Issue Cover

  • Previous Article
  • Next Article

Promises and Pitfalls of Technology

Politics and privacy, private-sector influence and big tech, state competition and conflict, author biography, how is technology changing the world, and how should the world change technology.

[email protected]

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Guest Access
  • Get Permissions
  • Cite Icon Cite
  • Search Site

Josephine Wolff; How Is Technology Changing the World, and How Should the World Change Technology?. Global Perspectives 1 February 2021; 2 (1): 27353. doi:

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Technologies are becoming increasingly complicated and increasingly interconnected. Cars, airplanes, medical devices, financial transactions, and electricity systems all rely on more computer software than they ever have before, making them seem both harder to understand and, in some cases, harder to control. Government and corporate surveillance of individuals and information processing relies largely on digital technologies and artificial intelligence, and therefore involves less human-to-human contact than ever before and more opportunities for biases to be embedded and codified in our technological systems in ways we may not even be able to identify or recognize. Bioengineering advances are opening up new terrain for challenging philosophical, political, and economic questions regarding human-natural relations. Additionally, the management of these large and small devices and systems is increasingly done through the cloud, so that control over them is both very remote and removed from direct human or social control. The study of how to make technologies like artificial intelligence or the Internet of Things “explainable” has become its own area of research because it is so difficult to understand how they work or what is at fault when something goes wrong (Gunning and Aha 2019) .

This growing complexity makes it more difficult than ever—and more imperative than ever—for scholars to probe how technological advancements are altering life around the world in both positive and negative ways and what social, political, and legal tools are needed to help shape the development and design of technology in beneficial directions. This can seem like an impossible task in light of the rapid pace of technological change and the sense that its continued advancement is inevitable, but many countries around the world are only just beginning to take significant steps toward regulating computer technologies and are still in the process of radically rethinking the rules governing global data flows and exchange of technology across borders.

These are exciting times not just for technological development but also for technology policy—our technologies may be more advanced and complicated than ever but so, too, are our understandings of how they can best be leveraged, protected, and even constrained. The structures of technological systems as determined largely by government and institutional policies and those structures have tremendous implications for social organization and agency, ranging from open source, open systems that are highly distributed and decentralized, to those that are tightly controlled and closed, structured according to stricter and more hierarchical models. And just as our understanding of the governance of technology is developing in new and interesting ways, so, too, is our understanding of the social, cultural, environmental, and political dimensions of emerging technologies. We are realizing both the challenges and the importance of mapping out the full range of ways that technology is changing our society, what we want those changes to look like, and what tools we have to try to influence and guide those shifts.

Technology can be a source of tremendous optimism. It can help overcome some of the greatest challenges our society faces, including climate change, famine, and disease. For those who believe in the power of innovation and the promise of creative destruction to advance economic development and lead to better quality of life, technology is a vital economic driver (Schumpeter 1942) . But it can also be a tool of tremendous fear and oppression, embedding biases in automated decision-making processes and information-processing algorithms, exacerbating economic and social inequalities within and between countries to a staggering degree, or creating new weapons and avenues for attack unlike any we have had to face in the past. Scholars have even contended that the emergence of the term technology in the nineteenth and twentieth centuries marked a shift from viewing individual pieces of machinery as a means to achieving political and social progress to the more dangerous, or hazardous, view that larger-scale, more complex technological systems were a semiautonomous form of progress in and of themselves (Marx 2010) . More recently, technologists have sharply criticized what they view as a wave of new Luddites, people intent on slowing the development of technology and turning back the clock on innovation as a means of mitigating the societal impacts of technological change (Marlowe 1970) .

At the heart of fights over new technologies and their resulting global changes are often two conflicting visions of technology: a fundamentally optimistic one that believes humans use it as a tool to achieve greater goals, and a fundamentally pessimistic one that holds that technological systems have reached a point beyond our control. Technology philosophers have argued that neither of these views is wholly accurate and that a purely optimistic or pessimistic view of technology is insufficient to capture the nuances and complexity of our relationship to technology (Oberdiek and Tiles 1995) . Understanding technology and how we can make better decisions about designing, deploying, and refining it requires capturing that nuance and complexity through in-depth analysis of the impacts of different technological advancements and the ways they have played out in all their complicated and controversial messiness across the world.

These impacts are often unpredictable as technologies are adopted in new contexts and come to be used in ways that sometimes diverge significantly from the use cases envisioned by their designers. The internet, designed to help transmit information between computer networks, became a crucial vehicle for commerce, introducing unexpected avenues for crime and financial fraud. Social media platforms like Facebook and Twitter, designed to connect friends and families through sharing photographs and life updates, became focal points of election controversies and political influence. Cryptocurrencies, originally intended as a means of decentralized digital cash, have become a significant environmental hazard as more and more computing resources are devoted to mining these forms of virtual money. One of the crucial challenges in this area is therefore recognizing, documenting, and even anticipating some of these unexpected consequences and providing mechanisms to technologists for how to think through the impacts of their work, as well as possible other paths to different outcomes (Verbeek 2006) . And just as technological innovations can cause unexpected harm, they can also bring about extraordinary benefits—new vaccines and medicines to address global pandemics and save thousands of lives, new sources of energy that can drastically reduce emissions and help combat climate change, new modes of education that can reach people who would otherwise have no access to schooling. Regulating technology therefore requires a careful balance of mitigating risks without overly restricting potentially beneficial innovations.

Nations around the world have taken very different approaches to governing emerging technologies and have adopted a range of different technologies themselves in pursuit of more modern governance structures and processes (Braman 2009) . In Europe, the precautionary principle has guided much more anticipatory regulation aimed at addressing the risks presented by technologies even before they are fully realized. For instance, the European Union’s General Data Protection Regulation focuses on the responsibilities of data controllers and processors to provide individuals with access to their data and information about how that data is being used not just as a means of addressing existing security and privacy threats, such as data breaches, but also to protect against future developments and uses of that data for artificial intelligence and automated decision-making purposes. In Germany, Technische Überwachungsvereine, or TÜVs, perform regular tests and inspections of technological systems to assess and minimize risks over time, as the tech landscape evolves. In the United States, by contrast, there is much greater reliance on litigation and liability regimes to address safety and security failings after-the-fact. These different approaches reflect not just the different legal and regulatory mechanisms and philosophies of different nations but also the different ways those nations prioritize rapid development of the technology industry versus safety, security, and individual control. Typically, governance innovations move much more slowly than technological innovations, and regulations can lag years, or even decades, behind the technologies they aim to govern.

In addition to this varied set of national regulatory approaches, a variety of international and nongovernmental organizations also contribute to the process of developing standards, rules, and norms for new technologies, including the International Organization for Standardization­ and the International Telecommunication Union. These multilateral and NGO actors play an especially important role in trying to define appropriate boundaries for the use of new technologies by governments as instruments of control for the state.

At the same time that policymakers are under scrutiny both for their decisions about how to regulate technology as well as their decisions about how and when to adopt technologies like facial recognition themselves, technology firms and designers have also come under increasing criticism. Growing recognition that the design of technologies can have far-reaching social and political implications means that there is more pressure on technologists to take into consideration the consequences of their decisions early on in the design process (Vincenti 1993; Winner 1980) . The question of how technologists should incorporate these social dimensions into their design and development processes is an old one, and debate on these issues dates back to the 1970s, but it remains an urgent and often overlooked part of the puzzle because so many of the supposedly systematic mechanisms for assessing the impacts of new technologies in both the private and public sectors are primarily bureaucratic, symbolic processes rather than carrying any real weight or influence.

Technologists are often ill-equipped or unwilling to respond to the sorts of social problems that their creations have—often unwittingly—exacerbated, and instead point to governments and lawmakers to address those problems (Zuckerberg 2019) . But governments often have few incentives to engage in this area. This is because setting clear standards and rules for an ever-evolving technological landscape can be extremely challenging, because enforcement of those rules can be a significant undertaking requiring considerable expertise, and because the tech sector is a major source of jobs and revenue for many countries that may fear losing those benefits if they constrain companies too much. This indicates not just a need for clearer incentives and better policies for both private- and public-sector entities but also a need for new mechanisms whereby the technology development and design process can be influenced and assessed by people with a wider range of experiences and expertise. If we want technologies to be designed with an eye to their impacts, who is responsible for predicting, measuring, and mitigating those impacts throughout the design process? Involving policymakers in that process in a more meaningful way will also require training them to have the analytic and technical capacity to more fully engage with technologists and understand more fully the implications of their decisions.

At the same time that tech companies seem unwilling or unable to rein in their creations, many also fear they wield too much power, in some cases all but replacing governments and international organizations in their ability to make decisions that affect millions of people worldwide and control access to information, platforms, and audiences (Kilovaty 2020) . Regulators around the world have begun considering whether some of these companies have become so powerful that they violate the tenets of antitrust laws, but it can be difficult for governments to identify exactly what those violations are, especially in the context of an industry where the largest players often provide their customers with free services. And the platforms and services developed by tech companies are often wielded most powerfully and dangerously not directly by their private-sector creators and operators but instead by states themselves for widespread misinformation campaigns that serve political purposes (Nye 2018) .

Since the largest private entities in the tech sector operate in many countries, they are often better poised to implement global changes to the technological ecosystem than individual states or regulatory bodies, creating new challenges to existing governance structures and hierarchies. Just as it can be challenging to provide oversight for government use of technologies, so, too, oversight of the biggest tech companies, which have more resources, reach, and power than many nations, can prove to be a daunting task. The rise of network forms of organization and the growing gig economy have added to these challenges, making it even harder for regulators to fully address the breadth of these companies’ operations (Powell 1990) . The private-public partnerships that have emerged around energy, transportation, medical, and cyber technologies further complicate this picture, blurring the line between the public and private sectors and raising critical questions about the role of each in providing critical infrastructure, health care, and security. How can and should private tech companies operating in these different sectors be governed, and what types of influence do they exert over regulators? How feasible are different policy proposals aimed at technological innovation, and what potential unintended consequences might they have?

Conflict between countries has also spilled over significantly into the private sector in recent years, most notably in the case of tensions between the United States and China over which technologies developed in each country will be permitted by the other and which will be purchased by other customers, outside those two countries. Countries competing to develop the best technology is not a new phenomenon, but the current conflicts have major international ramifications and will influence the infrastructure that is installed and used around the world for years to come. Untangling the different factors that feed into these tussles as well as whom they benefit and whom they leave at a disadvantage is crucial for understanding how governments can most effectively foster technological innovation and invention domestically as well as the global consequences of those efforts. As much of the world is forced to choose between buying technology from the United States or from China, how should we understand the long-term impacts of those choices and the options available to people in countries without robust domestic tech industries? Does the global spread of technologies help fuel further innovation in countries with smaller tech markets, or does it reinforce the dominance of the states that are already most prominent in this sector? How can research universities maintain global collaborations and research communities in light of these national competitions, and what role does government research and development spending play in fostering innovation within its own borders and worldwide? How should intellectual property protections evolve to meet the demands of the technology industry, and how can those protections be enforced globally?

These conflicts between countries sometimes appear to challenge the feasibility of truly global technologies and networks that operate across all countries through standardized protocols and design features. Organizations like the International Organization for Standardization, the World Intellectual Property Organization, the United Nations Industrial Development Organization, and many others have tried to harmonize these policies and protocols across different countries for years, but have met with limited success when it comes to resolving the issues of greatest tension and disagreement among nations. For technology to operate in a global environment, there is a need for a much greater degree of coordination among countries and the development of common standards and norms, but governments continue to struggle to agree not just on those norms themselves but even the appropriate venue and processes for developing them. Without greater global cooperation, is it possible to maintain a global network like the internet or to promote the spread of new technologies around the world to address challenges of sustainability? What might help incentivize that cooperation moving forward, and what could new structures and process for governance of global technologies look like? Why has the tech industry’s self-regulation culture persisted? Do the same traditional drivers for public policy, such as politics of harmonization and path dependency in policy-making, still sufficiently explain policy outcomes in this space? As new technologies and their applications spread across the globe in uneven ways, how and when do they create forces of change from unexpected places?

These are some of the questions that we hope to address in the Technology and Global Change section through articles that tackle new dimensions of the global landscape of designing, developing, deploying, and assessing new technologies to address major challenges the world faces. Understanding these processes requires synthesizing knowledge from a range of different fields, including sociology, political science, economics, and history, as well as technical fields such as engineering, climate science, and computer science. A crucial part of understanding how technology has created global change and, in turn, how global changes have influenced the development of new technologies is understanding the technologies themselves in all their richness and complexity—how they work, the limits of what they can do, what they were designed to do, how they are actually used. Just as technologies themselves are becoming more complicated, so are their embeddings and relationships to the larger social, political, and legal contexts in which they exist. Scholars across all disciplines are encouraged to join us in untangling those complexities.

Josephine Wolff is an associate professor of cybersecurity policy at the Fletcher School of Law and Diplomacy at Tufts University. Her book You’ll See This Message When It Is Too Late: The Legal and Economic Aftermath of Cybersecurity Breaches was published by MIT Press in 2018.

Recipient(s) will receive an email with a link to 'How Is Technology Changing the World, and How Should the World Change Technology?' and will not need an account to access the content.

Subject: How Is Technology Changing the World, and How Should the World Change Technology?

(Optional message may have a maximum of 1000 characters.)

Citing articles via

Email alerts, affiliations.

  • Special Collections
  • Review Symposia
  • Info for Authors
  • Info for Librarians
  • Editorial Team
  • Emerging Scholars Forum
  • Open Access
  • Online ISSN 2575-7350
  • Copyright © 2024 The Regents of the University of California. All Rights Reserved.

Stay Informed


  • Ancient World
  • Anthropology
  • Communication
  • Criminology & Criminal Justice
  • Film & Media Studies
  • Food & Wine
  • Browse All Disciplines
  • Browse All Courses
  • Book Authors
  • Booksellers
  • Instructions
  • Journal Authors
  • Journal Editors
  • Media & Journalists
  • Planned Giving

About UC Press

  • Press Releases
  • Seasonal Catalog
  • Acquisitions Editors
  • Customer Service
  • Exam/Desk Requests
  • Media Inquiries
  • Print-Disability
  • Rights & Permissions
  • UC Press Foundation
  • © Copyright 2023 by the Regents of the University of California. All rights reserved. Privacy policy    Accessibility

This Feature Is Available To Subscribers Only

Sign In or Create an Account

Science and Technology Will Change Our Future Essay

Introduction, papers are replaced by computer interface, credit card type media, changes in travel, lowering the cost of living, works cited.

