• School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

Random Sampling vs Random Assignment

Random sampling and Random assignment are two important distinctions, and understanding the difference between the two is important to get accurate and dependable results.

Random sampling is a proper procedure for selecting a subset of bodies from a larger set of bodies, each of which has the same likelihood of being selected. In contrast, Random allocation of participants involves assigning participants to different groups or conditions of the experiment, and this minimizes pre-existing confounding factors.

Table of Content

What is Random Sampling?

What is random assignment, differences between random sampling and random assignment, examples of random sampling and random assignment, applications of random sampling and random assignment, advantages of random sampling and random assignment, disadvantages of random sampling and random assignment, importance of random sampling and random assignment.

Random sampling is a technique in which a smaller number of individuals are picked up from a large number of people within the population in an impartial manner so that no one person within the population has a greater possibility of being selected than any other person.

This technique makes it possible not to have a selection bias, and, therefore, the sample is so constituted that the results can be generalized to the entire population.

Different techniques of random sampling include – Simple random sampling, stratified sampling, and systematic sampling, all of which have different approaches towards achieving the principle of sampling referred to as representativeness.

Random assignment is the process of distributing participants in experimental research in different groups or under different conditions.

This process also guarantees that no participant tends to be placed in a particular group, thus reducing the possibility of selection bias within a given study. In doing so, random assignment enhances the chances of the two groups’ equality at the different stages of an experiment, so the researcher can effectively link results to the treatment or intervention under consideration without worrying about other factors.

This increases the internal reliability of the study and assists in establishing a cause-and-effect relationship.

Differences between Random Sampling and Random Assignment can be learnt using the table added below:

Aspect

Random Sampling

Random Assignment

Purpose

To obtain a representative sample of a larger population.

To evenly distribute participants across different experimental conditions.

Application

Used in surveys and observational studies to ensure sample representativeness.

Used in experiments to control for variables and ensure groups are comparable.

Process

Randomly selects individuals from the population.

Randomly assigns individuals to different groups or conditions.

Outcome

Provides a sample that mirrors the population’s characteristics.

Ensures that differences observed between groups are due to the treatment or intervention.

Focus

Accuracy of the sample in reflecting the population.

Validity of the experiment by controlling for confounding variables.

Various examples of Random Sampling and Random Assignment

Random Sampling

Random Assignment

Surveying 1,000 randomly selected voters to gauge public opinion.

Randomly assigning participants to a treatment or control group in a clinical trial.

Selecting a random sample of students from a school to study academic performance.

Randomly assigning students to either a new teaching method or traditional method group.

Using random sampling to choose households for a national health survey.

Randomly assigning patients to different drug dosage levels in a medical study.

Sampling customers from different regions to assess brand satisfaction.

Randomly assigning participants to different marketing strategies in an advertising experiment.

Drawing a random sample of participants from a population for a psychological study.

Randomly assigning individuals to different therapy types in a behavioral study.

Some applications of Random Sampling and Random Assignment are added in the table below:

Application

Random Sampling

Random Assignment

Public Opinion Polls

Selecting a representative sample of voters to gauge public opinion.

Not applicable; polls use sampling, not assignment.

Clinical Trials

Sampling patients from a larger population for study inclusion.

Randomly assigning participants to treatment or control groups.

Educational Research

Sampling students from different schools to study educational outcomes.

Randomly assigning students to different teaching methods.

Marketing Research

Sampling customers to gather feedback on a product or service.

Randomly assigning customers to different marketing strategies.

Behavioral Studies

Sampling participants from a population to study behavior patterns.

Randomly assigning participants to various experimental conditions.

Some advantages of Random Sampling and Random Assignment are added in the table below:

Advantages

Random Sampling

Random Assignment

Reduces Bias

Minimizes selection bias, ensuring a representative sample.

Balances pre-existing differences between groups, reducing bias.

Generalizability

Ensures findings can be generalized to the larger population.

Enhances internal validity by controlling for confounding variables.

Reliability

Provides a basis for statistical analysis and valid conclusions.

Allows for clear attribution of effects to the treatment or intervention.

Equal Chance

Each member of the population has an equal chance of being selected.

Each participant has an equal chance of being assigned to any group.

Reduces Sampling Error

Helps reduce sampling error by accurately representing the population.

Ensures that any differences observed are due to the experimental conditions.

Some disadvantages of Random Sampling and Random Assignment are added in the table below:

Disadvantages

Random Sampling

Random Assignment

Cost and Time

Can be costly and time-consuming to implement, especially with large populations.

May be logistically challenging and resource-intensive.

Practical Challenges

May face difficulties in achieving a truly random sample due to accessibility issues.

May not always be feasible or ethical, especially in certain contexts.

Representativeness

Small sample sizes may not fully represent the population, affecting accuracy.

Random assignment may not eliminate all sources of bias or variability.

Implementation Issues

Practical difficulties in ensuring true randomness.

Potential for unequal distribution of key variables if sample sizes are small.

Ethical Concerns

May face ethical issues if certain groups are underrepresented.

Ethical dilemmas may arise if one group receives less beneficial treatment.

Importance of Random Sampling and Random Assignment are added in the table below:

Importance

Random Sampling

Random Assignment

Purpose

Ensures the sample represents the population

Ensures participants are evenly distributed across experimental groups.

Bias Reduction

Reduces selection bias in sample selection.

Minimizes pre-existing differences between groups.

Generalizability

Allows findings to be generalized to the population.

Improves the validity of conclusions about the treatment effect.

Validity

Ensures that sample findings reflect the broader population.

Ensures observed effects are due to the intervention, not confounding variables.

Statistical Analysis

Provides a basis for accurate statistical inferences.

Facilitates robust comparison between experimental conditions.

Random sampling and random assignment are two significant techniques in research that act differently yet are equally important in study procedures.

  • Random sampling makes sure that a sample is selected from the population in a way that will reflect on the whole population, and this helps in reducing bias.
  • Random assignment , on the other hand, is useful in experimental investigations and aims at assigning the participants to the groups equally since it helps in preventing the influence of external variables and keeps only the treatment or intervention factor active.

Combined, these methods increase the credibility of results, allowing the development of more accurate conclusions based on research. By comprehending each class’s roles, research workers keep their studies and conclusions a lot more precise.

Random SamplingMethod Simple Random Sampling Systematic Sampling vs Random Sampling

FAQs on Random Sampling and Random Assignment

What is the difference between random sampling and random assignment.

Random sampling is the one in which subjects are chosen haphazardly from a population so that every member of that population has the same likelihood of being selected. Random assignment is the process of assigning the participants of an experiment to various groups or conditions in a random manner so that any background difference is not a factor.

What is random sampling, and why is it significant to research?

On the other hand, random sampling helps in achieving a representative sample, which helps in making generalizations and cuts down on selection bias.

Why does random assignment help increase the validity of an experiment?

Random assignment equalizes the variability between groups. This way, any variations that are noticed in the study are attributed to the treatment or the intervention.

What are the types of random sampling that are widely used in research studies?

Some of them are simple random sampling, stratified sampling, and systematic sampling, all of which have different ways of obtaining a representative sample.

Can random assignment be used in all types of research?

Although random assignment is optimum for making experiments with the view of finding cause-and-effect relationships, it may not be possible or even immoral in some cases, like in observational research or some healthcare conditions.

Please Login to comment...

Similar reads.

  • School Learning
  • Math-Statistics
  • Best Twitch Extensions for 2024: Top Tools for Viewers and Streamers
  • Discord Emojis List 2024: Copy and Paste
  • Best Adblockers for Twitch TV: Enjoy Ad-Free Streaming in 2024
  • PS4 vs. PS5: Which PlayStation Should You Buy in 2024?
  • 15 Most Important Aptitude Topics For Placements [2024]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Random Assignment in Psychology: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

In psychology, random assignment refers to the practice of allocating participants to different experimental groups in a study in a completely unbiased way, ensuring each participant has an equal chance of being assigned to any group.

In experimental research, random assignment, or random placement, organizes participants from your sample into different groups using randomization. 

Random assignment uses chance procedures to ensure that each participant has an equal opportunity of being assigned to either a control or experimental group.

The control group does not receive the treatment in question, whereas the experimental group does receive the treatment.

When using random assignment, neither the researcher nor the participant can choose the group to which the participant is assigned. This ensures that any differences between and within the groups are not systematic at the onset of the study. 

In a study to test the success of a weight-loss program, investigators randomly assigned a pool of participants to one of two groups.

Group A participants participated in the weight-loss program for 10 weeks and took a class where they learned about the benefits of healthy eating and exercise.

Group B participants read a 200-page book that explains the benefits of weight loss. The investigator randomly assigned participants to one of the two groups.

The researchers found that those who participated in the program and took the class were more likely to lose weight than those in the other group that received only the book.

Importance 

Random assignment ensures that each group in the experiment is identical before applying the independent variable.

In experiments , researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. Random assignment increases the likelihood that the treatment groups are the same at the onset of a study.

Thus, any changes that result from the independent variable can be assumed to be a result of the treatment of interest. This is particularly important for eliminating sources of bias and strengthening the internal validity of an experiment.

Random assignment is the best method for inferring a causal relationship between a treatment and an outcome.

Random Selection vs. Random Assignment 

Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study.

On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. 

Random selection ensures that everyone in the population has an equal chance of being selected for the study. Once the pool of participants has been chosen, experimenters use random assignment to assign participants into groups. 

Random assignment is only used in between-subjects experimental designs, while random selection can be used in a variety of study designs.

Random Assignment vs Random Sampling

Random sampling refers to selecting participants from a population so that each individual has an equal chance of being chosen. This method enhances the representativeness of the sample.

Random assignment, on the other hand, is used in experimental designs once participants are selected. It involves allocating these participants to different experimental groups or conditions randomly.

This helps ensure that any differences in results across groups are due to manipulating the independent variable, not preexisting differences among participants.

When to Use Random Assignment

Random assignment is used in experiments with a between-groups or independent measures design.

In these research designs, researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

There is usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable at the onset of the study.

How to Use Random Assignment

There are a variety of ways to assign participants into study groups randomly. Here are a handful of popular methods: 

  • Random Number Generator : Give each member of the sample a unique number; use a computer program to randomly generate a number from the list for each group.
  • Lottery : Give each member of the sample a unique number. Place all numbers in a hat or bucket and draw numbers at random for each group.
  • Flipping a Coin : Flip a coin for each participant to decide if they will be in the control group or experimental group (this method can only be used when you have just two groups) 
  • Roll a Die : For each number on the list, roll a dice to decide which of the groups they will be in. For example, assume that rolling 1, 2, or 3 places them in a control group and rolling 3, 4, 5 lands them in an experimental group.

