factor model (FFM; Digman, 1990), or the "Big Five" (Goldberg, 1993), consists of five broad trait dimensions of personality.These traits represent stable individual differences (an individual may be high or low on a trait as compared to others) in the thoughts people have, the feelings they experience, and their behaviors.

  18. Fama-French three-factor model

    In asset pricing and portfolio management the Fama-French three-factor model is a statistical model designed in 1992 by Eugene Fama and Kenneth French to describe stock returns. Fama and French were colleagues at the University of Chicago Booth School of Business, where Fama still works.In 2013, Fama shared the Nobel Memorial Prize in Economic Sciences for his empirical analysis of asset prices.

  19. PDF Revisting Capm and Fama French Three Factor Model in Indian ...

    REVISTING CAPM AND FAMA FRENCH THREE FACTOR MODEL ... The paper is divided into three sections with second exploring the rationale behind the section study, third section presents a robust review of the literature with regard to developing and ... Post-1980, some empirical research on CAPM for different asset classes and in different countries

  20. (PDF) Five-Factor Model of Personality

    The five- factor model of personality (FFM) is a set of five broad trait dimensions or domains, often referred to as the "Big Five": Extraversion, Agreeableness, Co nscientiousness ...

  21. A Review of the Vasicek & Hull-White Models & the Likelihood of ...

    In this paper we review the Vasicek and Hull-White 1 factor (HW1F) models. For each model we summarize the model stochastic process, solution and Gaussian or normal dynamics. For pricing purposes we might opt to use more advanced models, however for risk management and complex calculations such as XVA or Financial Review of the Trading Book ...

  22. (PDF) Fama and French three factor model

    The Fama French three factor model comprises of R = Rate of return on market portfolio in time't'. three explanatory factors: the market factor (MKT), R = Rate of return on risk free assets in ...

  23. Research on a Highway Passenger Volume Prediction Model Based on a

    The accurate prediction of highway passenger volume is very important for China's transportation planning and economic development. Based on a neural network, this paper establishes a prediction model by using historical road passenger traffic and related influencing factor data, aiming to provide an accurate road passenger traffic prediction. Firstly, the historical highway passenger volume ...

  24. Frontiers

    In this paper, we investigate a Leslie-type predator-prey model that incorporates prey harvesting and group defense, leading to a modified functional response. Our analysis focuses on the existence and stability of the system's equilibria, which are essential for the coexistence of predator and prey populations and the maintenance of ecological balance.We identify the maximum sustainable yield ...

  25. Impact of industrial robots on environmental pollution: evidence from

    The innovations of this paper are as follows: (1) In terms of sample selection, this paper selects panel data from 30 provinces in China from 2006 to 2019 as research samples to explore the ...