Science and technology have continued to play a central role in providing means through which people improve their well-being and health, alleviate poverty, and define themselves as a nation and people. Many societies are built on a firm foundation of science and technology and irrevocably dependent on them. As such, science and technology will continue to play a major role in shaping our lives and nation. It will change how people communicate and interact with each other, how people work, travel and how students learn. Technological innovation in the next 50 years will rival innovation that took place in the past 400 years.

According to Reuters, businesses and schools will go paperless as papers are replaced by computer interfaces built into furniture and walls. Advances in communication, energy distribution, and storage in consumer products and businesses will support a technology known as “room ware” that will support this breakthrough. Offices Tables, walls, and cafeteria tables will double as terminals that will allow a person to write down the idea and send it to a personal desk or computer located somewhere else. School and office Walls and windows will have the capability to display maps and direction commands to help locate particular offices, staff, classrooms, etc ( Reuters, 2009). As offices/schools go paperless, the environment will benefit from reduced dependent on the tree for paper production.

After a long period of stability as the main choice of storage DVD and CD, media will be replaced by credit card type media by 2015. As the internet becomes more flexible coupled with the availability of cheap massive storage space, high data transfer rate, people will no longer need physical storage media to store data. File storage and access will be done remotely due to the convenience brought by the internet. Movies will only be available for download from the internet and that the user will need to access code to get movies and data. (B, 2009)

Innovation in Science and Technology will also change travel. People will be traveling on sky car that will be cruising comfortably at a speed of 300Miles per hour using regular fuel. The sky car will be equipped with onboard computers and will be fully automated. This means that one will not need a license to fly the sky car. The sky car will be equipped with redundant engines for safety purposes just in case the main engine fails (, 2010). The cost of a new sky car will be equal to that of a luxury car once mass production begins. Sky car will be cost less to main and will launch and land at a pad the size of the dining room. Using sky car, people will be able to avoid traffic, spending tickets and save travel time.

Other speculations about the future include the availability of cheap, advanced personal equipment for self-diagnosis for illnesses that currently require a costly medical diagnosis. This will reduce the cost of health care and health insurance, hence lowering the cost of living. It will also lead to better health. Robots will also become part of mainstream life, in form of interactive toys, household items like carpets and pets will require no maintenance (Mooneyham, 2005).

The future will be shaped greatly by continued innovation in science and technology. Offices will go paperless and papers will be replaced by a computer interface inbuilt on office furniture and walls. DVD and CD media will be replaced by credit card types of media as people turn to online data storage and access. Technology innovation will also have a great impact on travel with the introduction of sky cars, which will result in reduced travel time and traffic congestion. New health equipment will help people to diagnose themselves for diseases, hence reducing the cost of health care, leading to better health.

Reuters. (2009). 2018 milestone: “Paperless Offices”. Web.

B, D. (2009). The Future of – Online/Remote Data Storage. Web.

Future Diagnostics Group. (2009). Nuclear Medicin. Web. (2010). Moller Skycar – Long Time Coming. Web.

Mooneyham, J. (2005). Substantial regeneration treatments for various organs. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, November 2). Science and Technology Will Change Our Future.

"Science and Technology Will Change Our Future." IvyPanda , 2 Nov. 2023,

IvyPanda . (2023) 'Science and Technology Will Change Our Future'. 2 November.

IvyPanda . 2023. "Science and Technology Will Change Our Future." November 2, 2023.

1. IvyPanda . "Science and Technology Will Change Our Future." November 2, 2023.


IvyPanda . "Science and Technology Will Change Our Future." November 2, 2023.

  • Emirates Airlines' Transition to Paperless Environment
  • Challenges of a Paperless Office
  • Paperless education
  • Information Technology: The Impact of Paperless
  • Smart Dubai: Creating a Paperless Organization
  • Paperless Passports as a Product Innovation
  • Making an Office Paperless: Project Progress
  • Consumer Behaviour: Paper-less society through reduction of Yellow Pages and increasing online books
  • Paper Administration Shift to Electronic Platforms
  • Paperless Billing System Public Project
  • Advantages of Using Computers at Work
  • “Why the Future Doesn’t Need Us” by Bill Joy
  • Human Mind Simply: A Biological Computer
  • Remote Sensing and Geographical Information System for Developing Countries
  • “Technology Run Amok” and “Being Prepared for Technology Snow Days”: Articles' Analysis

Under the umbrella of the IAP, more than 140 national, regional and global member academies work together to support the vital role of science in seeking evidence-based solutions to the world’s most challenging problems.

IAP empowers academies and regional academy networks to provide independent, authoritative advice on global, regional and national issues.

IAP communicates the importance of science, engineering and medicine.

IAP engages with its member academies in a number of ways to carry out projects and programmes.

Read the latest news from the IAP and its international network.

essay about science and technology innovation amid the changing world

The world is changing at a rapid pace, driven by science and technology

The countless manifestations of science pervade our world, and they profoundly affect the social, economic, and cultural outlooks of societies and individuals alike. Moreover, the accumulation of scientific knowledge and its technological applications is accelerating at a dizzying clip, enabled in large part by ever more powerful computers and lightning-fast communications.

The Internet, for example, revolutionizes the very meaning of time and space. With the click of a mouse and the flight of electrons, vast quantities of data and manifold services can move across the globe. Today there are billions of pages on the appropriately named World Wide Web; by 2005 it will likely be eight billion. Thus the integration of the world economy through trade, capital flows, and enhanced communications is rapidly proceeding as the products of the Information and Communications Technology Revolution permeate every corner of society. The economies of the world will increasingly become 'knowledge-based,' with value-added coming more from knowledge than materials.

A revolution is occurring in the life sciences as well. Today we are not only decoding DNA - the blueprint of life - we are learning to manage the placement and expression of genes and to mobilize microorganisms to do our work. We can thereby manipulate - repair, transfer, insert - the constituents of living things in order to improve health, create new and useful products, increase productivity, and even transform whole industries.

Taken together, such innovations have altered and expanded our notions of economic and social development, and they often do so not with high-tech dazzle, but in mundane yet profound ways. We have come to realize that better health care, nutrition, and labor-saving devices make it possible for more young people to attend school and to complete more years of schooling. The net result, at least in some societies, has been a major increase in the number of able and educated individuals entering the workforce - people who have far better prospects of contributing to the overall welfare of society and of leading more satisfying lives. 

Yet the global reality is that many innovations fail to accrue to those who need them most, and benefits are not shared equitably around the planet. Such maldistribution is further confounded by troubling trends in demography, urbanization, public health, and environment, which will continue into the foreseeable future even if only from their present momentum.

Demographic growth will continue until the world population stabilizes at between 8 and 9.5 billion persons by the middle of the century, with enormous differences in the age profiles of different parts of the world. Sub-Saharan Africa, for example, will continue to grow, likely reaching some 1.5 billion persons. Conversely, in Japan and most of Europe, populations will remain stable if not actually decline. The industrialized nations will increasingly see the graying of their labor forces and an increase in the needs of the elderly, with concomitant shortages in rapidly growing parts of their labor market; by contrast, the predominantly young populations of the developing nations will be putting enormous pressure on education and training facilities and on local labor markets to create adequate employment opportunities.

For the first time, the majority of human beings are now classified as urban, a phenomenon that will continue unabated, mostly in the developing world, even though some will use the new information and communications technology to work out of more rural surroundings. Urbanization will challenge the capacities of developing nations to deal with the enormous problems of their 'megacities' (those with populations over 10 million). Over the next three decades, India alone will face an increment of urban population twice the size of the total populations of France, Germany, and the United Kingdom combined.

Poverty, destitution, and hunger still stalk humanity. Despite the enormous improvements that have been achieved in human welfare, 38 percent of the people in the least developed nations are malnourished and the shadow of starvation and famine still looms large in parts of the world - especially in Sub-Saharan Africa, where civil strife has exacerbated an already bad situation. One-sixth of the human family lives on less than a dollar a day, and almost half of humanity survives on fewer than two dollars a day. The richest quintile of the world's people earns more than 70 times the income of the poorest quintile.

Problems such as HIV/AIDS strike globally, though responses to the disease's devastation vary enormously with a nation's capacity to deliver treatment and modify societal behavior. Some societies are producing a generation of AIDS orphans, with large parts of Sub-Saharan Africa and South Asia facing enormous and crippling losses. The decimation of young adults at their most productive moments is a human tragedy of gigantic proportions and a social and economic nightmare. Dramatic policy changes

are required to address this issue, as well as persistent diseases such as malaria and tuberculosis and the more recent threat of severe acute respiratory syndrome (SARS). More research is required to find better responses. Scientific collaboration on confronting the challenge - and on making the results of the research available to those who need it most - is essential.

Environmental challenges abound. If present production and consumption patterns are not changed, the impact on our biosphere will be astounding: the air and water we depend on will become increasingly polluted; the soils will more and more erode; and forests, habitats, and biodiversity will continue to be lost. If the entire population of the earth were to produce and consume at present U.S. levels, we would need three Planet Earths. The need to implement more environmentally friendly and socially responsible economic activity has never been greater.Luckily, we have a growing level of international consensus today on these demographic, urbanization, public health, and environmental issues, among others, that has never before existed. In September 2000, the United Nations Millennium Summit of the world's heads of state declared specific goals for reducing poverty, hunger, illiteracy, disease, and environmental degradation. Explicit in these Millennium Development Goals is a commitment to equity and participation, rather than polarization and marginalization, as we move toward an increasingly knowledge-based economy in the 21st century. The need for international cooperation to address these concerns is also recognized in the United Nations Millennium Declaration, especially considering problems such as environmental issues, which cross national borders.

Yet despite the growing consensus on all these issues, despite agreement on the inevitability of movement toward a knowledge-based future, the international community has overlooked something critical. It has given inadequate attention to capacity building in science and technology (S&T) as the engine that drives knowledge-based development, that is essential to social and economical inclusion, and that alleviates the demographic, urbanization, public health, and environmental pressures plaguing the world - especially the developing world.

It is precisely the need to correct that critical omission that we address here, and we do so in terms of the needed personnel, infrastructure, investment, institutions, and regulatory framework available for conducting scientific research and pursuing technological development in every country of the world.

You can download the full 'Inventing a better future' report here .

essay about science and technology innovation amid the changing world

  • Follow us on Facebook
  • Follow us on Twitter
  • Follow us on LinkedIn
  • Watch us on Youtube
  • Latest Explore all the latest news and information on Physics World
  • Research updates Keep track of the most exciting research breakthroughs and technology innovations
  • News Stay informed about the latest developments that affect scientists in all parts of the world
  • Features Take a deeper look at the emerging trends and key issues within the global scientific community
  • Analysis Discover the stories behind the headlines
  • Blog Enjoy a more personal take on the key events in and around science
  • Events Plan the meetings and conferences you want to attend with our comprehensive events calendar
  • People Meet the people behind the science
  • Careers Consider your career options with valuable advice and insightful case studies
  • Opinion and reviews Find out whether you agree with our expert commentators
  • Interviews Discover the views of leading figures in the scientific community
  • Personalities Find out who’s doing what in industry and academia
  • Impact Explore the value of scientific research for industry, the economy and society
  • Business and innovation Find out how recent scientific breakthroughs are driving business innovation and commercial growth
  • Education and outreach Learn about novel approaches to educating and inspiring the scientists of the future
  • Policy and funding Understand how emerging policy changes could affect your work and career
  • Projects and facilities Follow the latest progress at the world’s top scientific experiments
  • Innovation showcases A round-up of the latest innovation from our corporate partners
  • Collections Explore special collections that bring together our best content on trending topics
  • Artificial intelligence Explore the ways in which today’s world relies on AI, and ponder how this technology might shape the world of tomorrow
  • #BlackInPhysics Celebrating Black physicists and revealing a more complete picture of what a physicist looks like
  • Nanotechnology in action The challenges and opportunities of turning advances in nanotechnology into commercial products
  • The Nobel Prize for Physics Explore the work of recent Nobel laureates, find out what happens behind the scenes, and discover some who were overlooked for the prize
  • Revolutions in computing Find out how scientists are exploiting digital technologies to understand online behaviour and drive research progress
  • The science and business of space Explore the latest trends and opportunities associated with designing, building, launching and exploiting space-based technologies
  • Supercool physics Experiments that probe the exotic behaviour of matter at ultralow temperatures depend on the latest cryogenics technology
  • Women in physics Celebrating women in physics and their contributions to the field
  • Audio and video Explore the sights and sounds of the scientific world
  • Podcasts Our regular conversations with inspiring figures from the scientific community
  • Video Watch our specially filmed videos to get a different slant on the latest science
  • Webinars Tune into online presentations that allow expert speakers to explain novel tools and applications
  • IOP Publishing
  • Enter e-mail address
  • Show Enter password
  • Remember me Forgot your password?
  • Access more than 20 years of online content
  • Manage which e-mail newsletters you want to receive
  • Read about the big breakthroughs and innovations across 13 scientific topics
  • Explore the key issues and trends within the global scientific community
  • Choose which e-mail newsletters you want to receive

Reset your password

Please enter the e-mail address you used to register to reset your password

Registration complete

Thank you for registering with Physics World If you'd like to change your details at any time, please visit My account

  • Policy and funding
  • Opinion and reviews

Science in a changing world

Japan has traditionally been strong in science and technology, but Tateo Arimoto calls for the country to reform if it wants to stay ahead

“The Internet has many benefits for society but also the potential to destroy the authenticity of modern society and modern science.” Those remarks were made by the renowned electrical engineer Hiroshi Inose from the University of Tokyo some 25 years ago as Internet services were starting to be introduced in Japan. This warning is also relevant today and I still recall it when discussing science and technology policy that is related to issues such as artificial intelligence and big data.

Digital technologies are crucial for knowledge creation and transfer, not only for business and lifestyle but also for education and science. However, Japan’s traditional education and research system must be reformed to meet society’s growing demands as well as the changing global landscape of science. In the past decade, the Japanese government – as well as the country’s science and education communities – have made considerable efforts to make education more flexible and multidisciplinary from elementary to tertiary level. While institutional reform has been happening, the way we evaluate students has not yet developed and spread into classrooms and laboratories.

Science and technology policy in Japan has also been changing from a traditional focus on research and development to innovation. The highest science and technology advisory board to the Japanese prime minister – the Council for Science, Technology and Innovation – recently added innovation to its name, while the government’s research budget has swiftly changed priority from basic to applied research and innovation. Many Japanese Nobel-prize winners – the numbers of whom have been increasing in recent years – are growing concerned with such trends. They claim that Japan’s focus on science is gradually declining, and the motivation and spirit of young students and researchers is being discouraged.