When is Random Assignment not used?

  • When it is not ethically permissible: Randomization is only ethical if the researcher has no evidence that one treatment is superior to the other or that one treatment might have harmful side effects. 
  • When answering non-causal questions : If the researcher is just interested in predicting the probability of an event, the causal relationship between the variables is not important and observational designs would be more suitable than random assignment. 
  • When studying the effect of variables that cannot be manipulated: Some risk factors cannot be manipulated and so it would not make any sense to study them in a randomized trial. For example, we cannot randomly assign participants into categories based on age, gender, or genetic factors.

Drawbacks of Random Assignment

While randomization assures an unbiased assignment of participants to groups, it does not guarantee the equality of these groups. There could still be extraneous variables that differ between groups or group differences that arise from chance. Additionally, there is still an element of luck with random assignments.

Thus, researchers can not produce perfectly equal groups for each specific study. Differences between the treatment group and control group might still exist, and the results of a randomized trial may sometimes be wrong, but this is absolutely okay.

Scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when data is aggregated in a meta-analysis.

Additionally, external validity (i.e., the extent to which the researcher can use the results of the study to generalize to the larger population) is compromised with random assignment.

Random assignment is challenging to implement outside of controlled laboratory conditions and might not represent what would happen in the real world at the population level. 

Random assignment can also be more costly than simple observational studies, where an investigator is just observing events without intervening with the population.

Randomization also can be time-consuming and challenging, especially when participants refuse to receive the assigned treatment or do not adhere to recommendations. 

What is the difference between random sampling and random assignment?

Random sampling refers to randomly selecting a sample of participants from a population. Random assignment refers to randomly assigning participants to treatment groups from the selected sample.

Does random assignment increase internal validity?

Yes, random assignment ensures that there are no systematic differences between the participants in each group, enhancing the study’s internal validity .

Does random assignment reduce sampling error?

Yes, with random assignment, participants have an equal chance of being assigned to either a control group or an experimental group, resulting in a sample that is, in theory, representative of the population.

Random assignment does not completely eliminate sampling error because a sample only approximates the population from which it is drawn. However, random sampling is a way to minimize sampling errors. 

When is random assignment not possible?

Random assignment is not possible when the experimenters cannot control the treatment or independent variable.

For example, if you want to compare how men and women perform on a test, you cannot randomly assign subjects to these groups.

Participants are not randomly assigned to different groups in this study, but instead assigned based on their characteristics.

Does random assignment eliminate confounding variables?

Yes, random assignment eliminates the influence of any confounding variables on the treatment because it distributes them at random among the study groups. Randomization invalidates any relationship between a confounding variable and the treatment.

Why is random assignment of participants to treatment conditions in an experiment used?

Random assignment is used to ensure that all groups are comparable at the start of a study. This allows researchers to conclude that the outcomes of the study can be attributed to the intervention at hand and to rule out alternative explanations for study results.

Further Reading

  • Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem .  Journal of Economic theory ,  100 (2), 295-328.
  • Krause, M. S., & Howard, K. I. (2003). What random assignment does and does not do .  Journal of Clinical Psychology ,  59 (7), 751-766.

Print Friendly, PDF & Email

Random Assignment in Psychology (Definition + 40 Examples)

practical psychology logo

Have you ever wondered how researchers discover new ways to help people learn, make decisions, or overcome challenges? A hidden hero in this adventure of discovery is a method called random assignment, a cornerstone in psychological research that helps scientists uncover the truths about the human mind and behavior.

Random Assignment is a process used in research where each participant has an equal chance of being placed in any group within the study. This technique is essential in experiments as it helps to eliminate biases, ensuring that the different groups being compared are similar in all important aspects.

By doing so, researchers can be confident that any differences observed are likely due to the variable being tested, rather than other factors.

In this article, we’ll explore the intriguing world of random assignment, diving into its history, principles, real-world examples, and the impact it has had on the field of psychology.

History of Random Assignment

two women in different conditions

Stepping back in time, we delve into the origins of random assignment, which finds its roots in the early 20th century.

The pioneering mind behind this innovative technique was Sir Ronald A. Fisher , a British statistician and biologist. Fisher introduced the concept of random assignment in the 1920s, aiming to improve the quality and reliability of experimental research .

His contributions laid the groundwork for the method's evolution and its widespread adoption in various fields, particularly in psychology.

Fisher’s groundbreaking work on random assignment was motivated by his desire to control for confounding variables – those pesky factors that could muddy the waters of research findings.

By assigning participants to different groups purely by chance, he realized that the influence of these confounding variables could be minimized, paving the way for more accurate and trustworthy results.

Early Studies Utilizing Random Assignment

Following Fisher's initial development, random assignment started to gain traction in the research community. Early studies adopting this methodology focused on a variety of topics, from agriculture (which was Fisher’s primary field of interest) to medicine and psychology.

The approach allowed researchers to draw stronger conclusions from their experiments, bolstering the development of new theories and practices.

One notable early study utilizing random assignment was conducted in the field of educational psychology. Researchers were keen to understand the impact of different teaching methods on student outcomes.

By randomly assigning students to various instructional approaches, they were able to isolate the effects of the teaching methods, leading to valuable insights and recommendations for educators.

Evolution of the Methodology

As the decades rolled on, random assignment continued to evolve and adapt to the changing landscape of research.

Advances in technology introduced new tools and techniques for implementing randomization, such as computerized random number generators, which offered greater precision and ease of use.

The application of random assignment expanded beyond the confines of the laboratory, finding its way into field studies and large-scale surveys.

Researchers across diverse disciplines embraced the methodology, recognizing its potential to enhance the validity of their findings and contribute to the advancement of knowledge.

From its humble beginnings in the early 20th century to its widespread use today, random assignment has proven to be a cornerstone of scientific inquiry.

Its development and evolution have played a pivotal role in shaping the landscape of psychological research, driving discoveries that have improved lives and deepened our understanding of the human experience.

Principles of Random Assignment

Delving into the heart of random assignment, we uncover the theories and principles that form its foundation.

The method is steeped in the basics of probability theory and statistical inference, ensuring that each participant has an equal chance of being placed in any group, thus fostering fair and unbiased results.

Basic Principles of Random Assignment

Understanding the core principles of random assignment is key to grasping its significance in research. There are three principles: equal probability of selection, reduction of bias, and ensuring representativeness.

The first principle, equal probability of selection , ensures that every participant has an identical chance of being assigned to any group in the study. This randomness is crucial as it mitigates the risk of bias and establishes a level playing field.

The second principle focuses on the reduction of bias . Random assignment acts as a safeguard, ensuring that the groups being compared are alike in all essential aspects before the experiment begins.

This similarity between groups allows researchers to attribute any differences observed in the outcomes directly to the independent variable being studied.

Lastly, ensuring representativeness is a vital principle. When participants are assigned randomly, the resulting groups are more likely to be representative of the larger population.

This characteristic is crucial for the generalizability of the study’s findings, allowing researchers to apply their insights broadly.

Theoretical Foundation

The theoretical foundation of random assignment lies in probability theory and statistical inference .

Probability theory deals with the likelihood of different outcomes, providing a mathematical framework for analyzing random phenomena. In the context of random assignment, it helps in ensuring that each participant has an equal chance of being placed in any group.

Statistical inference, on the other hand, allows researchers to draw conclusions about a population based on a sample of data drawn from that population. It is the mechanism through which the results of a study can be generalized to a broader context.

Random assignment enhances the reliability of statistical inferences by reducing biases and ensuring that the sample is representative.

Differentiating Random Assignment from Random Selection

It’s essential to distinguish between random assignment and random selection, as the two terms, while related, have distinct meanings in the realm of research.

Random assignment refers to how participants are placed into different groups in an experiment, aiming to control for confounding variables and help determine causes.

In contrast, random selection pertains to how individuals are chosen to participate in a study. This method is used to ensure that the sample of participants is representative of the larger population, which is vital for the external validity of the research.

While both methods are rooted in randomness and probability, they serve different purposes in the research process.

Understanding the theories, principles, and distinctions of random assignment illuminates its pivotal role in psychological research.

This method, anchored in probability theory and statistical inference, serves as a beacon of reliability, guiding researchers in their quest for knowledge and ensuring that their findings stand the test of validity and applicability.

Methodology of Random Assignment

woman sleeping with a brain monitor

Implementing random assignment in a study is a meticulous process that involves several crucial steps.

The initial step is participant selection, where individuals are chosen to partake in the study. This stage is critical to ensure that the pool of participants is diverse and representative of the population the study aims to generalize to.

Once the pool of participants has been established, the actual assignment process begins. In this step, each participant is allocated randomly to one of the groups in the study.

Researchers use various tools, such as random number generators or computerized methods, to ensure that this assignment is genuinely random and free from biases.

Monitoring and adjusting form the final step in the implementation of random assignment. Researchers need to continuously observe the groups to ensure that they remain comparable in all essential aspects throughout the study.

If any significant discrepancies arise, adjustments might be necessary to maintain the study’s integrity and validity.

Tools and Techniques Used

The evolution of technology has introduced a variety of tools and techniques to facilitate random assignment.

Random number generators, both manual and computerized, are commonly used to assign participants to different groups. These generators ensure that each individual has an equal chance of being placed in any group, upholding the principle of equal probability of selection.

In addition to random number generators, researchers often use specialized computer software designed for statistical analysis and experimental design.

These software programs offer advanced features that allow for precise and efficient random assignment, minimizing the risk of human error and enhancing the study’s reliability.

Ethical Considerations

The implementation of random assignment is not devoid of ethical considerations. Informed consent is a fundamental ethical principle that researchers must uphold.

Informed consent means that every participant should be fully informed about the nature of the study, the procedures involved, and any potential risks or benefits, ensuring that they voluntarily agree to participate.

Beyond informed consent, researchers must conduct a thorough risk and benefit analysis. The potential benefits of the study should outweigh any risks or harms to the participants.

Safeguarding the well-being of participants is paramount, and any study employing random assignment must adhere to established ethical guidelines and standards.

Conclusion of Methodology

The methodology of random assignment, while seemingly straightforward, is a multifaceted process that demands precision, fairness, and ethical integrity. From participant selection to assignment and monitoring, each step is crucial to ensure the validity of the study’s findings.

The tools and techniques employed, coupled with a steadfast commitment to ethical principles, underscore the significance of random assignment as a cornerstone of robust psychological research.

Benefits of Random Assignment in Psychological Research

The impact and importance of random assignment in psychological research cannot be overstated. It is fundamental for ensuring the study is accurate, allowing the researchers to determine if their study actually caused the results they saw, and making sure the findings can be applied to the real world.

Facilitating Causal Inferences

When participants are randomly assigned to different groups, researchers can be more confident that the observed effects are due to the independent variable being changed, and not other factors.

This ability to determine the cause is called causal inference .

This confidence allows for the drawing of causal relationships, which are foundational for theory development and application in psychology.

Ensuring Internal Validity

One of the foremost impacts of random assignment is its ability to enhance the internal validity of an experiment.

Internal validity refers to the extent to which a researcher can assert that changes in the dependent variable are solely due to manipulations of the independent variable , and not due to confounding variables.

By ensuring that each participant has an equal chance of being in any condition of the experiment, random assignment helps control for participant characteristics that could otherwise complicate the results.

Enhancing Generalizability

Beyond internal validity, random assignment also plays a crucial role in enhancing the generalizability of research findings.

When done correctly, it ensures that the sample groups are representative of the larger population, so can allow researchers to apply their findings more broadly.

This representative nature is essential for the practical application of research, impacting policy, interventions, and psychological therapies.

Limitations of Random Assignment

Potential for implementation issues.

While the principles of random assignment are robust, the method can face implementation issues.

One of the most common problems is logistical constraints. Some studies, due to their nature or the specific population being studied, find it challenging to implement random assignment effectively.

For instance, in educational settings, logistical issues such as class schedules and school policies might stop the random allocation of students to different teaching methods .

Ethical Dilemmas

Random assignment, while methodologically sound, can also present ethical dilemmas.

In some cases, withholding a potentially beneficial treatment from one of the groups of participants can raise serious ethical questions, especially in medical or clinical research where participants' well-being might be directly affected.

Researchers must navigate these ethical waters carefully, balancing the pursuit of knowledge with the well-being of participants.

Generalizability Concerns

Even when implemented correctly, random assignment does not always guarantee generalizable results.

The types of people in the participant pool, the specific context of the study, and the nature of the variables being studied can all influence the extent to which the findings can be applied to the broader population.

Researchers must be cautious in making broad generalizations from studies, even those employing strict random assignment.

Practical and Real-World Limitations

In the real world, many variables cannot be manipulated for ethical or practical reasons, limiting the applicability of random assignment.

For instance, researchers cannot randomly assign individuals to different levels of intelligence, socioeconomic status, or cultural backgrounds.

This limitation necessitates the use of other research designs, such as correlational or observational studies , when exploring relationships involving such variables.

Response to Critiques

In response to these critiques, people in favor of random assignment argue that the method, despite its limitations, remains one of the most reliable ways to establish cause and effect in experimental research.

They acknowledge the challenges and ethical considerations but emphasize the rigorous frameworks in place to address them.

The ongoing discussion around the limitations and critiques of random assignment contributes to the evolution of the method, making sure it is continuously relevant and applicable in psychological research.

While random assignment is a powerful tool in experimental research, it is not without its critiques and limitations. Implementation issues, ethical dilemmas, generalizability concerns, and real-world limitations can pose significant challenges.

However, the continued discourse and refinement around these issues underline the method's enduring significance in the pursuit of knowledge in psychology.

By being careful with how we do things and doing what's right, random assignment stays a really important part of studying how people act and think.

Real-World Applications and Examples

man on a treadmill

Random assignment has been employed in many studies across various fields of psychology, leading to significant discoveries and advancements.

Here are some real-world applications and examples illustrating the diversity and impact of this method:

  • Medicine and Health Psychology: Randomized Controlled Trials (RCTs) are the gold standard in medical research. In these studies, participants are randomly assigned to either the treatment or control group to test the efficacy of new medications or interventions.
  • Educational Psychology: Studies in this field have used random assignment to explore the effects of different teaching methods, classroom environments, and educational technologies on student learning and outcomes.
  • Cognitive Psychology: Researchers have employed random assignment to investigate various aspects of human cognition, including memory, attention, and problem-solving, leading to a deeper understanding of how the mind works.
  • Social Psychology: Random assignment has been instrumental in studying social phenomena, such as conformity, aggression, and prosocial behavior, shedding light on the intricate dynamics of human interaction.

Let's get into some specific examples. You'll need to know one term though, and that is "control group." A control group is a set of participants in a study who do not receive the treatment or intervention being tested , serving as a baseline to compare with the group that does, in order to assess the effectiveness of the treatment.

  • Smoking Cessation Study: Researchers used random assignment to put participants into two groups. One group received a new anti-smoking program, while the other did not. This helped determine if the program was effective in helping people quit smoking.
  • Math Tutoring Program: A study on students used random assignment to place them into two groups. One group received additional math tutoring, while the other continued with regular classes, to see if the extra help improved their grades.
  • Exercise and Mental Health: Adults were randomly assigned to either an exercise group or a control group to study the impact of physical activity on mental health and mood.
  • Diet and Weight Loss: A study randomly assigned participants to different diet plans to compare their effectiveness in promoting weight loss and improving health markers.
  • Sleep and Learning: Researchers randomly assigned students to either a sleep extension group or a regular sleep group to study the impact of sleep on learning and memory.
  • Classroom Seating Arrangement: Teachers used random assignment to place students in different seating arrangements to examine the effect on focus and academic performance.
  • Music and Productivity: Employees were randomly assigned to listen to music or work in silence to investigate the effect of music on workplace productivity.
  • Medication for ADHD: Children with ADHD were randomly assigned to receive either medication, behavioral therapy, or a placebo to compare treatment effectiveness.
  • Mindfulness Meditation for Stress: Adults were randomly assigned to a mindfulness meditation group or a waitlist control group to study the impact on stress levels.
  • Video Games and Aggression: A study randomly assigned participants to play either violent or non-violent video games and then measured their aggression levels.
  • Online Learning Platforms: Students were randomly assigned to use different online learning platforms to evaluate their effectiveness in enhancing learning outcomes.
  • Hand Sanitizers in Schools: Schools were randomly assigned to use hand sanitizers or not to study the impact on student illness and absenteeism.
  • Caffeine and Alertness: Participants were randomly assigned to consume caffeinated or decaffeinated beverages to measure the effects on alertness and cognitive performance.
  • Green Spaces and Well-being: Neighborhoods were randomly assigned to receive green space interventions to study the impact on residents’ well-being and community connections.
  • Pet Therapy for Hospital Patients: Patients were randomly assigned to receive pet therapy or standard care to assess the impact on recovery and mood.
  • Yoga for Chronic Pain: Individuals with chronic pain were randomly assigned to a yoga intervention group or a control group to study the effect on pain levels and quality of life.
  • Flu Vaccines Effectiveness: Different groups of people were randomly assigned to receive either the flu vaccine or a placebo to determine the vaccine’s effectiveness.
  • Reading Strategies for Dyslexia: Children with dyslexia were randomly assigned to different reading intervention strategies to compare their effectiveness.
  • Physical Environment and Creativity: Participants were randomly assigned to different room setups to study the impact of physical environment on creative thinking.
  • Laughter Therapy for Depression: Individuals with depression were randomly assigned to laughter therapy sessions or control groups to assess the impact on mood.
  • Financial Incentives for Exercise: Participants were randomly assigned to receive financial incentives for exercising to study the impact on physical activity levels.
  • Art Therapy for Anxiety: Individuals with anxiety were randomly assigned to art therapy sessions or a waitlist control group to measure the effect on anxiety levels.
  • Natural Light in Offices: Employees were randomly assigned to workspaces with natural or artificial light to study the impact on productivity and job satisfaction.
  • School Start Times and Academic Performance: Schools were randomly assigned different start times to study the effect on student academic performance and well-being.
  • Horticulture Therapy for Seniors: Older adults were randomly assigned to participate in horticulture therapy or traditional activities to study the impact on cognitive function and life satisfaction.
  • Hydration and Cognitive Function: Participants were randomly assigned to different hydration levels to measure the impact on cognitive function and alertness.
  • Intergenerational Programs: Seniors and young people were randomly assigned to intergenerational programs to study the effects on well-being and cross-generational understanding.
  • Therapeutic Horseback Riding for Autism: Children with autism were randomly assigned to therapeutic horseback riding or traditional therapy to study the impact on social communication skills.
  • Active Commuting and Health: Employees were randomly assigned to active commuting (cycling, walking) or passive commuting to study the effect on physical health.
  • Mindful Eating for Weight Management: Individuals were randomly assigned to mindful eating workshops or control groups to study the impact on weight management and eating habits.
  • Noise Levels and Learning: Students were randomly assigned to classrooms with different noise levels to study the effect on learning and concentration.
  • Bilingual Education Methods: Schools were randomly assigned different bilingual education methods to compare their effectiveness in language acquisition.
  • Outdoor Play and Child Development: Children were randomly assigned to different amounts of outdoor playtime to study the impact on physical and cognitive development.
  • Social Media Detox: Participants were randomly assigned to a social media detox or regular usage to study the impact on mental health and well-being.
  • Therapeutic Writing for Trauma Survivors: Individuals who experienced trauma were randomly assigned to therapeutic writing sessions or control groups to study the impact on psychological well-being.
  • Mentoring Programs for At-risk Youth: At-risk youth were randomly assigned to mentoring programs or control groups to assess the impact on academic achievement and behavior.
  • Dance Therapy for Parkinson’s Disease: Individuals with Parkinson’s disease were randomly assigned to dance therapy or traditional exercise to study the effect on motor function and quality of life.
  • Aquaponics in Schools: Schools were randomly assigned to implement aquaponics programs to study the impact on student engagement and environmental awareness.
  • Virtual Reality for Phobia Treatment: Individuals with phobias were randomly assigned to virtual reality exposure therapy or traditional therapy to compare effectiveness.
  • Gardening and Mental Health: Participants were randomly assigned to engage in gardening or other leisure activities to study the impact on mental health and stress reduction.

Each of these studies exemplifies how random assignment is utilized in various fields and settings, shedding light on the multitude of ways it can be applied to glean valuable insights and knowledge.

Real-world Impact of Random Assignment

old lady gardening

Random assignment is like a key tool in the world of learning about people's minds and behaviors. It’s super important and helps in many different areas of our everyday lives. It helps make better rules, creates new ways to help people, and is used in lots of different fields.

Health and Medicine

In health and medicine, random assignment has helped doctors and scientists make lots of discoveries. It’s a big part of tests that help create new medicines and treatments.

By putting people into different groups by chance, scientists can really see if a medicine works.

This has led to new ways to help people with all sorts of health problems, like diabetes, heart disease, and mental health issues like depression and anxiety.

Schools and education have also learned a lot from random assignment. Researchers have used it to look at different ways of teaching, what kind of classrooms are best, and how technology can help learning.

This knowledge has helped make better school rules, develop what we learn in school, and find the best ways to teach students of all ages and backgrounds.