Building bridges

During the earthquake and tsunami that hit north-east Japan in March 2011 resulting in the Fukushima nuclear accident, most of Japan’s scientific societies, government advisers and academics could not take timely and effective action. They lacked an emergency advice system as well as sufficient data collection methods and expertise. Japan’s science and technology community therefore lost trust among the public, politicians and administrators. Before Fukushima, around 80% of respondents to a poll carried out by Japan’s National Institute of Science and Technology Policy trusted science, but that percentage halved following Fukushima. Those sentiments have still not yet recovered after seven years.

essay about science and technology innovation amid the changing world

After Fukushima, the Science Council of Japan completely revised its 2013 code of conduct for scientists and in 2015 Japan’s foreign ministry appointed a chief science and technology adviser to advise over global issues such as the United Nations Sustainable Development Goals. This appointment raised the recognition and importance of science diplomacy with policymakers.

Another issue facing Japan’s science activities is that they are declining relative to other countries. The country needs to prioritize education and basic science in parallel with reforming education and ­science to be more open, flexible, inclusive and to better support promising younger generations.

Around six years ago, the National Graduate Institute for Policy Studies , along with the universities of Tokyo, Hitotsubashi, Kyoto, Osaka and Kyushu, began a programme to make policy more evidence-based and to train students, researchers and mid-career government officials to have a more open and multidisciplinary mindset. As one of the people behind the project, I believe it has worked to build bridges between science and policymakers. Indeed, our programme has been recognized as being effective and trustworthy, but we still have more progress to make.

In recent years, some universities have tried to add liberal arts curricula such as philosophy, history, social science and communication, to the traditional education courses for graduate students in physics, chemistry, biology and engineering. I have been involved in teaching and debating at several classes. According to many of these students, they appreciate discovering new ways of thinking and taking part in discussions beyond the boundaries of their own discipline, organization, gender, generation or nation. In doing so, they appreciate how their research can make an original contribution to knowledge and society from a diverse perspective.

Two leading international science councils – the International Council for Science and the International Social Science Council – made the historic decision last year to merge and form a single global entity called the International Science Council (ISC) . The new body will strengthen international, interdisciplinary collaboration and support scientists to advance science and address global issues for the greater good. The International Union of Pure and Applied Physics subscribes to the following core values of the ISC: excellence and professionalism; inclusivity and diversity; transparency and integrity; innovation and sustainability; scientific education; and capacity development.

The country needs to prioritize education and basic science in parallel with reforming education and science to be more open, flexible, inclusive and to better support promising younger generations

According to my experience discussing sustainable development and science and technology with people in developing countries, Japan is an important role model for those nations’ own futures. They see Japan’s long-term focus on education, science and technology, knowing that the modernization of this non-western country over the last 150 years has been tough but worthwhile in the end.

We now need to build a global platform for sharing knowledge, data, expertise and experiences for sustainable development. It is high time, both in Japan and across the world, to rethink what science is, who a scientist is and why science is so important in the changing world.

  • For more about Japan, check out the latest Physics World Special Report Japan available in our digital magazine or via the Physics World app for any iOS or Android smartphone or tablet.

Want to read more?

  • E-mail Address

Tateo Arimoto is a professor at the National Graduate Institute for Policy Studies and a principal fellow at the Japan Science and Technology Agency, e-mail [email protected]

essay about science and technology innovation amid the changing world

CERN Courier

Reporting on international high-energy physics

The pioneer princess

  • Energy storage and management

Rotatiload! Synchronous inertia and frequency stability

Discover more from physics world.

P5 podcast image

Looking to the future of US particle physics: P5 member Abigail Vieregg is our guest

NASA's Jet Propulsion Laboratory

NASA’s Jet Propulsion Laboratory to lay off more than 500 employees

COP28 meeting

How physics can help deliver the pledges made at the COP28 summit

Related jobs, photonics support engineer i, science writer ii, new products, science writer l, related events.

  • Everyday science | Conference Pittcon Conference and Exposition 24—28 February 2024 | San Diego, US
  • Mathematics and computation | Virtual event Online surface analysis short courses on AES, XPS/ESCA and CasaXPS 11—22 March 2024
  • Medical physics | Workshop ISMRM Workshop on Moving Forward with Intravoxel Incoherent Motion Modeling for Diffusion-Weighted MRI: An Attempt at Consensus 26—28 March 2024 | Erlangen, Germany

Science, technology and innovation in a 21st century context

  • Published: 27 August 2011
  • Volume 44 , pages 209–213, ( 2011 )

Cite this article

  • John H. Marburger III 1  

22k Accesses

8 Citations

3 Altmetric

Explore all metrics

Avoid common mistakes on your manuscript.

This editorial essay was prepared by John H. “Jack” Marburger for a workshop on the “science of science and innovation policy” held in 2009 that was the basis for this special issue. It is published posthumously .

Linking the words “science,” “technology,” and “innovation,” may suggest that we know more about how these activities are related than we really do. This very common linkage implicitly conveys a linear progression from scientific research to technology creation to innovative products. More nuanced pictures of these complex activities break them down into components that interact with each other in a multi-dimensional socio-technological-economic network. A few examples will help to make this clear.

Science has always functioned on two levels that we may describe as curiosity-driven and need-driven, and they interact in sometimes surprising ways. Galileo’s telescope, the paradigmatic instrument of discovery in pure science, emerged from an entirely pragmatic tradition of lens-making for eye-glasses. And we should keep in mind that the industrial revolution gave more to science than it received, at least until the last half of the nineteenth century when the sciences of chemistry and electricity began to produce serious economic payoffs. The flowering of science during the era, we call the enlightenment owed much to its links with crafts and industry, but as it gained momentum science created its own need for practical improvements. After all, the frontiers of science are defined by the capabilities of instrumentation, that is, of technology. The needs of pure science are a huge but poorly understood stimulus for technologies that have the capacity to be disruptive precisely because these needs do not arise from the marketplace. The innovators who built the World Wide Web on the foundation of the Internet were particle physicists at CERN, struggling to satisfy their unique need to share complex information. Others soon discovered “needs” of which they had been unaware that could be satisfied by this innovation, and from that point the Web transformed the Internet from a tool for the technological elite into a broad platform for a new kind of economy.

Necessity is said to be the mother of invention, but in all human societies, “necessity” is a mix of culturally conditioned perceptions and the actual physical necessities of life. The concept of need, of what is wanted, is the ultimate driver of markets and an essential dimension of innovation. And as the example of the World Wide Web shows, need is very difficult to identify before it reveals itself in a mass movement. Why did I not know I needed a cell phone before nearly everyone else had one? Because until many others had one I did not, in fact, need one. Innovation has this chicken-and-egg quality that makes it extremely hard to analyze. We all know of visionaries who conceive of a society totally transformed by their invention and who are bitter that the world has not embraced their idea. Sometimes we think of them as crackpots, or simply unrealistic about what it takes to change the world. We practical people necessarily view the world through the filter of what exists, and fail to anticipate disruptive change. Nearly always we are surprised by the rapid acceptance of a transformative idea. If we truly want to encourage innovation through government policies, we are going to have to come to grips with this deep unpredictability of the mass acceptance of a new concept. Works analyzing this phenomenon are widely popular under titles like “ The Tipping Point ” by Gladwell ( 2000 ) or more recently the book by Taleb ( 2007 ) called The Black Swan , among others.

What causes innovations to be adopted and integrated into economies depends on their ability to satisfy some perceived need by consumers, and that perception may be an artifact of marketing, or fashion, or cultural inertia, or ignorance. Some of the largest and most profitable industries in the developed world—entertainment, automobiles, clothing and fashion accessories, health products, children’s toys, grownups’ toys!—depend on perceptions of need that go far beyond the utilitarian and are notoriously difficult to predict. And yet these industries clearly depend on sophisticated and rapidly advancing technologies to compete in the marketplace. Of course, they do not depend only upon technology. Technologies are part of the environment for innovation, or in a popular and very appropriate metaphor—part of the innovation ecology .

This complexity of innovation and its ecology is conveyed in Chapter One of a currently popular best-seller in the United States called Innovation Nation by the American innovation guru, Kao ( 2007 ), formerly on the faculty of the Harvard Business School:

“I define it [innovation],” writes Kao, “as the ability of individuals, companies, and entire nations to continuously create their desired future. Innovation depends on harvesting knowledge from a range of disciplines besides science and technology, among them design, social science, and the arts. And it is exemplified by more than just products; services, experiences, and processes can be innovative as well. The work of entrepreneurs, scientists, and software geeks alike contributes to innovation. It is also about the middlemen who know how to realize value from ideas. Innovation flows from shifts in mind-set that can generate new business models, recognize new opportunities, and weave innovations throughout the fabric of society. It is about new ways of doing and seeing things as much as it is about the breakthrough idea.” (Kao 2007 , p. 19).

This is not your standard government-type definition. Gurus, of course, do not have to worry about leading indicators and predictive measures of policy success. Nevertheless, some policy guidance can be drawn from this high level “definition,” and I will do so later.

The first point, then, is that the structural aspects of “science, technology, and innovation” are imperfectly defined, complex, and poorly understood. There is still much work to do to identify measures, develop models, and test them against actual experience before we can say we really know what it takes to foster innovation. The second point I want to make is about the temporal aspects: all three of these complex activities are changing with time. Science, of course, always changes through the accumulation of knowledge, but it also changes through revolutions in its theoretical structure, through its ever-improving technology, and through its evolving sociology. The technology and sociology of science are currently impacted by a rapidly changing information technology. Technology today flows increasingly from research laboratories but the influence of technology on both science and innovation depends strongly on its commercial adoption, that is, on market forces. Commercial scale manufacturing drives down the costs of technology so it can be exploited in an ever-broadening range of applications. The mass market for precision electro-mechanical devices like cameras, printers, and disk drives is the basis for new scientific instrumentation and also for further generations of products that integrate hundreds of existing components in new devices and business models like the Apple iPod and video games, not to mention improvements in old products like cars and telephones. Innovation is changing too as it expands its scope beyond individual products to include all or parts of systems such as supply chains and inventory control, as in the Wal-Mart phenomenon. Apple’s iPod does not stand alone; it is integrated with iTunes software and novel arrangements with media providers.

With one exception, however, technology changes more slowly than it appears because we encounter basic technology platforms in a wide variety of relatively short-lived products. Technology is like a language that innovators use to express concepts in the form of products, and business models that serve (and sometimes create) a variety of needs, some of which fluctuate with fashion. The exception to the illusion of rapid technology change is the pace of information technology, which is no illusion. It has fulfilled Moore’s Law for more than half a century, and it is a remarkable historical anomaly arising from the systematic exploitation of the understanding of the behavior of microscopic matter following the discovery of quantum mechanics. The pace would be much less without a continually evolving market for the succession of smaller, higher capacity products. It is not at all clear that the market demand will continue to support the increasingly expensive investment in fabrication equipment for each new step up the exponential curve of Moore’s Law. The science is probably available to allow many more capacity doublings if markets can sustain them. Let me digress briefly on this point.

Many science commentators have described the twentieth century as the century of physics and the twenty-first as the century of biology. We now know that is misleading. It is true that our struggle to understand the ultimate constituents of matter has now encompassed (apparently) everything of human scale and relevance, and that the universe of biological phenomena now lies open for systematic investigation and dramatic applications in health, agriculture, and energy production. But there are two additional frontiers of physical science, one already highly productive, the other very intriguing. The first is the frontier of complexity , where physics, chemistry, materials science, biology, and mathematics all come together. This is where nanotechnology and biotechnology reside. These are huge fields that form the core of basic science policy in most developed nations. The basic science of the twenty-first century is neither biology nor physics, but an interdisciplinary mix of these and other traditional fields. Continued development of this domain contributes to information technology and much else. I mentioned two frontiers. The other physical science frontier borders the nearly unexploited domain of quantum coherence phenomena . It is a very large domain and potentially a source of entirely new platform technologies not unlike microelectronics. To say more about this would take me too far from our topic. The point is that nature has many undeveloped physical phenomena to enrich the ecology of innovation and keep us marching along the curve of Moore’s Law if we can afford to do so.

I worry about the psychological impact of the rapid advance of information technology. I believe it has created unrealistic expectations about all technologies and has encouraged a casual attitude among policy makers toward the capability of science and technology to deliver solutions to difficult social problems. This is certainly true of what may be the greatest technical challenge of all time—the delivery of energy to large developed and developing populations without adding greenhouse gases to the atmosphere. The challenge of sustainable energy technology is much more difficult than many people currently seem to appreciate. I am afraid that time will make this clear.

Structural complexities and the intrinsic dynamism of science and technology pose challenges to policy makers, but they seem almost manageable compared with the challenges posed by extrinsic forces. Among these are globalization and the impact of global economic development on the environment. The latter, expressed quite generally through the concept of “sustainability” is likely to be a component of much twenty-first century innovation policy. Measures of development, competitiveness, and innovation need to include sustainability dimensions to be realistic over the long run. Development policies that destroy economically important environmental systems, contribute to harmful global change, and undermine the natural resource basis of the economy are bad policies. Sustainability is now an international issue because the scale of development and the globalization of economies have environmental and natural resource implications that transcend national borders.

From the policy point of view, globalization is a not a new phenomenon. Science has been globalized for centuries, and we ought to be studying it more closely as a model for effective responses to the globalization of our economies. What is striking about science is the strong imperative to share ideas through every conceivable channel to the widest possible audience. If you had to name one chief characteristic of science, it would be empiricism. If you had to name two, the other would be open communication of data and ideas. The power of open communication in science cannot be overestimated. It has established, uniquely among human endeavors, an absolute global standard. And it effectively recruits talent from every part of the globe to labor at the science frontiers. The result has been an extraordinary legacy of understanding of the phenomena that shape our existence. Science is the ultimate example of an open innovation system.

Science practice has received much attention from philosophers, social scientists, and historians during the past half-century, and some of what has been learned holds valuable lessons for policy makers. It is fascinating to me how quickly countries that provide avenues to advanced education are able to participate in world science. The barriers to a small but productive scientific activity appear to be quite low and whether or not a country participates in science appears to be discretionary. A small scientific establishment, however, will not have significant direct economic impact. Its value at early stages of development is indirect, bringing higher performance standards, international recognition, and peer role models for a wider population. A science program of any size is also a link to the rich intellectual resources of the world scientific community. The indirect benefit of scientific research to a developing country far exceeds its direct benefit, and policy needs to recognize this. It is counterproductive to base support for science in such countries on a hoped-for direct economic stimulus.

Keeping in mind that the innovation ecology includes far more than science and technology, it should be obvious that within a small national economy innovation can thrive on a very small indigenous science and technology base. But innovators, like scientists, do require access to technical information and ideas. Consequently, policies favorable to innovation will create access to education and encourage free communication with the world technical community. Anything that encourages awareness of the marketplace and all its actors on every scale will encourage innovation.

This brings me back to John Kao’s definition of innovation. His vision of “the ability of individuals, companies, and entire nations to continuously create their desired future” implies conditions that create that ability, including most importantly educational opportunity (Kao 2007 , p. 19). The notion that “innovation depends on harvesting knowledge from a range of disciplines besides science and technology” implies that innovators must know enough to recognize useful knowledge when they see it, and that they have access to knowledge sources across a spectrum that ranges from news media and the Internet to technical and trade conferences (2007, p. 19). If innovation truly “flows from shifts in mind-set that can generate new business models, recognize new opportunities, and weave innovations throughout the fabric of society,” then the fabric of society must be somewhat loose-knit to accommodate the new ideas (2007, p. 19). Innovation is about risk and change, and deep forces in every society resist both of these. A striking feature of the US innovation ecology is the positive attitude toward failure, an attitude that encourages risk-taking and entrepreneurship.

All this gives us some insight into what policies we need to encourage innovation. Innovation policy is broader than science and technology policy, but the latter must be consistent with the former to produce a healthy innovation ecology. Innovation requires a predictable social structure, an open marketplace, and a business culture amenable to risk and change. It certainly requires an educational infrastructure that produces people with a global awareness and sufficient technical literacy to harvest the fruits of current technology. What innovation does not require is the creation by governments of a system that defines, regulates, or even rewards innovation except through the marketplace or in response to evident success. Some regulation of new products and new ideas is required to protect public health and environmental quality, but innovation needs lots of freedom. Innovative ideas that do not work out should be allowed to die so the innovation community can learn from the experience and replace the failed attempt with something better.

Do we understand innovation well enough to develop policy for it? If the policy addresses very general infrastructure issues such as education, economic, and political stability and the like, the answer is perhaps. If we want to measure the impact of specific programs on innovation, the answer is no. Studies of innovation are at an early stage where anecdotal information and case studies, similar to John Kao’s book—or the books on Business Week’s top ten list of innovation titles—are probably the most useful tools for policy makers.

I have been urging increased attention to what I call the science of science policy —the systematic quantitative study of the subset of our economy called science and technology—including the construction and validation of micro- and macro-economic models for S&T activity. Innovators themselves, and those who finance them, need to identify their needs and the impediments they face. Eventually, we may learn enough to create reliable indicators by which we can judge the health of our innovation ecosystems. The goal is well worth the sustained effort that will be required to achieve it.

Gladwell, M. (2000). The tipping point: How little things can make a big difference . Boston: Little, Brown and Company.

Google Scholar  

Kao, J. (2007). Innovation nation: How America is losing its innovation edge, why it matters, and what we can do to get it back . New York: Free Press.

Taleb, N. N. (2007). The black swan: The impact of the highly improbable . New York: Random House.

Download references

Author information

Authors and affiliations.

Stony Brook University, Stony Brook, NY, USA

John H. Marburger III

You can also search for this author in PubMed   Google Scholar

Additional information

John H. Marburger III—deceased

Rights and permissions

Reprints and permissions

About this article

Marburger, J.H. Science, technology and innovation in a 21st century context. Policy Sci 44 , 209–213 (2011).

Download citation

Published : 27 August 2011

Issue Date : September 2011


Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

essay about science and technology innovation amid the changing world

Understanding Science

How science REALLY works...

  • Understanding Science 101

Advances in science often drive technological innovations, which may, in turn, contribute to new scientific discoveries.

Science and technology on fast forward

Science  and  technology  feed off of one another, propelling both forward. Scientific knowledge allows us to build new technologies, which often allow us to make new  observations about the world, which, in turn, allow us to build even more scientific knowledge, which then inspires another technology … and so on. As an example, we’ll start with a single scientific idea and trace its applications and impact through several different fields of science and technology, from the discovery of electrons in the 1800s to modern forensics and DNA fingerprinting…

From cathodes to crystallography

We pick up our story in the late 1800s with a bit of technology that no one much understood at the time, but which was poised to change the face of science: the cathode ray tube (node A in the diagram below and pictured above). This was a sealed glass tube emptied of almost all air — but when an electric current was passed through the tube, it no longer seemed empty. Rays of eerie light shot across the tube. In 1897, physicists would discover that these cathode rays were actually streams of electrons (B). The discovery of the electron would, in turn, lead to the discovery of the atomic nucleus in 1910 (C). On the technological front, the cathode ray tube would slowly evolve into the television (which is constructed from a cathode ray tube with the electron beam deflected in ways that produce an image on a screen) and, eventually, into many sorts of image monitors (D and E). But that’s not all…

The discovery of X-rays also pointed William and William Bragg (a father-son team) in 1913 and 1914 to the idea that X-rays could be used to figure out the arrangements of atoms in a crystal (L). This works a bit like trying to figure out the size and shape of a building based on the shadow it casts: you can work backwards from the shape of the shadow to make a guess at the building’s dimensions. When X-rays are passed through a crystal, some of the X-rays are bent or spread out (i.e., diffracted) by the atoms in the crystal. You can then extrapolate backwards from the locations of the deflected X-rays to figure out the relative locations of the crystal atoms. This technique is known as X-ray crystallography, and it has profoundly influenced the course of science by providing snapshots of molecular structures.

Perhaps most notably, Rosalind Franklin used X-ray crystallography to help uncover the structure of the key molecule of life: DNA. In 1952, Franklin, like James Watson and Francis Crick, was working on the structure of DNA — but from a different angle. Franklin was painstakingly producing diffracted images of DNA, while Watson and Crick were trying out different structures using tinker-toy models of the component molecules. In fact, Franklin had already proposed a double helical form for the molecule when, in 1953, a colleague showed Franklin’s most telling image to Watson. That picture convinced Watson and Crick that the molecule was a double helix and pointed to the arrangement of atoms within that helix. Over the next few weeks, the famous pair would use their models to correctly work out the chemical details of DNA (M).

The impact of the discovery of DNA’s structure on scientific research, medicine, agriculture, conservation, and other social issues has been wide-ranging — so much so, that it is difficult to pick out which threads of influence to follow. To choose just one, understanding the structure of DNA (along with many other inputs) eventually allowed biologists to develop a quick and easy method for copying very small amounts of DNA, known as PCR — the polymerase chain reaction (N). This technique (developed in the 1980s), in turn, allowed the development of DNA fingerprinting technologies, which have become an important part of modern criminal investigations (O).

As shown by the flowchart above, scientific knowledge (like the discovery of X-rays) and technologies (like the invention of PCR) are deeply interwoven and feed off one another. In this case, tracing the influence of a single technology, the cathode ray tube, over the course of a century has taken us on a journey spanning ancient fossils, supernovas, the invention of television, the atomic nucleus, and DNA fingerprinting. And even this complex network is incomplete. Understanding DNA’s structure, for example, led to many more advances besides just the development of PCR. And similarly, the invention of the CT scanner relied on much more scientific knowledge than just an understanding of how X-ray machines work. Scientific knowledge and technology form a maze of connections in which every idea is connected to every other idea through a winding path.

  • Science in action

Through many intervening steps, the cathode ray tube is connected to modern advances in DNA. For a focus on the steps leading up to the discovery of the arrangement of atoms in DNA, visit  The Structure of DNA: Cooperation and competition .

Fueling technology

Making strides in medicine

Subscribe to our newsletter

  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool
  • Misconceptions

Talk to our experts


  • Science and Technology Essay


Essay on Science and Technology

Science and technology is the ultimate need of an hour that changes the overall perspective of the human towards life. Over the centuries, there have been new inventions in the field of science and technology that help in modernizing. Right from connecting with people to using digital products, everything involves science and technology. In other words, it has made life easy and simple. Moreover, humans now have to live a simple life. There is modern equipment explored by tech experts to find something new for the future.

Science and technology have now expanded their wings to medical, education, manufacturing and other areas. Moreover, they are not limited to cities, but also rural areas for educational purposes. Every day new technologies keep coming, making life easier and more comfortable.

Brief about Science

Throughout history, science has come a long way. The evolution of the person is the contribution to science. Science helped humans to find vaccines, potions, medicines and scientific aids. Over the centuries, humans have faced many diseases and illnesses taking many lives. With the help of science, medicines are invented to bring down the effect or element of these illnesses.

Brief of Technology

The mobile, desktop or laptop which you are using for reading this essay, mobile you use for connectivity or communication or the smart technology which we use in our daily life, are a part of technology. From the machinery used in the factory to the robots created all fall under tech invention. In simpler words, technology has made life more comfortable.

Advancement in science and technology has changed the modern culture and the way we live our daily life.

Advantages and Disadvantages of Science and Technology

Science and technology have changed this world. From TV to planes, cars to mobile, the list keeps on going how these two inventions have changed the world we see through. For instance, the virtual talks we do use our mobile, which was not possible earlier. Similarly, there are electrical devices that have made life easier.

Furthermore, the transportation process we use has also seen the contribution of science and technology. We can reach our destination quickly to any part of the world.

Science and technology are not limited to this earth. It has now reached mars. NASA and ISRO have used science and technology to reach mars. Both organizations have witnessed success in sending astronauts and technologies to explore life in the mars.

Other Benefits

Life is much simpler with science and technology

Interaction is more comfortable and faster

Human is more sophisticated


With the progress in science and technology, we humans have become lazier. This is affecting the human mind and health. Moreover, several semi-automatic rifles are created using the latest technology, which takes maximum life. There is no doubt that the third world war will be fought with missiles created using technology.

Man has misused the tech and used it for destructive purposes.

 Man uses them to do illegal stuff.

Technology such as a smartphone, etc. hurts children.

Terrorists use modern technology for damaging work.

Science and Technology in India

India is not behind when it comes to science and technology. Over the centuries, the country has witnessed reliable technology updates giving its people a better life. The Indian economy is widely boosted with science and technology in the field of astronomy, astrophysics, space exploration, nuclear power and more. India is becoming more innovative and progressive to improve the economic condition of the nation.

The implementation of technology in the research work promotes a better life ahead. Similarly, medical science in India is progressing rapidly, making life healthy and careful. Indian scientists are using the latest technology to introduce new medical products for people and offer them at the lowest price.

The Bottom Line

The main aim of writing this essay on science and technology is to showcase how humans have evolved over the years. Since we are advancing, the science and technology industry is also advancing at a faster pace. Although there are challenges, the road ahead is exciting. From interaction to transportation and healthcare in every sector, we will witness profitable growth in science and technology.


FAQs on Science and Technology Essay

1. How technology changed humans?

Technology has certainly changed the way we live our lives. Not a single piece of technology has failed and is continuously progressing. Be it the small industry or large, technology is a boom to your society. Technology can encompass ancient technologies like calculators, calendars, batteries and others. In future, the technology worlds include Blockchain technologies, smart cities, more advanced intelligent devices, quantum computers, quantum encryption, and others. Humans are updated with technology. This is a good sign for the coming generation.

2. What are the top technologies?

In the last few years, there has been a massive update in technology. From individuals to companies, everywhere, the use of technology is required. Some of the top technologies we are witnessing are

 Data Science

 Internet of Things


 Robotic Process Automation (RPA)

 Virtual Reality

 Edge Computing

Intelligent apps

Artificial Intelligence

Each of these technologies is in the use of daily life and even in making products. However, to use this technology, there is a requirement of skilled professionals and they need proper training to use them.

3. Is the topic Science and Technology an appropriate topic for students?

Yes, Science and Technology are one of the most important topics every student should know in their schooling. The world is growing rapidly at an increasing rate where one should be equipped with minimum knowledge about these concepts. Science and technology have become a part of everyone’s life today. Therefore understanding them is definitely important.

4. Does writing essays improve English?

Yes, of course it does. Writing is absolutely fundamental to language learning. As with anything, however, it is important to learn when and what you write. If you do it all the time, your writing might sound forced. If you only do it when you don't have anything better to do, you might find yourself procrastinating, and not do it at all. It's also a lot more effective to compose essays when you are in that mindset of an essay. So, to answer your question, yes.

essay about science and technology innovation amid the changing world

10,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay about science and technology innovation amid the changing world

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay about science and technology innovation amid the changing world

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Science and Technology for Students: 100, 200, 350 Words

' src=

  • Updated on  
  • Sep 20, 2023

Essay on Science and Technology

Writing an essay on science and technology requires you to keep yourself updated with the recent developments in this field. Science is a field which has no limits. It is the most potent of all the fields and when combined with technology, then even the sky doesn’t remain a limit. Science is everywhere from the minute microscopic organisms to the gigantic celestial bodies. It’s the very essence of our existence. Let’s learn about Science and Technology in an essay format.

Also Read – Essay on Corruption

Essay on Science and Technology in 100 Words

Everything we do, every breath we take, every move we make, every interaction with any object, and even the thoughts we have, and the dreams we see, all involve science. Similarly, as the world is progressing, technology is getting intertwined with even the basic aspects of our lives. Be it education, sports, entertainment, talking to our loved ones, etc. Everything is inclusive of Technology nowadays. It is safe to say that Science and Technology go hand-in-hand. They are mutually inclusive of each other. Although from a broader perspective, Technology is a branch of Science, but still, each of these fields cannot be sustained without the other.

Essay on Science and Technology in 200 Words

Science and Technology are important aspects of life from the very beginning of the day to the end of it. We wake up in the morning because of the sound of our alarm clocks and go to bed at night after switching off our lights. Most importantly, it helps us save time is one of the results of advancements in science and technology. Each day new Technologies are being developed that are making human life easier and much more convenient.Advantages of Science and Technology

If we were to name the advantages of science and technology, then we would fall short of words because they are numerous. These range from the very little things to the very big ones.

Science and Technology are the fields that have enabled man to look beyond our own planet and hence, discover new planets and much more. And the most recent of the Project of India, The successful landing of Chandrayaan-3 on the south pole of the moon proves that the potential of Science and Technology cannot be fathomed via any means. The potential it holds is immense. 

In conclusion, we can confidently say that Science and Technology have led us to achieve an absolutely amazing life. However, it is extremely important to make use of the same in a judicious way so as to ensure its sustenance. 