Workplace and Organizational Behavior

Random assignment helps us understand how people act at work and what makes a workplace good or bad.

Studies have looked at different kinds of workplaces, how bosses should act, and how teams should be put together. This has helped companies make better rules and create places to work that are helpful and make people happy.

Environmental and Social Changes

Random assignment is also used to see how changes in the community and environment affect people. Studies have looked at community projects, changes to the environment, and social programs to see how they help or hurt people’s well-being.

This has led to better community projects, efforts to protect the environment, and programs to help people in society.

Technology and Human Interaction

In our world where technology is always changing, studies with random assignment help us see how tech like social media, virtual reality, and online stuff affect how we act and feel.

This has helped make better and safer technology and rules about using it so that everyone can benefit.

The effects of random assignment go far and wide, way beyond just a science lab. It helps us understand lots of different things, leads to new and improved ways to do things, and really makes a difference in the world around us.

From making healthcare and schools better to creating positive changes in communities and the environment, the real-world impact of random assignment shows just how important it is in helping us learn and make the world a better place.

So, what have we learned? Random assignment is like a super tool in learning about how people think and act. It's like a detective helping us find clues and solve mysteries in many parts of our lives.

From creating new medicines to helping kids learn better in school, and from making workplaces happier to protecting the environment, it’s got a big job!

This method isn’t just something scientists use in labs; it reaches out and touches our everyday lives. It helps make positive changes and teaches us valuable lessons.

Whether we are talking about technology, health, education, or the environment, random assignment is there, working behind the scenes, making things better and safer for all of us.

In the end, the simple act of putting people into groups by chance helps us make big discoveries and improvements. It’s like throwing a small stone into a pond and watching the ripples spread out far and wide.

Thanks to random assignment, we are always learning, growing, and finding new ways to make our world a happier and healthier place for everyone!

Related posts:

  • 19+ Experimental Design Examples (Methods + Types)
  • Cluster Sampling vs Stratified Sampling
  • 41+ White Collar Job Examples (Salary + Path)
  • 47+ Blue Collar Job Examples (Salary + Path)
  • McDonaldization of Society (Definition + Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Purpose and Limitations of Random Assignment

In an experimental study, random assignment is a process by which participants are assigned, with the same chance, to either a treatment or a control group. The goal is to assure an unbiased assignment of participants to treatment options.

Random assignment is considered the gold standard for achieving comparability across study groups, and therefore is the best method for inferring a causal relationship between a treatment (or intervention or risk factor) and an outcome.

Representation of random assignment in an experimental study

Random assignment of participants produces comparable groups regarding the participants’ initial characteristics, thereby any difference detected in the end between the treatment and the control group will be due to the effect of the treatment alone.

How does random assignment produce comparable groups?

1. random assignment prevents selection bias.

Randomization works by removing the researcher’s and the participant’s influence on the treatment allocation. So the allocation can no longer be biased since it is done at random, i.e. in a non-predictable way.

This is in contrast with the real world, where for example, the sickest people are more likely to receive the treatment.

2. Random assignment prevents confounding

A confounding variable is one that is associated with both the intervention and the outcome, and thus can affect the outcome in 2 ways:

Causal diagram representing how confounding works

Either directly:

Direct influence of confounding on the outcome

Or indirectly through the treatment:

Indirect influence of confounding on the outcome

This indirect relationship between the confounding variable and the outcome can cause the treatment to appear to have an influence on the outcome while in reality the treatment is just a mediator of that effect (as it happens to be on the causal pathway between the confounder and the outcome).

Random assignment eliminates the influence of the confounding variables on the treatment since it distributes them at random between the study groups, therefore, ruling out this alternative path or explanation of the outcome.

How random assignment protects from confounding

3. Random assignment also eliminates other threats to internal validity

By distributing all threats (known and unknown) at random between study groups, participants in both the treatment and the control group become equally subject to the effect of any threat to validity. Therefore, comparing the outcome between the 2 groups will bypass the effect of these threats and will only reflect the effect of the treatment on the outcome.

These threats include:

  • History: This is any event that co-occurs with the treatment and can affect the outcome.
  • Maturation: This is the effect of time on the study participants (e.g. participants becoming wiser, hungrier, or more stressed with time) which might influence the outcome.
  • Regression to the mean: This happens when the participants’ outcome score is exceptionally good on a pre-treatment measurement, so the post-treatment measurement scores will naturally regress toward the mean — in simple terms, regression happens since an exceptional performance is hard to maintain. This effect can bias the study since it represents an alternative explanation of the outcome.

Note that randomization does not prevent these effects from happening, it just allows us to control them by reducing their risk of being associated with the treatment.

What if random assignment produced unequal groups?

Question: What should you do if after randomly assigning participants, it turned out that the 2 groups still differ in participants’ characteristics? More precisely, what if randomization accidentally did not balance risk factors that can be alternative explanations between the 2 groups? (For example, if one group includes more male participants, or sicker, or older people than the other group).

Short answer: This is perfectly normal, since randomization only assures an unbiased assignment of participants to groups, i.e. it produces comparable groups, but it does not guarantee the equality of these groups.

A more complete answer: Randomization will not and cannot create 2 equal groups regarding each and every characteristic. This is because when dealing with randomization there is still an element of luck. If you want 2 perfectly equal groups, you better match them manually as is done in a matched pairs design (for more information see my article on matched pairs design ).

This is similar to throwing a die: If you throw it 10 times, the chance of getting a specific outcome will not be 1/6. But it will approach 1/6 if you repeat the experiment a very large number of times and calculate the average number of times the specific outcome turned up.

So randomization will not produce perfectly equal groups for each specific study, especially if the study has a small sample size. But do not forget that scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when a meta-analysis aggregates the results of a large number of randomized studies.

So for each individual study, differences between the treatment and control group will exist and will influence the study results. This means that the results of a randomized trial will sometimes be wrong, and this is absolutely okay.

BOTTOM LINE:

Although the results of a particular randomized study are unbiased, they will still be affected by a sampling error due to chance. But the real benefit of random assignment will be when data is aggregated in a meta-analysis.

Limitations of random assignment

Randomized designs can suffer from:

1. Ethical issues:

Randomization is ethical only if the researcher has no evidence that one treatment is superior to the other.

Also, it would be unethical to randomly assign participants to harmful exposures such as smoking or dangerous chemicals.

2. Low external validity:

With random assignment, external validity (i.e. the generalizability of the study results) is compromised because the results of a study that uses random assignment represent what would happen under “ideal” experimental conditions, which is in general very different from what happens at the population level.

In the real world, people who take the treatment might be very different from those who don’t – so the assignment of participants is not a random event, but rather under the influence of all sort of external factors.

External validity can be also jeopardized in cases where not all participants are eligible or willing to accept the terms of the study.

3. Higher cost of implementation:

An experimental design with random assignment is typically more expensive than observational studies where the investigator’s role is just to observe events without intervening.

Experimental designs also typically take a lot of time to implement, and therefore are less practical when a quick answer is needed.

4. Impracticality when answering non-causal questions:

A randomized trial is our best bet when the question is to find the causal effect of a treatment or a risk factor.

Sometimes however, the researcher is just interested in predicting the probability of an event or a disease given some risk factors. In this case, the causal relationship between these variables is not important, making observational designs more suitable for such problems.

5. Impracticality when studying the effect of variables that cannot be manipulated:

The usual objective of studying the effects of risk factors is to propose recommendations that involve changing the level of exposure to these factors.

However, some risk factors cannot be manipulated, and so it does not make any sense to study them in a randomized trial. For example it would be impossible to randomly assign participants to age categories, gender, or genetic factors.

6. Difficulty to control participants:

These difficulties include:

  • Participants refusing to receive the assigned treatment.
  • Participants not adhering to recommendations.
  • Differential loss to follow-up between those who receive the treatment and those who don’t.

All of these issues might occur in a randomized trial, but might not affect an observational study.

  • Shadish WR, Cook TD, Campbell DT. Experimental and Quasi-Experimental Designs for Generalized Causal Inference . 2nd edition. Cengage Learning; 2001.
  • Friedman LM, Furberg CD, DeMets DL, Reboussin DM, Granger CB. Fundamentals of Clinical Trials . 5th ed. 2015 edition. Springer; 2015.

Further reading

  • Posttest-Only Control Group Design
  • Pretest-Posttest Control Group Design
  • Randomized Block Design

Difference between Random Selection and Random Assignment

Random selection and random assignment are commonly confused or used interchangeably, though the terms refer to entirely different processes.  Random selection refers to how sample members (study participants) are selected from the population for inclusion in the study.  Random assignment is an aspect of experimental design in which study participants are assigned to the treatment or control group using a random procedure.

Random selection requires the use of some form of random sampling (such as stratified random sampling , in which the population is sorted into groups from which sample members are chosen randomly).  Random sampling is a probability sampling method, meaning that it relies on the laws of probability to select a sample that can be used to make inference to the population; this is the basis of statistical tests of significance .

request a consultation

Discover How We Assist to Edit Your Dissertation Chapters

Aligning theoretical framework, gathering articles, synthesizing gaps, articulating a clear methodology and data plan, and writing about the theoretical and practical implications of your research are part of our comprehensive dissertation editing services.

  • Bring dissertation editing expertise to chapters 1-5 in timely manner.
  • Track all changes, then work with you to bring about scholarly writing.
  • Ongoing support to address committee feedback, reducing revisions.

Random assignment takes place following the selection of participants for the study.  In a true experiment, all study participants are randomly assigned either to receive the treatment (also known as the stimulus or intervention) or to act as a control in the study (meaning they do not receive the treatment).  Although random assignment is a simple procedure (it can be accomplished by the flip of a coin), it can be challenging to implement outside of controlled laboratory conditions.

A study can use both, only one, or neither.  Here are some examples to illustrate each situation:

A researcher gets a list of all students enrolled at a particular school (the population).  Using a random number generator, the researcher selects 100 students from the school to participate in the study (the random sample).  All students’ names are placed in a hat and 50 are chosen to receive the intervention (the treatment group), while the remaining 50 students serve as the control group.  This design uses both random selection and random assignment.

A study using only random assignment could ask the principle of the school to select the students she believes are most likely to enjoy participating in the study, and the researcher could then randomly assign this sample of students to the treatment and control groups.  In such a design the researcher could draw conclusions about the effect of the intervention but couldn’t make any inference about whether the effect would likely to be found in the population.

A study using only random selection could randomly select students from the overall population of the school, but then assign students in one grade to the intervention and students in another grade to the control group.  While any data collected from this sample could be used to make inference to the population of the school, the lack of random assignment to be in the treatment or control group would make it impossible to conclude whether the intervention had any effect.