Also Read – Essay on Noise Pollution

Essay on Science and Technology in 350 Words

Science and Technology include everything, from the smallest of the microbes to the most complex of the mechanisms. Our world cannot exist without Science and Technology. It is hard to imagine our lives without science and technology now. 

Impact of Science & Technology 

The impact of science and technology is so massive that it incorporates almost each and every field of science and even others. The cures to various diseases are being made due to the advancement in Science and Technology only. Also, technology has enhanced the production of crops and other agricultural practices also rely on Science and Technology for their own advancement. All of the luxuries that we have on a day-to-day basis in our lives are because of Science and Technology. Subsequently, the fields of Science and Technology have also assisted in the development of other fields as well such as, Mathematics , Astrophysics , Nuclear Energy , etc. Hence, we can say that we live in the era of Science and Technology. 

Safety Measures

Although the field of Science and Technology has provided the world with innumerable advancements and benefits that are carrying the world forward, there are a lot of aspects of the same that have a negative impact too. The negative impact of these is primarily on nature and wildlife and hence, indirectly and directly on humans as well.

The large factories that are associated with manufacturing or other developmental processes release large amounts of waste which may or may not be toxic in nature. This waste gets deposited in nature and water bodies and causes pollution. The animals marine or terrestrial living in their respective ecosystems may even ingest plastic or other toxic waste and that leads to their death. There are a lot of other negative aspects of the same.

Hence, it becomes our responsibility to use Science and Technology judiciously and prevent the degradation of nature and wildlife so as to sustain our planet, along with all its ecosystems, which will eventually ensure our existence in a healthy ecosystem leading to healthy and long life.

Science is something that is limitless. It is the most potent of all the fields and when combined with technology, then even the sky doesn’t remain a limit. Science is everywhere from the minute microscopic organisms to the most gigantic ones. It’s the very essence of our existence.

Science and Technology are important aspects of life. All of the luxuries that we have on a day-to-day basis in our lives are because of Science and Technology. Most importantly, it helps us save time is one of the results of advancements in science and technology. It is hard to imagine our lives without science and technology now. 

In any nation, science and technology holds a crucial part in its development in all aspect. The progress of the nation is dependent upon science and technology. It holds the to economic growth, changing the quality of life, and transformation of the society.

We hope this blog of ours on Essay on Science and Technology has helped you gain a deeper knowledge of the same. For more such informative and educational essays please visit our site:- Leverage Edu Essay Writing .

' src=

Deepansh Gautam

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

essay about science and technology innovation amid the changing world

Connect With Us

essay about science and technology innovation amid the changing world

25,000+ students realised their study abroad dream with us. Take the first step today.

essay about science and technology innovation amid the changing world

Resend OTP in

essay about science and technology innovation amid the changing world

Need help with?

Study abroad.

UK, Canada, US & More


Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

essay about science and technology innovation amid the changing world

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

essay about science and technology innovation amid the changing world

Make your study abroad dream a reality in January 2022 with

essay about science and technology innovation amid the changing world

India's Biggest Virtual University Fair

essay about science and technology innovation amid the changing world

Essex Direct Admission Day

Why attend .

essay about science and technology innovation amid the changing world

Don't Miss Out

  • Client Reviews
  • Sample Papers
  • Writing Resources

Among the TOP STUDENTS in the WORLD is a GROUP of STUDENTS who have used OUR SERVICES!

Essay homework help offers academic writing services to students either struggling to write their own papers or who lack sufficient time to complete their paper on time. whether you are looking for extra hours to be with your family, ill or you are running out of time, simply contact our mba writers via the order button below and we will be glad to assist., we get paid to write students assignments everyday - get your a grade now.

  • Technology Papers Homework

Sample Essay on Technology science and innovation

As you scroll down to the article, remember, we can write your assignment and get you an a grade, do you know why almost all your classmates seek writing help - because they are stressed out. all students go through a lot of stress, as the professors demand more work than the students can complete. seeking the best quality in the writing industry you’ll love this: we give you affordable prices for top quality, experienced writers, get well-researched papers that are originally written to avoid plagiarism from our masters and ph.d. writers., timely delivery, we know how important it is to submit your work on time. our professional writers get it done on time., 100% anonymity, while homework assistance gets you great grades, you also want to work with a company that guarantees privacy., unlimited revisions, once your order is submitted, you can request as many revisions as possible at no extra cost., is homework help good for you, you’re good with the fact that you need to get paper writing help online. essay homework help combines unique features that make it entirely client-oriented. we strive for perfection in every single aspect of our work processes; you can count on getting clear answers from the best support team and receiving flawlessly executed writing tasks at affordable prices., we get you at the top of your class, at essay homework help, our dedicated and professional writers and support team offer quality academic writing services to students either struggling to write or complete their own papers on time. with our academic paper writing service, you have the ability to choose from different levels of academic writing services to suit your needs. you will achieve academic progress without the fuss and hassles., get off homework as you attend to your health matters, at essay homework help, we value your health. completing quality, plagiarism-free papers gives you the peace of mind needed from your busy schedule. if your paper is causing you any kind of frustration, makes you nervous or stressed, we have an easy way out for you – without any consequences for your grade or health. our services are completely confidential; get the help you need from our professional writers., get time for your business/job or sports, amidst the complexities and eventual challenges related to meeting the demands of your personal life, our academic writing services remain a valuable tool for you to experience extra-curricular activities outside your academic life. instead of grueling over writing assignments, you can spend your valuable time on other important activities. just let us do the work for you., get time to be with your family and friends, the capacity of our service to participate in such endeavor creates opportunities for you to enjoy your university life. as a result, you would be successfully admitted to the universities and colleges you applied to with the help of top-quality application papers our writers create for you., unmatched quality control for all your writing needs, this homework sample is carefully selected from the best writers in our team. you may use this sample to write your own assignment but if you are looking for a homework paper to submit, click on the order button below to submit your assignment instructions. our support team will review your instructions and assign your order to the best available mba homework writer. get homework writing now.

Technology, science and innovation

Science and Technology has been the wheel that rides the current society. From time immemorial, there has been constant change and advancement in these sectors. Technology had been started in the ancient times and this led to various inventions of tools, skills and researches. Discussed below are three countries around the world that have rapid changes in science and technology.

Evidence of technology, science, and innovation, from Greece, Mesopotamia and China

The Greeks are vast known for their contribution in knowledge and vast skills in mechanics and writing. Greeks do have the greatest scholars in science e.g. Alexandria the great whose mechanical knowledge still helps modern scholars. It is evident that their writings are still the few articles and sources of mechanics and engineering knowledge that are able to stand the test of time. They are recognized in their architectural designs that they used in constructing temples.

Mesopotamia is well known for the invention of Archimedes’ screw. This is a simple machine that they used in raising water to various heights for plant irrigation. Mesopotamia is vastly known for its advancement in agriculture. To last longer, the skilled Assyrians made glazes for pottery due to their glasswork techniques. They developed the numerical and geographical expertise that enables them be recognized astrologists.

Cast iron is a product that china is well known for its production and use. Due to their good refractory clays, they are able to construct blast furnace walls. They developed this by use of phosphorus to reduce the temperature of the irons melting point. Through this, they could craft the cast iron to form ornamental shapes. Through this expertise, they make fine pots and thin-walled pans. The Chinese have also been in record of developing less technological skills in innovation. Example is the kite and construction of houses by of bamboo.

Impact of science, technology, and innovation in these societies

Through their advancement in engineering, the ancient Greeks were able to succeed in their water transportation in mode of handling water was efficient. They were able to supply water through aqueducts channels running from the springs and even the reservoirs to many roman towns. This improved the life of the inhabitants and ensured continuous water supply that was estimated to range from 80million to 120million is also notable of the outstanding skills that these engineers had in building roads. They were able to construct magnificent road networks characterized with quality drainage system, standard bridges and they were straights and ran smooth. This lessened the means of transport for the people. They were also well conversant with manufacturing of ship and freighters. They kept on advancing in sizes and in A.D. 100s, they were able to build a large cargo vessel that transported grain able to feed the whole of Athens in a year.

Due to agricultural advancement in Mesopotamia, it prompted the Sumerians to invent numerical system to help in administration and their businesses. Hence they had two numerical symbols that they used. These symbols led to easier accounting and management of their businesses. It is remarkable to note that they were able to weather forecast. They recorded accurate astrological data which helped them in predicting seasons and hence improved their agriculture and technology. This kind of scientific research helped them to solve specific problems that they had in astrology. There are records of achievements in medicine that is recorded in Mesopotamia. According to code of Hammurabi, it reveals that during the old Babylonian times, there were healers in the land. Besides, they had physicians too whose work was to perform operations. This was later developed into concepts in prognosis, physical examination and right medicinal prescription. Through this evolution of medicine, the people benefited from this since they were able to be treated and improved health care.

Looking at the advancement in agriculture, we can mention that they purely depended on human labor. This they got from the locals, hence it was a source of living for the people.

China has contemporary and enlightened achievers. They include Tsung Dao Lee who has won Nobel physics prize in 1957. This was a remarkable achievement due to the contribution in physics and manufacture of atomic bombs. Another achiever is Choh Hao Li, a biochemist who made history in the world’s medical field by his vast contribution in pituitary gland. These contributions in science as well as technology have positively influenced the health sector and enhanced efficiency in delivery of medical services in the country.

Disparity regarding the societal views of science, technology, and innovation and their roles within the society between the regions

According to the Greeks, they believe in developing their skills. They adopt ideas and skills from diverse cultures that they came into contact with. Historians argue that the Greek have made little advancements in technology wise since they mainly relied on slaves for their labor. This made them not motivated to venture into energy saving skills. Instead, they dwelt in philosophical studies, politics and trade. During the Roman Empire reign, their main interest was to spread knowledge rather than creating or developing new ones. Greeks and Romans challenge was mixed feelings and diverse attitude they had towards technological advancement. They honored myths a lot as shown in the life of Prometheus who was claiming to be the initiator of civilization. They actually believed that he invented fire and made metal works, craftsmanship and even pottery. In addition, some philosophers like Lucretius had a feeling that technological process is luxury. This led to most of them demoralized and demotivation. Due to power of their kings, they only majored in building war chariots and military equipment.

In Mesopotamia, most of the inhabitants and engineers were practical and preferred experimentation. They ventured into diverse scientific researches and inventions. Unlike the Greeks who preferred sharing the knowledge but not doing the actual practice, they went into the actualization of their beliefs and culture. Hence they made numerous advancements in technology and innovation, something that also influenced the world technology. Their geometrical expertise made them believe that they can make changes in the world of science. This introduced urban-based civilization which in the long run improved the life of the inhabitants of Mesopotamia.

China is a unique country with various technical achievements. The Chinese believed in inventing less technological things example the kites. They also learnt to use bamboo scaffolding in building and construction. These are unique technologies since they incorporated with their culture because the materials for such things were only found in China. It is worth to note that the Mandarins rule hardly embraced technology. However, after then, the Chinese were able to build armadas of ships across Europe and to other parts of the world.

In conclusion, it is evident that technology and innovation started long ago and still there are more changes in future. Science has led to various inventions and discoveries as illustrated from the different countries. Different countries have different development skills and technology that are unique. This is also driven by their cultures and beliefs which they follow. Innovation has been able to take place due to the evolution and rapid advancement in technology

Are you Looking for Someone to Write Your Assignment? Is Your Homework on this Topic? We can help!

Essay homework help offers academic writing services to students either struggling to write their own papers or who lack sufficient time to complete their paper on time. whether you are looking for extra hours to be with your family, ill or you are running out of time, simply contact our mba writers via the order button below and we will be glad to assist..., so, can i get someone to do my homework assignment right now yes, you can, get homework help today from our professional mba writers with over 7 years experience. we have been in academic writing for over 10 years now; what this means is that know and understand the art of academic writing, having done it over and over again over this period. get help now, boost your homework grades today with our highly trained and exprienced writers, are you tired of low grades from your professor, after spending sleepless nights writing your essay worry no more our professional mba homework writers will help you get excellents grades with our writing services. all you need to do is send us your homework instructions by placing your order., client reviews that speak more about our homework writing services, management paper review, every semester, it seems like there is always one essay that i need to do that i simply cannot figure out. the essay writer i got paired with at essay homework help was an expert in management dynamics and knew exactly what the essay question was asking. his help really helped me write my essay and succeed with this assignment. this is absolutely incredible, nursing homework review, essay homework help has been such a valuable resource throughout my time in university - this company really is one of a kind. their essay writers are highly recommended and they stand behind everything they do. i have got an excellent mark and i'm now convinced in the truth of your promises. thank you so much it was actually everything i was looking for and more”, dissertation project review, "just when i was about to give up on my dissertation, my friend advised me to use your service. it was timely advice because i was stuck and didn't know what to do. the writer followed all my instructions and created a brilliant dissertation. now i am a ph.d. degree holder and i'm so happy about it. thank you so much essay homework help", economics homework review, "thanks a lot. my writer followed all my requirements. i am a demanding customer but your services are great. polite customer support representatives who answered my questions all the time and quality work, am thrilled essay homework help has proven to be very professional, as i did not anticipate getting such a grade. i would encourage potential writers to join.”, submit your homework instructions within 3 minutes, upload homework instructions, all we need is your detailed instructions for us to complete a quality paper., a writer writers & sends on your paper, our writers are highly qualified and experienced to meet your writing needs., our editor checks & submits your paper, our professional editors review your paper from start to finish for quality., download & review your completed paper, let us take the stress out of your life and give you solid academic work, get more excellent samples for your review, do you want to read further check the following articles, sample academic research paper on education in bangladesh, sample research paper on how memes appear and disappear, sample theology essay paper on chapter twelve review of corruption and bible.

  • Application Essay Sample
  • Research Paper Sample
  • Case Study Paper Sample
  • Term Paper Sample
  • Admission Essay Sample
  • Argumentative Essay Sample
  • Annotated bibliography Sample
  • Article Review Sample Paper
  • Book Review Sample
  • Movie Review Sample
  • Business Plan Sample Paper
  • Capstone Project Sample Paper
  • Creative Writing Sample Paper
  • Critical Thinking Sample Paper
  • Discussion Essay Sample Paper
  • Dissertation/Thesis Writing
  • Literature Review Sample Paper
  • Personal Reflection Sample Paper
  • Reflection Essay Sample Paper
  • Research Proposal Sample Paper
  • Response Essay Sample Paper

How technology is reinventing education

Stanford Graduate School of Education Dean Dan Schwartz and other education scholars weigh in on what's next for some of the technology trends taking center stage in the classroom.

essay about science and technology innovation amid the changing world

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”


Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List

Logo of molecules

Nanotechnology: A Revolution in Modern Industry

Shiza malik.

1 Bridging Health Foundation, Rawalpindi 46000, Pakistan

Khalid Muhammad

2 Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates

Yasir Waheed

3 Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan

4 Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon

Associated Data

Not applicable.

Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms. Resultantly, a broad-spectrum overview is presented which comprises the diverse applications of nanotechnology in modern industries. This study reveals that nanotechnology is not limited to research labs or small-scale manufacturing units of nanomedicine, but instead has taken a major share in different industries. Companies around the world are now trying to make their innovations more efficient in terms of structuring, working, and designing outlook and productivity by taking advantage of nanotechnology. From small-scale manufacturing and processing units such as those in agriculture, food, and medicine industries to larger-scale production units such as those operating in industries of automobiles, civil engineering, and environmental management, nanotechnology has manifested the modernization of almost every industrial domain on a global scale. With pronounced cooperation among researchers, industrialists, scientists, technologists, environmentalists, and educationists, the more sustainable development of nano-based industries can be predicted in the future.

1. Introduction

Nanotechnology has slowly yet deeply taken over different industries worldwide. This rapid pace of technological revolution can especially be seen in the developed world, where nano-scale markets have taken over rapidly in the past decade. Nanotechnology is not a new concept since it has now become a general-purpose technology. Four generations of nanomaterials have emerged on the surface and are used in interdisciplinary scientific fields; these are active and passive nanoassemblies, general nanosystems, and small-scale molecular nanosystems [ 1 ].

This rapid development of nanoscience is proof that, soon, nano-scale manufacturing will be incorporated into almost every domain of science and technology. This review article will cover the recent advanced applications of nanotechnology in different industries, mainly agriculture, food, cosmetics, medicine, healthcare, automotive, oil and gas industries, chemical, and mechanical industries [ 2 , 3 ]. Moreover, a brief glimpse of the drawbacks of nanotechnology will be highlighted for each industry to help the scientific community become aware of the ills and benefits of nanotechnology side by side. Nanotechnology is a process that combines the basic attributes of biological, physical, and chemical sciences. These processes occur at the minute scale of nanometers. Physically, the size is reduced; chemically, new bonds and chemical properties are governed; and biological actions are produced at the nano scale, such as drug bonding and delivery at particular sites [ 4 , 5 ].

Nanotechnology provides a link between classical and quantum mechanics in a gray area called a mesoscopic system. This mesoscopic system is being used to manufacture nanoassemblies of nature such as agricultural products, nanomedicine, and nanotools for treatment and diagnostic purposes in the medical industry [ 6 ]. Diseases that were previously untreatable are now being curtailed via nano-based medications and diagnostic kits. This technology has greatly affected bulk industrial manufacturing and production as well. Instead of manufacturing materials by cutting down on massive amounts of material, nanotechnology uses the reverse engineering principle, which operates in nature. It allows the manufacturing of products at the nano scale, such as atoms, and then develops products to work at a deeper scale [ 7 ].

Worldwide, millions and billions of dollars and euros are being spent in nanotechnology to utilize the great potential of this new science, especially in the developed world in Europe, China, and America [ 8 ]. However, developing nations are still lagging behind as they are not even able to meet the industrial progression of the previous decade [ 9 ]. This lag is mainly because these countries are still fighting economically, and they need some time to walk down the road of nanotechnology. However, it is pertinent to say that both the developed and developing world’s scientific communities agree that nanotechnology will be the next step in technological generation [ 10 ]. This will make further industrial upgrading and investment in the field of nanotechnology indispensable in the coming years.

With advances in science and technology, the scientific community adopts technologies and products that are relatively cheap, safe, and cleaner than previous technologies. Moreover, they are concerned about the financial standing of technologies, as natural resources in the world are shrinking excessively [ 11 ]. Nanotechnology thus provides a gateway to this problem. This technology is clear, cleaner, and more affordable compared to previous mass bulking and heavy machinery. Moreover, nanotechnology holds the potential to be implemented in every aspect of life. This will mainly include nanomaterial sciences, nanoelectronics, and nanomedicine, being inculcated in all dimensions of chemistry and the physical and biological world [ 12 ]. Thus, it is not wrong to predict that nanotechnology will become a compulsory field of study for future generations [ 13 ]. This review inculcates the basic applications of nanotechnology in vital industries worldwide and their implications for future industrial progress [ 14 ].

2. Nanotechnology Applications

2.1. applications of nanotechnology in different industries.

After thorough and careful analyses, a wide range of industries—in which nanotechnology is producing remarkable applications—have been studied, reviewed, and selected to be made part of this review. It should be notified that multiple subcategories of industrial links may be discussed under one heading to elaborate upon the wide-scale applications of nanotechnology in different industries. A graphical abstract at the beginning of this article indicates the different industries in which nanotechnology is imparting remarkable implications, details of which are briefly discussed under different headings in the next session.

2.2. Nanotechnology and Computer Industry

Nanotechnology has taken its origins from microengineering concepts in physics and material sciences [ 15 ]. Nanoscaling is not a new concept in the computer industry, as technologists and technicians have been working for a long time to design such modified forms of computer-based technologies that require minimum space for the most efficient work. Resultantly, the usage of nanotubes instead of silicon chips is being increasingly experimented upon in computer devices. Feynman and Drexler’s work has greatly inspired computer scientists to design revolutionary nanocomputers from which wide-scale advantages could be attained [ 13 ]. A few years ago, it was an unimaginable to consider laptops, mobiles, and other handy gadgets as thin as we have today, and it is impossible for even the common man to think that with the passage of time, more advanced, sophisticated, and lighter computer devices will be commonly used. Nanotechnology holds the potential to make this possible [ 16 ].

Energy-efficient, sustainable, and urbanized technologies have been emerging since the beginning of the 21st century. The improvement via nanotechnology in information and communication technology (ICT) is noteworthy in terms of the improvements achieved in interconnected communities, economic competitiveness, environmental stability during demographic shifts, and global development [ 17 ]. The major implications of renewable technology incorporate the roles of ICT and nanotechnology as enablers of environmental sustainability. The traditional methods of product resizing, re-functioning, and enhanced computational capabilities, due to their expensiveness and complicated manufacturing traits, have slowly been replaced by nanotechnological renovations. Novel technologies such as smart sensors logic elements, nanochips, memory storage nanodevices, optoelectronics, quantum computing, and lab-on-a-chip technologies are important in this regard [ 18 ].

Both private and public spending are increasing in the field of nanocomputing. The growth of marketing and industrialization in the biotechnology and computer industries are running in parallel, and their expected growth rates for the coming years are far higher. Researchers and technologists believe that by linking the advanced field of nanotechnology and informatics and computational industries, various problems in human society such as basic need fulfillment can be easily accomplished in line with the establishment of sustainable goals by the end of this decade [ 19 ]. The fourth industrial revolution is based upon the supporting pillars derived from hyperphysical systems including artificial intelligence, machine learning, the internet of things, robots, drones, cloud computing, fast internet technologies (5G and 6G), 3D printing, and block chain technologies [ 20 ].

Most of these technologies have a set basis in computing, nanotechnology, biotechnology, material science renovations, and satellite technologies. Nanotechnology offers useful alterations in the physiochemical, mechanical, magnetic, electrical, and optical properties of computing materials which enable innovative and newer products [ 21 ]. Thus, nanotechnology is providing a pathway for another broad-spectrum revolution in the field of automotive, aerospace, renewable energy, information technology, bioinformatics, and environmental management, all of which have root origins from nanotechnological improvements in computers. Sensors involved in software and data algorithms employ nanomaterials to induce greater sensitivity and processabilities with minimal margin-to-machine errors [ 22 ]. Nanomaterials provide better characteristics and robustness to sensor technologies which mean they are chemically inert, corrosion-resistant, and have greater tolerance profiles toward temperature and alkalinity [ 22 ].

Moreover, the use of semiconductor nanomaterials in the field of quantum computing has increased overall processing speeds with better accuracy and transmissibility. These technologies offer the creation of different components and communication protocols at the nano level, which is often called the internet of nano things [ 23 ]. This area is still in a continuous development and improvement phase with the potential for telecommunication, industrial, and medical applications. This field has taken its origin from the internet of things, which is a hyperphysical world of sensors, software, and other related technologies which allow broad-scale communication via internet operating devices [ 17 ]. The applications of these technologies range from being on the simple home scale to being on the complex industrial scale. The internet of things is mainly capable of gathering and distributing large-scale data via internet-based equipment and modern gadgets. In short, the internet of nano things is applicable to software, hardware, and network connection which could be used for data manipulation, collection, and sharing across the globe [ 24 ].

Another application of nanotechnology in the computer and information industry comes in the form of artificial intelligence, machine learning, and big data platforms which have set the basis for the fourth industrial revolution. Vast amounts of raw data are collected through interconnected robotic devices, sensors, and machines which have properties of nanomaterials [ 18 ]. After wide-scale data gathering, the next step is the amalgamation of the internet of things and the internet of people to prepare a greater analysis, understanding, and utilization of the gathered information for human benefit [ 4 ]. Such data complications can be easily understood through the use of big data in the medical industry, in which epidemiological data provide benefits for disease management [ 2 ]. Yet another example is the applications in business, where sales and retail-related data help to elucidate the target markets, sales industry, and consumer behavioral inferences for greater market consumption patterns [ 19 ].

Similarly, an important dimension of nanotechnology and computer combination comes in the form of drone and robotics technology. These technologies have a rising number of applications in maintenance, inspections, transportation, deliverability, and data inspection [ 25 ]. Drones, robots, and the internet of things are being perfectly amalgamated with the industrial sector to achieve greater goals. Drones tend to be more mobile but rely more on human control as compared to robots, which are less mobile but have larger potential for self-operation [ 26 ]. However, now, more mobile drones with better autonomous profiles are being developed to help out in the domain of manufacturing industries. These devices intensify and increase the pace of automation and precision in industries along with providing the benefits of lower costs and fewer errors [ 24 ]. The integrated fields of robotics, the internet of things, and nanotechnology are often called the internet of robotics and nano things. This field of nanorobotics is increasing the flexibility and dexterity in manufacturing processes compared to traditional robotics [ 25 ].

Drones, on the contrary, help to manage tasks that are otherwise difficult or dangerous to be managed by humans, such as working from a far distance or in dangerous regions. Nanosensors help to equip drones with the qualities of improved detection and sensation more precisely than previous sensor technologies [ 21 , 27 ]. Moreover, the over-potential of working hours, battery, and maintenance have also been improved with the operationalization of nano-based sensors in drone technology. These drones are inclusively used for various purposes such as maintaining operations, employing safety profiling, security surveys, and mapping areas [ 18 ]. However, limitations such as high speed, legal and ethical limitations, safety concerns, and greater automobility are some of the drawbacks of aerial and robotic drone technologies [ 26 ].

Three-dimensional printing is yet another important application of the nanocomputer industry, in which an integrated modus operandi works to help in production management [ 28 ]. Nanotechnology-based 3D printing offers the benefits of an autonomous, integrated, intelligent exchange network of information which enables wide-scale production benefits. These technologies have enabled a lesser need for industrial infrastructure, minimized post-processing operations, reduced waste material generation, and reduced need for human presence for overall industrial management [ 28 , 29 ]. Moreover, the benefits of 3D printing and similar technologies have potentially increased flexibility in terms of customized items, minimal environmental impacts, and sustainable practices with lower resource and energy consumption. The use of nano-scale and processed resins, metallic raw material, and thermoplastics along with other raw materials allow for customized properties of 3D printing technology [ 29 ].

The application of nanotechnology in computers cannot be distinguished from other industrial applications, because everything in modern industries is controlled by a systemic network in association with a network of computers and similar technologies. Thus, the fields of electronics, manufacturing, processing, and packaging, among several others, are interlinked with nanocomputer science [ 11 , 15 ]. Silicon tubes have had immense applications that revolutionized the industrial revolution in the 20th century; now, the industrial revolution is in yet another revolutionary phase based on nanostructures [ 16 ]. Silicon tubes have been slowly replaced with nanotubes, which are allowing a great deal of improvement and efficiency in computing technology. Similarly, lab-on-a-chip technology and memory chips are being formulated at nano scales to lessen the storage space but increase the storage volume within a small, flexible, and easily workable chip in computers for their subsequent applications in multiple other industries.

Hundreds of nanotechnology computer-related products have been marketed in the last 20 years of the nanotechnological revolution [ 30 ]. Modern industries such as textiles, automotive, civil engineering, construction, solar technologies, environmental applications, medicine, transportation agriculture, and food processing, among others are largely reaping the benefits of nano-scale computer chips and other devices. In simple terms, everything out there in nanoindustrial applications has something to do with computer-based applications in the nanoindustry [ 31 , 32 , 33 ]. Thus, all the applications discussed in this review more or less originate from nanocomputers. These applications are enabling considerable improvement and positive reports within the industrial sector. Having said that, it is hoped that computer scientists will remain engaged and will keep on collaborating with scientists in other fields to further explore the opportunities associated with nanocomputer sciences.

2.3. Nanotechnology and Bioprocessing Industries

Scientific and engineering rigor is being carried out to the link fields of nanotechnology with contributions to the bioprocessing industry. Researchers are interested in how the basics of nanomaterials could be used for the high-quality manufacturing of food and other biomaterials [ 15 , 34 ]. Pathogenic identification, food monitoring, biosensor devices, and smart packaging materials, especially those that are reusable and biodegradable, and the nanoencapsulation of active food compounds are only a few nanotechnological applications which have been the prime focus of the research community in recent years. Eventually, societal acceptability and dealing with social, cultural, and ethical concerns will allow the successful delivery of nano-based bio-processed products into the common markets for public usage [ 20 , 35 ].

With the increasing population worldwide, food requirements are increasing in addition to the concerns regarding the production of safe, healthy, and recurring food options. Sensors and diagnostic devices will help improve the sensitivity in food quality monitoring [ 36 ]. Moreover, the fake industrial application of food products could be easily scanned out of a system with the application of nanotechnology which could control brand protection throughout bio-processing [ 6 ]. The power usage in food production might also be controlled after a total nanotechnological application in the food industry. The decrease in power consumption would ultimately be positive for the environment. This could directly bring in the interplay of environment, food, and nanotechnology and would help to reduce environmental concerns in future [ 37 ].