Random selection is thus essential to external validity, or the extent to which the researcher can use the results of the study to generalize to the larger population.  Random assignment is central to internal validity, which allows the researcher to make causal claims about the effect of the treatment.  Nonrandom assignment often leads to non-equivalent groups, meaning that any effect of the treatment might be a result of the groups being different at the outset rather than different at the end as a result of the treatment.  The consequences of random selection and random assignment are clearly very different, and a strong research design will employ both whenever possible to ensure both internal and external validity .

All Subjects

Random assignment

In intro to statistics.

Random assignment involves allocating participants to different groups using a randomization method. This ensures each participant has an equal chance of being assigned to any group, helping control for biases.

Find Out More ( 1 )

  • Intro to Statistics - 1.4 Experimental Design and Ethics

5 Must Know Facts For Your Next Test

  • Random assignment helps ensure the internal validity of an experiment by controlling for confounding variables.
  • It is a key component in experimental design and is essential for establishing causality.
  • Common methods for random assignment include random number generators, coin flips, and drawing lots.
  • Random assignment differs from random sampling; the former divides participants into groups while the latter selects participants from a population.
  • Ensuring true randomness may require computational tools in large-scale studies.

Review Questions

  • Why is random assignment important in experimental design?
  • What are some methods used to achieve random assignment?
  • How does random assignment differ from random sampling?

Related terms

Control Group : A group in an experiment that does not receive the treatment or intervention being tested, used as a baseline to compare results.

Confounding Variable : An extraneous variable that can influence the outcome of an experiment if not properly controlled.

Internal Validity : The extent to which an experiment demonstrates a causal relationship between variables without interference from confounding factors.

" Random assignment " also found in:

Subjects ( 28 ).

  • AP Psychology
  • AP Statistics
  • Abnormal Psychology
  • Advanced Communication Research Methods
  • Applied Impact Evaluation
  • Art Therapy
  • Biostatistics
  • Causal Inference
  • Cognitive Psychology
  • Communication Research Methods
  • Data, Inference, and Decisions
  • Developmental Psychology
  • Educational Psychology
  • Experimental Design
  • Honors Statistics
  • Intro to Business Statistics
  • Intro to Psychology
  • Introduction to Biostatistics
  • Introduction to Political Research
  • Language and Cognition
  • Market Research: Tools and Techniques for Data Collection and Analysis
  • Marketing Strategy
  • Media Effects
  • Philosophy of Science
  • Physiology of Motivated Behaviors
  • Probability and Statistics
  • Professionalism and Research in Nursing
  • Social Psychology

© 2024 Fiveable Inc. All rights reserved.

Ap® and sat® are trademarks registered by the college board, which is not affiliated with, and does not endorse this website..

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Random Assignment in Experiments

By Jim Frost 4 Comments

Random assignment uses chance to assign subjects to the control and treatment groups in an experiment. This process helps ensure that the groups are equivalent at the beginning of the study, which makes it safer to assume the treatments caused any differences between groups that the experimenters observe at the end of the study.

photogram of tumbling dice to illustrate a process for random assignment.

Huh? That might be a big surprise! At this point, you might be wondering about all of those studies that use statistics to assess the effects of different treatments. There’s a critical separation between significance and causality:

  • Statistical procedures determine whether an effect is significant.
  • Experimental designs determine how confidently you can assume that a treatment causes the effect.

In this post, learn how using random assignment in experiments can help you identify causal relationships.

Correlation, Causation, and Confounding Variables

Random assignment helps you separate causation from correlation and rule out confounding variables. As a critical component of the scientific method , experiments typically set up contrasts between a control group and one or more treatment groups. The idea is to determine whether the effect, which is the difference between a treatment group and the control group, is statistically significant. If the effect is significant, group assignment correlates with different outcomes.

However, as you have no doubt heard, correlation does not necessarily imply causation. In other words, the experimental groups can have different mean outcomes, but the treatment might not be causing those differences even though the differences are statistically significant.

The difficulty in definitively stating that a treatment caused the difference is due to potential confounding variables or confounders. Confounders are alternative explanations for differences between the experimental groups. Confounding variables correlate with both the experimental groups and the outcome variable. In this situation, confounding variables can be the actual cause for the outcome differences rather than the treatments themselves. As you’ll see, if an experiment does not account for confounding variables, they can bias the results and make them untrustworthy.

Related posts : Understanding Correlation in Statistics , Causation versus Correlation , and Hill’s Criteria for Causation .

Example of Confounding in an Experiment

A photograph of vitamin capsules to represent our experiment.

  • Control group: Does not consume vitamin supplements
  • Treatment group: Regularly consumes vitamin supplements.

Imagine we measure a specific health outcome. After the experiment is complete, we perform a 2-sample t-test to determine whether the mean outcomes for these two groups are different. Assume the test results indicate that the mean health outcome in the treatment group is significantly better than the control group.

Why can’t we assume that the vitamins improved the health outcomes? After all, only the treatment group took the vitamins.

Related post : Confounding Variables in Regression Analysis

Alternative Explanations for Differences in Outcomes

The answer to that question depends on how we assigned the subjects to the experimental groups. If we let the subjects decide which group to join based on their existing vitamin habits, it opens the door to confounding variables. It’s reasonable to assume that people who take vitamins regularly also tend to have other healthy habits. These habits are confounders because they correlate with both vitamin consumption (experimental group) and the health outcome measure.

Random assignment prevents this self sorting of participants and reduces the likelihood that the groups start with systematic differences.

In fact, studies have found that supplement users are more physically active, have healthier diets, have lower blood pressure, and so on compared to those who don’t take supplements. If subjects who already take vitamins regularly join the treatment group voluntarily, they bring these healthy habits disproportionately to the treatment group. Consequently, these habits will be much more prevalent in the treatment group than the control group.

The healthy habits are the confounding variables—the potential alternative explanations for the difference in our study’s health outcome. It’s entirely possible that these systematic differences between groups at the start of the study might cause the difference in the health outcome at the end of the study—and not the vitamin consumption itself!

If our experiment doesn’t account for these confounding variables, we can’t trust the results. While we obtained statistically significant results with the 2-sample t-test for health outcomes, we don’t know for sure whether the vitamins, the systematic difference in habits, or some combination of the two caused the improvements.

Learn why many randomized clinical experiments use a placebo to control for the Placebo Effect .

Experiments Must Account for Confounding Variables

Your experimental design must account for confounding variables to avoid their problems. Scientific studies commonly use the following methods to handle confounders:

  • Use control variables to keep them constant throughout an experiment.
  • Statistically control for them in an observational study.
  • Use random assignment to reduce the likelihood that systematic differences exist between experimental groups when the study begins.

Let’s take a look at how random assignment works in an experimental design.

Random Assignment Can Reduce the Impact of Confounding Variables

Note that random assignment is different than random sampling. Random sampling is a process for obtaining a sample that accurately represents a population .

Photo of a coin toss to represent how we can incorporate random assignment in our experiment.

Random assignment uses a chance process to assign subjects to experimental groups. Using random assignment requires that the experimenters can control the group assignment for all study subjects. For our study, we must be able to assign our participants to either the control group or the supplement group. Clearly, if we don’t have the ability to assign subjects to the groups, we can’t use random assignment!

Additionally, the process must have an equal probability of assigning a subject to any of the groups. For example, in our vitamin supplement study, we can use a coin toss to assign each subject to either the control group or supplement group. For more complex experimental designs, we can use a random number generator or even draw names out of a hat.

Random Assignment Distributes Confounders Equally

The random assignment process distributes confounding properties amongst your experimental groups equally. In other words, randomness helps eliminate systematic differences between groups. For our study, flipping the coin tends to equalize the distribution of subjects with healthier habits between the control and treatment group. Consequently, these two groups should start roughly equal for all confounding variables, including healthy habits!

Random assignment is a simple, elegant solution to a complex problem. For any given study area, there can be a long list of confounding variables that you could worry about. However, using random assignment, you don’t need to know what they are, how to detect them, or even measure them. Instead, use random assignment to equalize them across your experimental groups so they’re not a problem.

Because random assignment helps ensure that the groups are comparable when the experiment begins, you can be more confident that the treatments caused the post-study differences. Random assignment helps increase the internal validity of your study.

Comparing the Vitamin Study With and Without Random Assignment

Let’s compare two scenarios involving our hypothetical vitamin study. We’ll assume that the study obtains statistically significant results in both cases.

Scenario 1: We don’t use random assignment and, unbeknownst to us, subjects with healthier habits disproportionately end up in the supplement treatment group. The experimental groups differ by both healthy habits and vitamin consumption. Consequently, we can’t determine whether it was the habits or vitamins that improved the outcomes.

Scenario 2: We use random assignment and, consequently, the treatment and control groups start with roughly equal levels of healthy habits. The intentional introduction of vitamin supplements in the treatment group is the primary difference between the groups. Consequently, we can more confidently assert that the supplements caused an improvement in health outcomes.

For both scenarios, the statistical results could be identical. However, the methodology behind the second scenario makes a stronger case for a causal relationship between vitamin supplement consumption and health outcomes.

How important is it to use the correct methodology? Well, if the relationship between vitamins and health outcomes is not causal, then consuming vitamins won’t cause your health outcomes to improve regardless of what the study indicates. Instead, it’s probably all the other healthy habits!

Learn more about Randomized Controlled Trials (RCTs) that are the gold standard for identifying causal relationships because they use random assignment.

Drawbacks of Random Assignment

Random assignment helps reduce the chances of systematic differences between the groups at the start of an experiment and, thereby, mitigates the threats of confounding variables and alternative explanations. However, the process does not always equalize all of the confounding variables. Its random nature tends to eliminate systematic differences, but it doesn’t always succeed.

Sometimes random assignment is impossible because the experimenters cannot control the treatment or independent variable. For example, if you want to determine how individuals with and without depression perform on a test, you cannot randomly assign subjects to these groups. The same difficulty occurs when you’re studying differences between genders.

In other cases, there might be ethical issues. For example, in a randomized experiment, the researchers would want to withhold treatment for the control group. However, if the treatments are vaccinations, it might be unethical to withhold the vaccinations.

Other times, random assignment might be possible, but it is very challenging. For example, with vitamin consumption, it’s generally thought that if vitamin supplements cause health improvements, it’s only after very long-term use. It’s hard to enforce random assignment with a strict regimen for usage in one group and non-usage in the other group over the long-run. Or imagine a study about smoking. The researchers would find it difficult to assign subjects to the smoking and non-smoking groups randomly!

Fortunately, if you can’t use random assignment to help reduce the problem of confounding variables, there are different methods available. The other primary approach is to perform an observational study and incorporate the confounders into the statistical model itself. For more information, read my post Observational Studies Explained .