One of the important implications of nanotechnology in bioprocessing industries can be accustomed to fermentation processes; these technologies are under usage for greater industrial demand and improved biomolecule production at a very low cost, unlike traditional fermentation processes [ 35 ]. The successful implementation and integration of fermentation and nanotechnology have allowed the development of biocompatible, safe, and nontoxic substances and nanostructures with wide-scale application in the field of food, bioprocessing, and winemaking industries [ 38 ]. Another important application is in the food monitoring and food supply chain management, present in various subsectors such as production, storage, distribution, and toxicity management. Nanodevices and nanomaterials are incorporated into chemical and biological sensor technologies to improve overall analytical performance with regard to parameters such as response time, sensitivity, selectivity, accuracy, and reliability [ 39 ]. The conventional methods of food monitoring are slowly being replaced with modern nano-based materials such as nanowires, nanocomposites, nanotubes, nanorods, nanosheets, and other materials that function to immobilize and label components [ 40 ]. These methods are either electrochemically or optically managed. For food monitoring, several assays are proposed and implemented with their roots in nano-based technologies; they may include molecular and diagnostic assays, immunological assays, and electrochemical and optical assays such as surface-enhanced Raman scattering and colorimetry technologies [ 34 ]. Materials ranging from heavy materials to microorganisms, pesticides, allergens, and antibiotics are easily monitored during commercial processing and bioprocessing in industries.

Additionally, nanotechnology has presented marvelous transformations in bio-composting materials. With the rising demand for biodegradable composites worldwide to reduce the environmental impact and increase the efficiency of industrial output, there is an increasing need for sustainable technologies [ 41 ]. Nanocomposites are thus being formulated with valuable mechanical properties better than conventional polymers, thus establishing their applicability in industries. The improved properties include optical, mechanical, catalytic, electrochemical, and electrical ones [ 42 ]. These biodegradable polymers are not only used in bioprocessing industries to create food products with relevant benefits but are also being deployed in the biomedical field, therapeutic industries, biotechnology base tissue engineering field, packing, sensor industries, drug delivery technology, water remediation, food industries, and cosmetics industries as well [ 2 , 24 , 34 , 43 ]. These nanocomposites have outstanding characteristics of biocompatibility, lower toxicities, antimicrobial activity, thermal resistance, and overall improved biodegradation properties which make them worthy of applications in products [ 44 ]. However, it is still imperative to conduct wide-scale toxicity and safety profiling for these and other nanomaterials to ensure the safety requirements, customer satisfaction, and public benefit are met [ 44 ].

Moreover, the advancement of nanotechnology has also been conferred to the development of functional food items. The exposure and integration of nanotechnology and the food industry have resulted in larger quantities of sustainable, safer, and healthier food products for human consumption, which is a growing need for the rising population worldwide [ 45 ]. The overall positive impact of nanotechnology in food processing, manufacturing, packing, pathogenic detection, monitoring, and production profiles necessitates the wide-scale application of this technology in the food industry worldwide [ 4 , 41 ]. Recent research has shown how the delivery of bioactive compounds and essential ingredients is and can be improved by the application of nanomaterials (nanoencapsulation) in food products [ 46 ]. These technologies improve the protection performance and sensitivity of bioactive ingredients while preventing unnecessary interaction with other constituents of foods, thus establishing clear-cut improved bioactivity and solubility profiles of nanofoods, thereby improving human health benefits. However, it should be kept in mind that the safety regards of these food should be carefully regulated with safety profiling, as they directly interact with human bodies [ 47 ].

2.4. Nanotechnology and Agri-Industries

Agriculture is the backbone of the economies of various nations around the globe. It is a major contributing factor to the world economy in general and plays a critical role in population maintenance by providing nutritional needs to them. As global weather patterns are changing owing to the dramatic changes caused by global warming, it is accepted that agriculture will be greatly affected [ 48 ]. Under this scenario, it is always better to take proactive measures to make agricultural practices more secure and sustainable than before. Modern technology is thus being employed worldwide. Nanotechnology has also come to play an effective role in this interplay of sustainable technologies. It plays an important role during the production, processing, storing, packaging, and transport of agricultural industrial products [ 49 ].

Nanotechnology has introduced certain precision farming techniques to enhance plant nutrients’ absorbance, alongside better pathogenic detection against agricultural diseases. Fertilizers are being improved by the application of nanoclays and zeolites which play effective roles in soil nutrient broths and in the restoration soil fertility [ 49 ]. Modern concepts of smart seeds and seed banks are also programmed to germinate under favorable conditions for their survival; nanopolymeric mixtures are used for coating in these scenarios [ 50 ]. Herbicides, pesticides, fungicides, and insecticides are also being revolutionized through nanotechnology applications. It has also been considered to upgrade linked fields of poultry and animal husbandry via the application of nanotechnology in treatment and disinfection practices.

2.5. Nanotechnology and Food Industry

The applications of nanotechnology in the food industry are immense and include food manufacturing, packaging, safety measures, drug delivery to specific sites [ 51 ], smart diets, and other modern preservatives, as summarized in Figure 1 . Nanomaterials such as polymer/clay nanocomposites are used in packing materials due to their high barrier properties against environmental impacts [ 52 ]. Similarly, nanoparticle mixtures are used as antimicrobial agents to protect stored food products against rapid microbial decay, especially in canned products. Similarly, several nanosensor and nano-assembly-based assays are used for microbial detection processes in food storage and manufacturing industries [ 53 ].

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g001.jpg

Nanotechnology applications in food and interconnected industries.

Nanoassemblies hold the potential to detect small gasses and organic and inorganic residues alongside microscopic pathogenic entities [ 54 ]. It should, however, be kept in mind that most of these nanoparticles are not directly added to food species because of the risk of toxicity that may be attached to such metallic nanoparticles. Work is being carried out to predict the toxicity attached, so that in the future, these products’ market acceptability could be increased [ 55 ]. With this, it is pertinent to say that nanotechnology is rapidly taking steps into the food industry for packing, sensing, storage, and antimicrobial applications [ 56 ].

Nanotechnology is also revolutionizing the dairy industry worldwide [ 57 ]. An outline of potential applications of nanotechnology in the dairy industry may include: improved processing methods, improved food contact and mixing, better yields, the increased shelf life and safety of dairy-based products, improved packaging, and antimicrobial resistance [ 58 ]. Additionally, nanocarriers are increasingly applied to transfer biologically active substances, drugs, enhanced flavors, colors, odors, and other food characteristics to dairy products [ 59 ].

These compounds exhibit higher delivery, solubility, and absorption properties to their targeted system. However, the problem of public acceptability due to the fear of unknown or potential side effects associated with nano-based dairy and food products needs to be addressed for the wider-scale commercialization of these products [ 60 ].

2.5.1. Nanotechnology, Poultry and Meat Industry

The poultry industry is a big chunk of the food industry and contributes millions of dollars every year to food industries around the world. Various commercial food chains are running throughout the world, the bases of which start from healthy poultry industries. The incidence of widespread foodborne diseases that originate from poultry, milk, and meat farms is a great concern for the food industry. Nanobiotechnology is certainly playing a productive role in tackling food pathogens such as those which procreate from Salmonella and Campylobacter infections by allowing increased poultry consumption while maintaining the affordability and safety of manufactured chicken products [ 61 ]. Several nano-based tools and materials such as nano-enabled disinfectants, surface biocides, protective clothing, air and water filters, packaging materials, biosensors, and detective devices are being used to confirm the authenticity and traceability of poultry products [ 62 ]. Moreover, nano-based materials are used to reduce foodborne pathogens and spoilage organisms before the food becomes part of the supply chain [ 63 ].

2.5.2. Nanotechnology—Fruit and Vegetable Industry

As already described, nanotechnology has made its way far ahead in the food industry. The agricultural, medicinal, and fruit and vegetable industries cannot remain unaffected under this scenario. Scientists are trying to increase the shelf life of fresh organic products to fulfill the nutritional needs of a growing population. From horticulture to food processing, packaging, and pathogenic detection technology, nanotechnology plays a vital role in the safety and production of vegetables and fruits [ 64 ].

Conventional technologies are now being replaced with nanotechnology due to their benefits of cost-effectiveness, satisfactory results, and overall shelf life improvement compared to past practices. Although some risks may be attached, nanotechnology has not yet reported high-grade toxicity to organic fresh green products. These technologies serve the purpose of providing safe and sufficient food sources to customers while reducing postharvest wastage, which is a major concern in developing nations [ 55 ]. Nanopackaging provides the benefits of lower humidity, oxygen passage, and optimal water vapor transmission rates. Hence, in the longer run, the shelf life of such products is increased to the desired level using nanotechnology [ 65 ].

2.5.3. Nanotechnology and Winemaking Industry

The winemaking industry is a big commercial application of the food industry worldwide. The usage of nanotechnology is also expanding in this industry. Nanotechnology serves the purpose of sensing technology through employment as nanoelectronics, nanoelectrochemical, and biological, amperometric, or fluorimetric sensors. These nanomaterials help to analyze the wine components, including polyphenols, organic acids, biogenic amines, or sulfur dioxide, and ensure they are at appropriate levels during the production of wine and complete processing [ 66 ].

Efforts are being made to further improve sensing nanotechnology to increase the accuracy, selectivity, sensitivity, and rapid response rate for wine sampling, production, and treatment procedures [ 53 ]. Specific nanoassemblies that are used in winemaking industries include carbon nanorods, nanodots, nanotubes, and metallic nanoparticles such as gold, silver, zinc oxide, iron oxide, and other types of nanocomposites. Recent research studies have introduced the concept of electronic tongues, nanoliquid chromatography, mesoporous silica, and applications of magnetic nanoparticles in winemaking products [ 67 ]. An elaborative account of these nanomaterials is out of the scope of the present study; however, on a broader scale, it is not wrong to say that nanotechnology is successfully reaping in the field of enology.

2.6. Nanotechnology and Packaging Industries

The packaging industry is continuously under improvement since the issue of environmentalism has been raised around the globe. Several different concerns are linked to the packaging industry; primarily, packaging should provide food safety to deliver the best quality to the consumer end. In addition, packaging needs to be environmentally friendly to reduce the food-waste-related pollution concern and to make the industrial processes more sustainable. Trials are being carried out to reduce the burden by replacing non-biodegradable plastic packaging materials with eco-friendly organic biopolymer-based materials which are processed at the nano scale to incur the beneficial properties of nanotechnology [ 68 ].

The nanomanufacturing of packaging biomaterials has proven effective in food packaging industries, as nanomanufacturing not only contributes to increasing food safety and production but also tackles environmental issues [ 69 ]. Some examples of these packaging nanomaterials may include anticaking agents, nanoadditives, delivery systems for nutraceuticals, and many more. The nanocompositions of packing materials are formed by mixing nanofillers and biopolymers to enhance packaging’s functionality [ 70 ]. Nanomaterials with antimicrobial properties are preferred in these cases, and they are mixed with a polymer to prevent the contamination of the packaged material. It is important to mention here that this technology is not only limited to food packaging; instead, packaging nanotechnology is now also being introduced in certain other industries such as textile, leather, and cosmetic industries in which it is providing large benefits to those industries [ 64 ].

2.7. Nanotechnology and Construction Industry and Civil Engineering

Efficient construction is the new normal application for sustainable development. The incorporation of nanomaterials in the construction industry is increasing to further the sustainability concern [ 71 ]. Nanomaterials are added to act as binding agents in cement. These nanoparticles enhance the chemical and physical properties of strength, durability, and workability for the long-lasting potential of the construction industry. Materials such as silicon dioxide which were previously also in use are now manufactured at the nano scale [ 71 ]. These nanostructures along with polymeric additives increase the density and stability of construction suspension [ 72 ]. The aspect of sustainable development is being applied to the manufacture of modern technologies coupled with beneficial applications of nanotechnology. This concept has produced novel isolative and smart window technologies which have driven roots in nanoengineering, such as vacuum insulation panels (VIPs) and phase change materials (PCMs), which provide thermal insulation effects and thus save energy and improve indoor air quality in homes [ 73 ].

A few of the unique properties of nanomaterials in construction include light structure, strengthened structural composition, low maintenance requirements, resistant coatings, improved pipe and bridge joining materials, improved cementitious materials, extensive fire resistance, sound absorption, and insulation properties, as well as the enhanced reflectivity of glass surfaces [ 74 ]. As elaborated under the heading of civil engineering applications, concrete’s properties are the most commonly discussed and widely changing in the construction industry because of concrete’s minute structure, which can be easily converted to the nano scale [ 75 ]. More specifically, the combination of nano-SiO 2 in cement could improve its performance in terms of compressiveness, large volumes with increased compressiveness, improved pore size distribution, and texture strength [ 76 ].

Moreover, some studies are also being carried out to improve the cracking properties of concrete by the application of microencapsulated healing polymers, which reduce the cracking properties of cement [ 77 ]. Moreover, some other construction materials, such as steel, are undergoing research to change their structural composites through nano-scale manufacturing. This nanoscaling improves steel’s properties such as improved corrosion resistance, increased weldability, the ease of handling for designing building materials, and construction work [ 78 ]. Additionally, coating materials have been improved by being manufactured at the nano scale. This has led to different improved coating properties such as functional improvement; anticorrosive action; high-temperature, fire, scratch, and abrasion resistance; antibacterial and antifouling self-healing capabilities; and self-assembly, among other useful applications [ 79 ].

Nanotechnology improves the compressive flexural properties of cement and reduces its porosity, making it absorb less water compared to traditional cementation preparations. This is because of the high surface-to-volume ratio of nanosized particles. Such an approach helps in reducing the amount of cement in concrete, making it more cost-effective, more strengthening, and eco-friendly, known as ‘green concrete’. Besides concrete, the revolutionary characteristics of nanotechnology are now also being adopted in other construction materials such as steel, glass, paper, wood, and multiple other engineering materials to upgrade the construction industry [ 80 ].

Similarly, carbon nanotubes, nanorods, and nanofibers are rapidly replacing steel constructions. These nanostructures along with nanoclay formations increase the mechanical properties and thus have paved the way for a new branch of civil engineering in terms of nanoengineering [ 80 ]. Apart from cement formulations, nanoparticles are included in repair mortars and concrete with healing properties that help in crack recovery in buildings. Furthermore, nanostructures, titanium dioxide, zinc, and other metallic oxides are being employed for the production of photocatalytic products with antipathogenic, self-cleaning, and water- and germ-repellent built-in technologies [ 33 ]. Similarly, quantum dot technologies are progressively employed for solar energy generation (a concept discussed later). These photovoltaic cells contribute to saving the maximum amount of solar energy [ 81 ].