Read About Real Experiments that Used Random Assignment

I’ve written several blog posts about studies that have used random assignment to make causal inferences. Read studies about the following:

  • Flu Vaccinations
  • COVID-19 Vaccinations

Sullivan L.  Random assignment versus random selection . SAGE Glossary of the Social and Behavioral Sciences, SAGE Publications, Inc.; 2009.

Share this:

how does random assignment differ from random sampling

Reader Interactions

' src=

November 13, 2019 at 4:59 am

Hi Jim, I have a question of randomly assigning participants to one of two conditions when it is an ongoing study and you are not sure of how many participants there will be. I am using this random assignment tool for factorial experiments. http://methodologymedia.psu.edu/most/rannumgenerator It asks you for the total number of participants but at this point, I am not sure how many there will be. Thanks for any advice you can give me, Floyd

' src=

May 28, 2019 at 11:34 am

Jim, can you comment on the validity of using the following approach when we can’t use random assignments. I’m in education, we have an ACT prep course that we offer. We can’t force students to take it and we can’t keep them from taking it either. But we want to know if it’s working. Let’s say that by senior year all students who are going to take the ACT have taken it. Let’s also say that I’m only including students who have taking it twice (so I can show growth between first and second time taking it). What I’ve done to address confounders is to go back to say 8th or 9th grade (prior to anyone taking the ACT or the ACT prep course) and run an analysis showing the two groups are not significantly different to start with. Is this valid? If the ACT prep students were higher achievers in 8th or 9th grade, I could not assume my prep course is effecting greater growth, but if they were not significantly different in 8th or 9th grade, I can assume the significant difference in ACT growth (from first to second testing) is due to the prep course. Yes or no?

' src=

May 26, 2019 at 5:37 pm

Nice post! I think the key to understanding scientific research is to understand randomization. And most people don’t get it.

' src=

May 27, 2019 at 9:48 pm

Thank you, Anoop!

I think randomness in an experiment is a funny thing. The issue of confounding factors is a serious problem. You might not even know what they are! But, use random assignment and, voila, the problem usually goes away! If you can’t use random assignment, suddenly you have a whole host of issues to worry about, which I’ll be writing about in more detail in my upcoming post about observational experiments!

Comments and Questions Cancel reply

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Random Assignment in Experiments | Introduction & Examples

Random Assignment in Experiments | Introduction & Examples

Published on 6 May 2022 by Pritha Bhandari . Revised on 13 February 2023.

In experimental research, random assignment is a way of placing participants from your sample into different treatment groups using randomisation.

With simple random assignment, every member of the sample has a known or equal chance of being placed in a control group or an experimental group. Studies that use simple random assignment are also called completely randomised designs .

Random assignment is a key part of experimental design . It helps you ensure that all groups are comparable at the start of a study: any differences between them are due to random factors.

Table of contents

Why does random assignment matter, random sampling vs random assignment, how do you use random assignment, when is random assignment not used, frequently asked questions about random assignment.

Random assignment is an important part of control in experimental research, because it helps strengthen the internal validity of an experiment.

In experiments, researchers manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. To do so, they often use different levels of an independent variable for different groups of participants.

This is called a between-groups or independent measures design.

You use three groups of participants that are each given a different level of the independent variable:

  • A control group that’s given a placebo (no dosage)
  • An experimental group that’s given a low dosage
  • A second experimental group that’s given a high dosage

Random assignment to helps you make sure that the treatment groups don’t differ in systematic or biased ways at the start of the experiment.

If you don’t use random assignment, you may not be able to rule out alternative explanations for your results.

  • Participants recruited from pubs are placed in the control group
  • Participants recruited from local community centres are placed in the low-dosage experimental group
  • Participants recruited from gyms are placed in the high-dosage group

With this type of assignment, it’s hard to tell whether the participant characteristics are the same across all groups at the start of the study. Gym users may tend to engage in more healthy behaviours than people who frequent pubs or community centres, and this would introduce a healthy user bias in your study.

Although random assignment helps even out baseline differences between groups, it doesn’t always make them completely equivalent. There may still be extraneous variables that differ between groups, and there will always be some group differences that arise from chance.

Most of the time, the random variation between groups is low, and, therefore, it’s acceptable for further analysis. This is especially true when you have a large sample. In general, you should always use random assignment in experiments when it is ethically possible and makes sense for your study topic.

Prevent plagiarism, run a free check.

Random sampling and random assignment are both important concepts in research, but it’s important to understand the difference between them.

Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups.

While random sampling is used in many types of studies, random assignment is only used in between-subjects experimental designs.

Some studies use both random sampling and random assignment, while others use only one or the other.

Random sample vs random assignment

Random sampling enhances the external validity or generalisability of your results, because it helps to ensure that your sample is unbiased and representative of the whole population. This allows you to make stronger statistical inferences .

You use a simple random sample to collect data. Because you have access to the whole population (all employees), you can assign all 8,000 employees a number and use a random number generator to select 300 employees. These 300 employees are your full sample.

Random assignment enhances the internal validity of the study, because it ensures that there are no systematic differences between the participants in each group. This helps you conclude that the outcomes can be attributed to the independent variable .

  • A control group that receives no intervention
  • An experimental group that has a remote team-building intervention every week for a month

You use random assignment to place participants into the control or experimental group. To do so, you take your list of participants and assign each participant a number. Again, you use a random number generator to place each participant in one of the two groups.

To use simple random assignment, you start by giving every member of the sample a unique number. Then, you can use computer programs or manual methods to randomly assign each participant to a group.

  • Random number generator: Use a computer program to generate random numbers from the list for each group.
  • Lottery method: Place all numbers individually into a hat or a bucket, and draw numbers at random for each group.
  • Flip a coin: When you only have two groups, for each number on the list, flip a coin to decide if they’ll be in the control or the experimental group.
  • Use a dice: When you have three groups, for each number on the list, roll a die to decide which of the groups they will be in. For example, assume that rolling 1 or 2 lands them in a control group; 3 or 4 in an experimental group; and 5 or 6 in a second control or experimental group.

This type of random assignment is the most powerful method of placing participants in conditions, because each individual has an equal chance of being placed in any one of your treatment groups.

Random assignment in block designs

In more complicated experimental designs, random assignment is only used after participants are grouped into blocks based on some characteristic (e.g., test score or demographic variable). These groupings mean that you need a larger sample to achieve high statistical power .

For example, a randomised block design involves placing participants into blocks based on a shared characteristic (e.g., college students vs graduates), and then using random assignment within each block to assign participants to every treatment condition. This helps you assess whether the characteristic affects the outcomes of your treatment.

In an experimental matched design , you use blocking and then match up individual participants from each block based on specific characteristics. Within each matched pair or group, you randomly assign each participant to one of the conditions in the experiment and compare their outcomes.

Sometimes, it’s not relevant or ethical to use simple random assignment, so groups are assigned in a different way.

When comparing different groups

Sometimes, differences between participants are the main focus of a study, for example, when comparing children and adults or people with and without health conditions. Participants are not randomly assigned to different groups, but instead assigned based on their characteristics.

In this type of study, the characteristic of interest (e.g., gender) is an independent variable, and the groups differ based on the different levels (e.g., men, women). All participants are tested the same way, and then their group-level outcomes are compared.

When it’s not ethically permissible

When studying unhealthy or dangerous behaviours, it’s not possible to use random assignment. For example, if you’re studying heavy drinkers and social drinkers, it’s unethical to randomly assign participants to one of the two groups and ask them to drink large amounts of alcohol for your experiment.

When you can’t assign participants to groups, you can also conduct a quasi-experimental study . In a quasi-experiment, you study the outcomes of pre-existing groups who receive treatments that you may not have any control over (e.g., heavy drinkers and social drinkers).

These groups aren’t randomly assigned, but may be considered comparable when some other variables (e.g., age or socioeconomic status) are controlled for.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, February 13). Random Assignment in Experiments | Introduction & Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/random-assignment-experiments/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, controlled experiments | methods & examples of control, control groups and treatment groups | uses & examples.

LEARN STATISTICS EASILY

LEARN STATISTICS EASILY

Learn Data Analysis Now!

LEARN STATISTICS EASILY LOGO 2

Understanding Random Sampling: Essential Techniques in Data Analysis

Random sampling in statistics is a technique for selecting a subset of individuals from a larger population where each individual has an equal chance of being chosen. This method ensures representative samples, minimizes bias and allows for reliable inferences about the population based on the sample data.

Definition and Importance of Random Sampling

Random sampling is fundamental in data analysis, statistics, and broader scientific research. It refers to the technique of selecting individuals or elements from a population such that each individual has an equal probability of being chosen. This method is essential as it ensures a representative sample, thereby eliminating bias and enabling researchers to draw valid conclusions about the whole population based on the sample data.

The importance of random sampling in data analysis cannot be overstated. Instead, it forms the basis of hypothesis testing, inferential statistics, and prediction modeling. Without random sampling, we risk introducing selection bias into our study, which can lead to inaccurate conclusions and misleading results. The strength of random sampling lies in its ability to mirror the characteristics of the whole population within the sample, enhancing the reliability and validity of the analysis.

  • In random sampling, every member of a population has an equal chance to be chosen as part of the sample.
  • It forms the basis of hypothesis testing, inferential statistics, and prediction modeling.
  • Simple random sampling, the most basic form, is adequate when the population is homogeneous.
  • Stratified random sampling divides the population into subgroups, ensuring sufficient representation.
  • Systematic random sampling selects individuals at regular intervals from the population.

 width=

Ad description. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Types of Random Sampling

Simple random sampling.

Simple Random Sampling  is the most basic type of random sampling. Each population element has an equal chance of being selected in this method. The selection is often made through a random process, such as using a random number generator or drawing names from a hat. This method is most effective when the population is homogeneous, i.e., when the characteristics of individuals don’t significantly vary. Imagine a small town that wants to survey residents’ satisfaction with local services. They could use simple random sampling by assigning each resident a number and then using a random number generator to select 100 residents to participate in the survey.

random sampling

Stratified Random Sampling

Stratified Random Sampling  is a technique used when the population is not homogeneous. The population is categorized into strata (or subgroups) based on specific characteristics such as age, gender, or geographic location. Then, random sampling is applied within each stratum to select the individuals. This method ensures that each subgroup is adequately represented in the sample. Suppose a national clothing retailer wants to understand customer satisfaction across different age groups. They could divide their customer base into distinct age groups, such as 18-29, 30-39, 40-49, etc., and then perform simple random sampling within these strata to ensure that all age groups are adequately represented.

random sampling

Systematic Random Sampling

Systematic Random Sampling  involves selecting individuals at regular intervals from the population. The first individual is chosen randomly, and then every nth is selected. This method is often used when a complete list of the population is available, and it’s important to note that it requires the assumption that the list is not patterned in any way. Suppose a university wants to assess the effectiveness of its new online learning platform. They could use systematic random sampling by alphabetizing all students and selecting every 10th student for a survey. This method would provide a sample spread evenly across the entire student population.

random sampling

Cluster Random Sampling

Cluster Random Sampling  involves dividing the population into separate groups or clusters, usually based on geographic location. A random sample of clusters is selected, and all individuals within these chosen clusters are included. This method is often used when conducting simple or stratified sampling is costly or impractical. Consider a situation where a government health agency wants to study lifestyle habits nationwide. It would be impractical and expensive to randomly sample individuals from the entire country. Instead, they could use cluster sampling. They might divide the country into clusters by postcode and then randomly select a few postcodes. Every resident within the selected postcodes would be included in the study.

Challenges and Misconceptions about Random Sampling

Despite the importance of random sampling, several challenges and misconceptions can hamper its effective implementation.

One common misconception is that random sampling produces a sample that perfectly represents the population. While random sampling is designed to minimize bias and increase the likelihood of representativeness, it does not guarantee it. There’s always a chance that the sample might not accurately reflect the population due to random variation.

Another challenge is the practical implementation of random sampling. Often, having a complete population list or randomly selecting individuals may be impossible. For instance, respondents self-select to participate in online surveys, which may introduce bias.

Furthermore, there is a typical misconception that a larger sample is always better. While it’s true that increasing the sample size can often decrease the margin of error and increase the confidence level, it also increases the time and cost of data collection and analysis. Therefore, balancing the need for precision with practical considerations is crucial.

In summary, while random sampling is a cornerstone of statistical and data analysis, it has challenges and misconceptions. Understanding these can help researchers and analysts better design and implement their studies for robust, reliable, and meaningful results.

Recommended Articles

Want to explore more about data analysis and statistics? Don’t stop at random sampling. Our blog features many articles covering various topics that will deepen your understanding and enhance your skills. Whether starting or looking to advance your knowledge, we’ve got you covered. Look at our other posts today and continue your learning journey with us!

  • Understanding Sampling Error: A Foundation in Statistical Analysis
  • Selection Bias in Data Analysis: Understanding the Intricacies
  • Simple Random Sample – an overview (External Link)
  • Unraveling Sampling Bias: A Comprehensive Guide
  • Random Sampling on Excel: An In-depth Analysis
  • Understanding Random Sampling (Story)
  • Generate a Random Number

Frequently Asked Questions (FAQs)

The four main types of random sampling are Simple, Stratified, Cluster, and Systematic Random Sampling. Each has its unique application depending on the nature of the population and the research question.

Random sampling is used to pick a representative sample from a larger population, ensuring each individual has an equal chance of being chosen. This minimizes selection bias, making inferences about the population more accurate.

A random sample in statistics is a subset of individuals or data points selected from a larger population. Each individual or point has an equal probability of being chosen.

Random sampling is done by assigning each individual in the population a unique identifier and then using a random process (like a random number generator) to select a subset of individuals.

The “best” random sampling method depends on the specifics of the study, including the nature of the population, the research question, and practical considerations. Each method has its strengths and weaknesses.

The choice of sampling method depends on several factors, including the research question, the nature of the population, the availability of a complete list of the population, and practical constraints such as time and cost.

Challenges of random sampling include practical implementation issues, the potential for nonresponse bias, and the misconception that a larger sample is always better or more representative.

While random sampling can help reduce selection bias, it does not stop all types of bias. For example, it can’t correct measurement errors or biases in data collection.

Stratified random sampling is distinct from simple random sampling. It first divides the population into different subgroups, or strata, based on specific characteristics. Then, simple random sampling is performed within each subset. This ensures that each subgroup is adequately represented in the sample, which can be especially useful when the population is heterogeneous.

Cluster random sampling involves dividing the population into clusters and then randomly selecting a few clusters for study. For instance, a researcher studying educational practices might divide a country into clusters by school districts, then randomly select a few districts. All schools within these selected districts would be included in the study.

Similar Posts

when is p value significant

When is P Value Significant? Understanding its Role in Hypothesis Testing

Explore when is P value significant, its role in hypothesis testing, and the impact of sample size and effect size. Learn common misconceptions.

data transformations for normality

Data Transformations for Normality: Essential Techniques

Explore essential techniques in data transformations for normality to unlock true insights and enhance your statistical analysis.

mann-whitney u test

Mastering the Mann-Whitney U Test: A Comprehensive Guide

Master the Mann-Whitney U Test with our guide. Understand the assumptions, steps, and interpretation to effectively analyze your data.

how to report correlation in apa

How to Report Pearson Correlation Results in APA Style

Learn how to report correlation in APA style, mastering the key steps and considerations for clearly communicating research findings.

goodness-of-fit

What is Goodness-of-Fit? A Comprehensive Guide

Learn about goodness-of-fit, its importance in assessing statistical models, various tests, and how to apply them for accurate predictions and inferences.

null hypothesis in chi Square

Understanding the Null Hypothesis in Chi-Square

Explore the intricacies of the null hypothesis in chi square testing and its role in statistical analysis. Discover common misconceptions and practical applications.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

how does random assignment differ from random sampling

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Simple Random Sampling | Definition, Steps & Examples

Simple Random Sampling | Definition, Steps & Examples

Published on August 28, 2020 by Lauren Thomas . Revised on December 18, 2023.

A simple random sample is a randomly selected subset of a population. In this sampling method, each member of the population has an exactly equal chance of being selected.

This method is the most straightforward of all the probability sampling methods , since it only involves a single random selection and requires little advance knowledge about the population. Because it uses randomization, any research performed on this sample should have high internal and external validity, and be at a lower risk for research biases like sampling bias and selection bias .

Systematic Sampling

Table of contents

When to use simple random sampling, how to perform simple random sampling, other interesting articles, frequently asked questions about simple random sampling.

Simple random sampling is used to make statistical inferences about a population. It helps ensure high internal validity : randomization is the best method to reduce the impact of potential confounding variables .

In addition, with a large enough sample size, a simple random sample has high external validity : it represents the characteristics of the larger population.

However, simple random sampling can be challenging to implement in practice. To use this method, there are some prerequisites:

  • You have a complete list of every member of the population .
  • You can contact or access each member of the population if they are selected.
  • You have the time and resources to collect data from the necessary sample size.

Simple random sampling works best if you have a lot of time and resources to conduct your study, or if you are studying a limited population that can easily be sampled.

In some cases, it might be more appropriate to use a different type of probability sampling:

  • Systematic sampling involves choosing your sample based on a regular interval, rather than a fully random selection. It can also be used when you don’t have a complete list of the population.
  • Stratified sampling is appropriate when you want to ensure that specific characteristics are proportionally represented in the sample. You split your population into strata (for example, divided by gender or race), and then randomly select from each of these subgroups.
  • Cluster sampling is appropriate when you are unable to sample from the entire population. You divide the sample into clusters that approximately reflect the whole population, and then choose your sample from a random selection of these clusters.

Prevent plagiarism. Run a free check.

There are 4 key steps to select a simple random sample.

Step 1: Define the population

Start by deciding on the population that you want to study.

It’s important to ensure that you have access to every individual member of the population, so that you can collect data from all those who are selected for the sample.

Step 2: Decide on the sample size

Next, you need to decide how large your sample size will be. Although larger samples provide more statistical certainty, they also cost more and require far more work.

There are several potential ways to decide upon the size of your sample, but one of the simplest involves using a formula with your desired confidence interval and confidence level , estimated size of the population you are working with, and the standard deviation of whatever you want to measure in your population.

The most common confidence interval and levels used are 0.05 and 0.95, respectively. Since you may not know the standard deviation of the population you are studying, you should choose a number high enough to account for a variety of possibilities (such as 0.5).

You can then use a sample size calculator to estimate the necessary sample size.

Step 3: Randomly select your sample

This can be done in one of two ways: the lottery or random number method.

In the lottery method , you choose the sample at random by “drawing from a hat” or by using a computer program that will simulate the same action.

In the random number method , you assign every individual a number. By using a random number generator or random number tables, you then randomly pick a subset of the population. You can also use the random number function (RAND) in Microsoft Excel to generate random numbers.

Step 4: Collect data from your sample

Finally, you should collect data from your sample.

To ensure the validity of your findings, you need to make sure every individual selected actually participates in your study. If some drop out or do not participate for reasons associated with the question that you’re studying, this could bias your findings.

For example, if young participants are systematically less likely to participate in your study, your findings might not be valid due to the underrepresentation of this group.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Thomas, L. (2023, December 18). Simple Random Sampling | Definition, Steps & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/methodology/simple-random-sampling/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, sampling methods | types, techniques & examples, stratified sampling | definition, guide & examples, sampling bias and how to avoid it | types & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Quickonomics

Random Sample

Published Sep 8, 2024

Definition of Random Sample

A random sample is a subset of individuals chosen from a larger set or population, where each individual has an equal probability of being selected. This method of sampling ensures that the sample is statistically representative of the population, allowing for unbiased inferences about the population’s characteristics. It is a fundamental methodological practice in statistics and is widely used in various fields including economics, sociology, and medicine.

Consider a market research company that wants to understand consumer preferences for a new product. The company could use a random sampling method to select participants for their survey. Suppose the target population consists of 10,000 people. By using a simple random sampling method, the company assigns a number to each person in the population and then uses a random number generator to select 1,000 individuals to participate in the survey. Each person in the population has an equal chance of being chosen, which minimizes selection bias and ensures that the survey results are likely to be representative of the broader population’s preferences.

Why Random Samples Matter

Random samples are crucial for obtaining valid and reliable statistical results. By ensuring that every individual has an equal chance of being selected, random sampling eliminates selection bias and allows researchers to generalize findings from the sample to the entire population with a known level of confidence. This is particularly important for:

  • Accurate Estimations: Random samples provide a solid foundation for estimating population parameters such as means, proportions, and variances.
  • Hypothesis Testing: They allow for the application of statistical tests to determine relationships and test hypotheses with a known error margin.
  • Decision Making: Businesses, policymakers, and researchers can make informed decisions based on the insights gathered from random samples.
  • Generalizability: The findings from a random sample can be broadly applied to the population, enhancing the external validity of the study.

Frequently Asked Questions (FAQ)

What are the different types of random sampling methods.

There are several types of random sampling methods, including:

  • Simple Random Sampling: Each individual in the population has an equal chance of being selected. This can be achieved using random number generators or lottery methods.
  • Systematic Sampling: A starting point is randomly chosen, and then every nth individual is selected from a list of the population. This method is simpler than simple random sampling and often used when a complete list of the population is available.
  • Stratified Sampling: The population is divided into subgroups or strata based on a characteristic (e.g., age, income), and random samples are drawn from each stratum. This ensures representation from all subgroups.
  • Cluster Sampling: The population is divided into clusters (e.g., geographic areas), and entire clusters are randomly selected. All individuals within chosen clusters are then surveyed.

How large should a random sample be?

The required sample size depends on various factors:

  • Population Size: While larger samples tend to be more accurate representations of the population, the overall population size influences the required sample size.
  • Margin of Error: The desired precision of the results affects sample size; smaller margins of error require larger samples.
  • Confidence Level: Higher confidence levels (e.g., 95% or 99%) entail larger samples to ensure that the results are within the specified confidence interval.
  • Variability: More heterogenous populations necessitate larger samples to accurately capture the population’s characteristics.

Statistical formulas and software can help determine the appropriate sample size based on these considerations.

Can random sampling be applied in qualitative research?

Random sampling is predominantly used in quantitative research for statistical analysis. However, it can also be applied in qualitative research to enhance the generalizability and credibility of findings. For instance, selecting interview participants randomly from a larger pool can help ensure diverse perspectives and reduce selection bias. Nonetheless, qualitative research often focuses more on purposive or thematic sampling to explore specific issues or phenomena in-depth.

What are the limitations of random sampling?

While random sampling has numerous benefits, it also has limitations:

  • Logistical Challenges: Obtaining a truly random sample can be difficult, especially with large or inaccessible populations.
  • Resource Intensive: Random sampling often requires significant time, effort, and resources for data collection and management.
  • Non-Response Bias: If selected individuals do not participate, it can lead to non-response bias, compromising the representativeness of the sample.
  • Complexity: Stratified and cluster sampling methods can be complex to design and implement correctly.

Despite these challenges, random sampling remains a gold standard for obtaining representative data and making sound inferences about a population.

To provide the best experiences, we and our partners use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us and our partners to process personal data such as browsing behavior or unique IDs on this site and show (non-) personalized ads. Not consenting or withdrawing consent, may adversely affect certain features and functions.

Click below to consent to the above or make granular choices. Your choices will be applied to this site only. You can change your settings at any time, including withdrawing your consent, by using the toggles on the Cookie Policy, or by clicking on the manage consent button at the bottom of the screen.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

The Random Selection Experiment Method

When researchers need to select a representative sample from a larger population, they often utilize a method known as random selection. In this selection process, each member of a group stands an equal chance of being chosen as a participant in the study.

Random Selection vs. Random Assignment

How does random selection differ from  random assignment ? Random selection refers to how the sample is drawn from the population as a whole, whereas random assignment refers to how the participants are then assigned to either the experimental or control groups.

It is possible to have both random selection and random assignment in an experiment.

Imagine that you use random selection to draw 500 people from a population to participate in your study. You then use random assignment to assign 250 of your participants to a control group (the group that does not receive the treatment or independent variable) and you assign 250 of the participants to the experimental group (the group that receives the treatment or independent variable).

Why do researchers utilize random selection? The purpose is to increase the generalizability of the results.

By drawing a random sample from a larger population, the goal is that the sample will be representative of the larger group and less likely to be subject to bias.

Factors Involved

Imagine a researcher is selecting people to participate in a study. To pick participants, they may choose people using a technique that is the statistical equivalent of a coin toss.

They may begin by using random selection to pick geographic regions from which to draw participants. They may then use the same selection process to pick cities, neighborhoods, households, age ranges, and individual participants.

Another important thing to remember is that larger sample sizes tend to be more representative. Even random selection can lead to a biased or limited sample if the sample size is small.

When the sample size is small, an unusual participant can have an undue influence over the sample as a whole. Using a larger sample size tends to dilute the effects of unusual participants and prevent them from skewing the results.

Lin L.  Bias caused by sampling error in meta-analysis with small sample sizes .  PLoS ONE . 2018;13(9):e0204056. doi:10.1371/journal.pone.0204056

Elmes DG, Kantowitz BH, Roediger HL.  Research Methods in Psychology. Belmont, CA: Wadsworth; 2012.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

IMAGES

  1. Simple Random Sampling: A Beginner's Guide

    how does random assignment differ from random sampling

  2. Random Assignment in Experiments

    how does random assignment differ from random sampling

  3. Random Sampling Examples of Different Types

    how does random assignment differ from random sampling

  4. Random Assignment ~ A Simple Introduction with Examples

    how does random assignment differ from random sampling

  5. Random Sampling versus Random Assignment

    how does random assignment differ from random sampling

  6. Random Assignment vs Random Sampling

    how does random assignment differ from random sampling

VIDEO

  1. Lesson 1.3: Simple Random Sampling

  2. Random Processes 1: General Introduction to Random Process, Ensemble, Sample Function

  3. random sampling & assignment

  4. Scope of conclusions (pg 118-119)

  5. CLASS 21 TWO STAGE SAMPLING (SUB-SAMPLING) #ISS #rbidsim #sampling #msc #bsc #csirnet

  6. Obtaining a Sample

COMMENTS

  1. Random Sampling vs. Random Assignment

    Learn the difference between random sampling and random assignment in research methods and statistics. Random sampling is how you select participants from the population, while random assignment is how you place them into groups.

  2. Random Assignment in Experiments

    Random assignment is a way of placing participants from your sample into different treatment groups using randomization. It helps you ensure that all groups are comparable at the start of a study and avoid biases. Learn how to use random assignment, its benefits and limitations, and how it differs from random sampling.

  3. PDF Random sampling vs. assignment

    Learn how to classify a study as observational or experimental based on random sampling and assignment. See an example of a study evaluating font reading speed and how randomization helps to generalize results and infer causality.

  4. Random Sampling vs Random Assignment

    Random sampling is a proper procedure for selecting a subset of bodies from a larger set of bodies, each of which has the same likelihood of being selected. In contrast, Random allocation of participants involves assigning participants to different groups or conditions of the experiment, and this minimizes pre-existing confounding factors.

  5. Random Assignment in Psychology: Definition & Examples

    Random assignment is the practice of allocating participants to different experimental groups in a study in a completely unbiased way, ensuring each participant has an equal chance of being assigned to any group. Learn how random assignment is used in experiments, its importance, methods, drawbacks, and differences from random selection and sampling.

  6. What is: Random Assignment Explained in Detail

    Random Assignment vs. Random Sampling. It is important to distinguish between random assignment and random sampling, as they serve different purposes in research. Random sampling refers to the method of selecting participants from a larger population to ensure that the sample is representative of that population.

  7. Random Selection vs. Random Assignment

    Learn the difference between random selection and random assignment in statistics, and how they affect the validity of a study. See examples of using both, one, or neither technique in a weight loss experiment.

  8. What's the difference between random assignment and random ...

    Random assignment is a way of sorting the sample into control and experimental groups, while random selection is a way of selecting members of a population for your study's sample. Learn the difference between these two terms and how they relate to research design and validity.

  9. Random Assignment in Psychology (Definition + 40 Examples)

    Random assignment is a method of placing participants in different groups in an experiment to control for confounding variables and isolate the effects of the independent variable. Learn the history, theory, and practice of random assignment in psychology, with 40 real-world examples.

  10. What's the difference between random selection and random ...

    Learn the difference between random selection and random assignment in research methods. Random selection is a way of selecting members of a population for your study's sample, while random assignment is a way of sorting the sample into control and experimental groups.

  11. The Definition of Random Assignment According to Psychology

    Random assignment is a technique that ensures each participant has an equal chance of being assigned to any group in a study. It helps eliminate bias and increase the reliability of the experiment outcomes. Learn how random assignment works and see an example.

  12. Purpose and Limitations of Random Assignment

    Random assignment is a process of assigning participants to treatment or control groups with equal chance to achieve unbiased comparison and causal inference. Learn how random assignment prevents selection bias, confounding and other threats to validity, and what are the ethical and practical limitations of this method.

  13. Difference between Random Selection and Random Assignment

    Random selection is how sample members are chosen from the population, while random assignment is how they are assigned to the treatment or control group. Learn the difference, the importance, and the examples of each process for experimental research.

  14. Random assignment

    How does random assignment differ from random sampling? Related terms. Control Group: A group in an experiment that does not receive the treatment or intervention being tested, used as a baseline to compare results. Confounding Variable: An extraneous variable that can influence the outcome of an experiment if not properly controlled.

  15. Random Assignment in Experiments

    Learn how random assignment uses chance to assign subjects to control and treatment groups in an experiment. Random assignment helps reduce confounding variables and increase internal validity, but it is different from random sampling.

  16. Random Assignment in Experiments

    Learn how random assignment helps ensure internal validity in experimental research by placing participants into different treatment groups using randomisation. Find out the difference between random assignment and random sampling, and see examples of methods and designs.

  17. PDF Random is Random: Helping Students Distinguish Between Random Sampling

    Random is Random, but not always for the same purpose - easy to conflate the purposes of randomization in study design. Idea of "random" central to both sampling and assignment to groups, but role of randomness is different. "Bias" can refer to bias in sampling, or researcher bias in assigning groups.

  18. Random assignment

    Random assignment is an experimental technique for assigning participants or subjects to different groups in an experiment using randomization. It helps to ensure that any differences between groups are not systematic and can be attributed to the experimental procedures or treatment.

  19. Random Sampling: Essential Techniques in Data Analysis

    Random sampling is a technique for selecting a subset of individuals from a larger population with equal chances. Learn about the four types of random sampling (simple, stratified, systematic and cluster) and their applications, as well as the challenges and misconceptions of this method.

  20. Random Sampling Explained: What Is Random Sampling?

    See why leading organizations rely on MasterClass for learning & development. The most fundamental form of probability sampling—where every member of a population has an equal chance of being chosen—is called random sampling. Learn about the four main random sampling methods used in data collection.

  21. Khan Academy

    If you're seeing this message, it means we're having trouble loading external resources on our website. If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

  22. Simple Random Sampling

    Learn how to select a simple random sample from a population using four steps: define the population, decide on the sample size, randomly select the sample, and collect data. See examples of simple random sampling in practice, such as the American Community Survey.

  23. Random Sample Definition & Examples

    Definition of Random Sample. A random sample is a subset of individuals chosen from a larger set or population, where each individual has an equal probability of being selected. This method of sampling ensures that the sample is statistically representative of the population, allowing for unbiased inferences about the population's ...

  24. How Random Selection Is Used For Research

    Random selection is a technique that ensures each member of a group has an equal chance of being chosen as a participant in a study. It increases the generalizability and reduces the bias of the results. Learn how random selection differs from random assignment and how it is used in psychology experiments.