2.8. Nanotechnology and Textiles Industry

The textile industry achieved glory in the 21st century with enormous outgrowth through social media platforms. Large brands have taken over the market worldwide, and millions are earned every year through textile industries. With the passing of time, nanotechnology is being slowly incorporated into the textile fiber industry owing to its unique and valuable properties. Previously, fabrics manufactured via conventional methods often curtailed the temporary effects of durability and quality [ 82 ]. However, the age of nanotechnology has allowed these fabric industries to employ nanotechnology to provide high durability, flexibility, and quality to clothes which is not lost upon laundering and wearing. The high surface-to-volume ratio of nanomaterials keeps high surface energy and thus provides better affinity to their fabrics, leading to long-term durability [ 82 ]. Moreover, a thin layering and coating of nanoparticles on the fabric make them breathable and make them smooth to the touch. This layering is carried out by processes such as printing, washing, padding, rinsing, drying, and curing to attach nanoparticles on the fabric surface. These processes are carried out to impart the properties of water repellence, soil resistance, flame resistance, hydrophobicity, wrinkle resistance, antibacterial and antistatic properties, and increased dyeability to the clothes [ 83 ].

The unique properties of nanomaterials in textile industries have attracted large-scale businesses for the financial benefits attached to their application. For this reason, competitors are increasing in nanotextile industry speedily, which may make the conventional textile industry sidelined in the near future [ 84 ]. Some benefits associated with nanotextile engineering and industry may include: improved cleaning surfaces, soil, wrinkle, stain, and color damage resistance, higher wettability and strike-through characteristics, malodor- and soil-removal abilities, abrasion resistance, a modified version of surface friction, and color enhancement through nanomaterials [ 85 ].

These characteristics have hugely improved the functionality and performance characteristics of textile and fiber materials [ 86 ]. Based upon the numerous advantages, nanotextile technology is increasingly being used in various inter-related fields, including in medical clothes, geotextiles, shock-resistant textiles, and fire-resistant and water-resistant textiles [ 87 ]. These textiles and fibers help overcome severe environmental conditions in special industries where high temperatures, pressure, and other conditions are adjusted for manufacturing purposes. These textiles are now increasingly called smart clothes due to renewed nanotechnological application to traditional methods [ 88 ].

The increasing demand for durable, appealing, and functionally outstanding textile products with a couple of factors of sustainability has allowed science to incorporate nanotechnology in the textile sector. These nano-based materials offer textile properties such as stain-repellent, wrinkle-free textures and fibers’ electrical conductivity alongside guaranteeing comfort and flexibility in clothing [ 82 ]. The characteristics of nanomaterials are also exhibited in the form of connected garments creation that undergo sensations to respond to external stimuli through electrical, colorant, or physiological signals. Thus, a kind of interconnection develops between the fields of photonic, electrical, textile and nanotechnologies [ 89 ]. Their interconnected applications confer the properties of high-scale performance, lasting durability, and connectivity in textile fibers. However, the concerns of nanotoxicity, the chances of the release of nanomaterials during washing, and the overall environmental impact of nanotextiles are important challenges that need to be ascertained and dealt with successfully in the coming years to ensure wide-scale acceptance and the global broad-spectrum application of nanotextiles [ 90 ].

The global market for the textile industry is constantly on the rise; with so many new brands, the competition is rising in regard to pricing, material, product outlook, and market exposure. Under this scenario, nanotechnology has contributed in terms of value addition to textiles by contributing the properties of water repellence, self-cleaning, and protection from radiation and UV light, along with safety against flames and microorganisms [ 82 ]. A whole new market of smart clothes is slowly taking our international markets along with improvements in textile machinery and economic standing. These advances have effectively established the sustainable character of the textile industry and have created grounds to meet the customer’s demand [ 91 ]. Some important examples of smart clothing originating from the nanotextile industry can be seen in products such as bulletproof jackets, fabric coatings, and advanced nanofibers. Fabric coatings and pressure pads can exhibit characteristics of invisibility and entail a silver, nickel, or gold nanoparticle-based material with inherent antimicrobial properties [ 92 ]. Such materials are effectively being utilized and introduced into the medical industry for bandages, dressings, etc. [ 92 ].

Similarly, woven optical fibers are already making progress in the textile and IT industry. With the incorporation of nanomaterials, optical fibers are being utilized for a range of purposes such as light transmission, sensing technologies, deformation, improved formational characteristic detection, and long-range data transmission. These optical fibers with phase-changing material properties can also be utilized for thermostability maintenance in the fiber industry. Thus, these fibers have combined applications in the computer, IT, and textile sectors [ 93 ]. In addition, the nano cellulosic material that is naturally obtained from plants confers properties of stiffness, strength, durability, and large surface area to volume ratios, which is acquired through the large number of surface hydroxyl groups embedded in nanocellulose particles [ 94 ]. Moreover, the characteristics of high resistance, lower weight, cost-effectiveness, and electrical conductivity are some additional benefits which are also linked to these nanocellulosic fibers [ 93 ]. The aforementioned technologies will allow industrialists to manufacture fabrics based on nanomaterials through a variety of chemical, physical, and biological processes. The scope of improvement in the textile properties, cost, and production methods is making the nanotextile industry a strong field of interest for future industrial investments.

2.9. Nanotechnology and Transport and Automobile Industry

The automotive industry is always improving its production. Nanotechnology is one such tool that could impart the automotive industry with a totally new approach to manufacturing. Automobile shaping could be improved greatly without any changes to the raw materials used. The replacement of conventional fabrication procedures with advanced nanomanufacturing is required to achieve the required outcome. Nanotechnology intends to partly renovate the automobile industry by enhancing the technical performance and reducing production costs excessively. However, there is a gap in fully harnessing the potential of nanomaterials in the automotive industry. Industrialists who were previously strict about automotive industrial principles are ready to employ novelties attached to nanotechnology to create successful applications to automobiles in the future [ 95 ]. Nanotechnology could provide assistance in manufacturing methods with an impartment of extended life properties. Cars that have been manufactured with nanotechnology applications have shown lower failure rates and enhanced self-repairing properties. Although the initial investment in the nanoautomated industry is high, the outcomes are enormous.

The concept of sustainable transport could also be applied to the manufacturing of such nano-based technology which is CO 2 free and imparts safe driving and quiet, clean, and wider-screen cars, which, in the future, may be called nanocars. The major interplay of nanotechnology and the automotive industry comes in the manufacturing of car parts, engines, paints, coating materials, suspensions, breaks, lubrication, and exhaust systems [ 32 ]. These properties are largely imparted via carbon nanotubes and carbon black, which renders new functionalities to automobiles. These products were previously in use, but nanoscaling and nanocoating allow for enhanced environmental, thermal, and mechanical stability to be imparted to the new generation of automobiles. In simple terms, automobiles manufactured with principal nanonovelties could result in cars with less wearing risk, better gliding potential, thinner coating lubrication requirements, and long service bodies with weight reductions [ 31 ]. These properties will ultimately reduce costs and will impart more space for improved automobile manufacturing in the future. Similarly, the development of electric cars and cars built on super capacitor technology is increasingly based on nanotechnology. The implications of nanotechnology in the form of rubber fillers, body frames made of light alloys, nanoelectronic components, nanocoatings of the interior and exterior of cars, self-repairing materials against external pressure, nanotextiles for interiors, and nanosensors are some of the nanotechnological-based implications of the automotive industry [ 96 ]. Owing to these properties, nanotechnology ventures are rapidly progressing in the automobile industry. It is expected that, soon, the automobile industry will commercialize nanotechnological perspectives on their branding strategies.

2.10. Nanotechnology, Healthcare, and Medical Industry

The genesis of nanomedicine simply cannot be ignored when we talk about the large fields of biological sciences, biotechnology, and medicine. Nanotechnology is already making its way beyond the imagination in the broader vision of nanobiotechnology. The quality of human life is continuously improved by the successful applications of nanotechnology in medicine, and resultantly, the entire new field of nanomedicine has come to the surface, which has allowed scientists to create upgraded versions of diagnostics, treatment, screening, sequencing, disease prevention, and proactive actions for healthcare [ 97 ]. These practices may also involve drug manufacturing, designing, conjugation, and efficient delivery options with advances in nano-based genomics, tissue engineering, and gene therapy. With this, it could be predicted that soon, nanomedicine will be the foremost research interest for the coming generation of biologists to study the useful impacts and risks that might be associated with them [ 98 ]. As illustrated in Figure 2 , we summarized the applications of nanotechnology in different subfields of the medical industry.

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g002.jpg

Nanotechnology applications in medical industry. Nanotechnology has a broad range of applications in various diagnostics and treatments using nanorobotics and drug delivery systems.

In various medical procedures, scientists are exploring the potential benefits of nanotechnology. In the field of medical tools, various robotic characters have been applied which have their origins in nano-scale computers, such as diagnostic surfaces, sensor technologies, and sample purification kits [ 99 ]. Similarly, some modifications are being accepted in diagnostics with the development of devices that are capable of working, responding, and modifying within the human body with the sole purpose of early diagnosis and treatment. Regenerative medicine has led to nanomanufacturing applications in addition to cell therapy and tissue engineering [ 100 ]. Similarly, some latest technologies in the form of ‘lab-on-a-chip’, as elaborated upon earlier, are being introduced with large implications in different fields such as nanomedicine, diagnostics, dentistry, and cosmetics industries [ 101 ]. Some updated nanotechnology applications in genomics and proteomics fields have developed molecular insights into antimicrobial diseases. Moreover, medicine, programming, nanoengineering, and biotechnology are being merged to create applications such as surgical nanorobotics, nanobioelectrics, and drug delivery methods [ 102 ]. All of these together help scientists and clinicians to better understand the pathophysiology of diseases and to bring about better treatment solutions in the future.

Specifically, the field of nanocomputers and linked devices help to control activation responses and their rates in mechanical procedures [ 2 ]. Through these mechanical devices, specific actions of medical and dental procedures are executed accurately. Moreover, programmed nanomachines and nanorobots allow medical practitioners to carry out medical procedures precisely at even sub-cellular levels [ 4 ]. In diagnostics fields, the use of such nanodevices is expanding rapidly, which allows predictions to be made about disease etiology and helps to regulate treatment options [ 103 ]. The use of in vitro diagnosis allows increased efficiency in disease apprehension. Meanwhile, in in vivo diagnoses, such devices have been made which carry out the screening of diseased states and respond to any kind of toxicities or carcinogenic or pathological irregularities that the body faces [ 104 ].

Similarly, the field of regenerative medicine is employing nanomaterials in various medical procedures such as cell therapy, tissue engineering, and gene sequencing for the greater outlook of treatment and reparation of cells, tissues, and organs. Nanoassemblies have been recorded in research for applications in powerful tissue regeneration technologies with properties of cell adhesion, migration, and cellular differentiation [ 102 ]. Additionally, nanotechnology is being applied in antimicrobial (antibacterial and antiviral) fields. The microscopic abilities of these pathogens are determined through nano-scale technologies [ 100 ]. Greek medicinal practices have long been using metals to cure pathogenic diseases, but the field of nanotechnology has presented a new method to improve such traditional medical practices; for example, nanosized silver nanomaterials are being used to cure burn wounds owing to the easy penetration of nanomaterials at the cellular level [ 102 , 105 ].

In the field of bioinformatics and computational biology, genomic and proteomic technologies are elucidating molecular insights into disease management [ 106 ]. The scope of targeted and personalized therapies related to pathogenic and pathophysiological diseases have greatly provided spaces for nanotechnological innovative technologies [ 107 , 108 ]. They also incorporate the benefits of cost-effectiveness and time saving [ 109 ]. Similarly, nanosensors and nanomicrobivores are utilized for military purposes such as the detection of airborne chemical agents which could cause serious toxic outcomes otherwise [ 102 ]. Some nanosensors also serve a purpose similar to phagocytes to clear toxic pathogens from the bloodstream without causing septic shock conditions, especially due to the inhalation of prohibited drugs and banned substances [ 100 , 105 , 110 ]. These technologies are also used for dose specifications and to neutralize overdosing incidences [ 110 ] Nano-scale molecules work as anticancer and antiviral nucleoside analogs with or without other adjuvants [ 21 ].

Another application of nanotechnology in the medical industry is in bone regeneration technology. Scientists are working on bone graft technology for bone reformation and muscular re-structuring [ 111 , 112 ]. Principle investigations of biomineralization, collagen mimic coatings, collagen fibers, and artificial muscles and joints are being conducted to revolutionize the field of osteology and bone tissue engineering [ 113 , 114 ]. Similarly, drug delivery technologies are excessively considering nanoscaling options to improve drug delivery stability and pharmacodynamic and pharmacokinetic profiles at a large scale [ 110 ]. The use of nanorobots is an important step that allows drugs to travel across the circulatory system and deliver drug entities to specifically targeted sites [ 99 , 115 ]. Scientists are even working on nanorobots-based wireless intracellular and intra-nucleolar nano-scale surgeries for multiple malignancies, which otherwise remain incurable [ 102 ]. These nanorobotics can work at such a minute level that they can even cut a single neuronic dendrite without causing harm to complex neuronal networks [ 116 ].

Another important application of nanotechnology in the medical field is oncology. Nanotechnology is providing a good opportunity for researchers to develop such nanoagents, fluorescent materials, molecular diagnostics kits, and specific targeted drugs that may help to diagnose and cure carcinogenesis [ 104 ]. Scientists are trying various protocols of adjoining already-available drugs with nanoparticulate conjugation to enhance drug specificity and targeting in organs [ 104 , 107 , 117 ]. Nanomedicine acts as the carrier of hundreds of specific anticancerous molecules that could be projected at tumor sites; moreover, the tumor imaging and immunotherapy approaches linked with nanomedicine are also a potential field of interest when it comes to cancer treatment management [ 112 , 117 ]. A focus is also being drawn toward lessening the impact of chemotherapeutic drugs by increasing their tumor-targeting efficiency and improving their pharmacokinetic and pharmacodynamic properties [ 112 ]. Similarly, heat-induced ablation treatment against cancer cells alongside gene therapy protocols is also being coupled with nanorobotics [ 99 , 118 ]. Anticancerous drugs may utilize the Enhanced Permeation and Retention Effect (EPR effect) by applications of nano assemblies such as liposomes, albumin nanospheres, micelles, and gold nanoparticles, which confirms effective treatment strategies against cancer [ 119 ]. Such advances in nanomedicine will bring about a more calculated, outlined, and technically programmed field of nanomedicine through association and cooperation between physicians, clinicians, researchers, and technologies.

2.10.1. Nanoindustry and Dentistry

Nanodentistry is yet another subfield of nanomedicine that involves broad-scale applications of nanotechnology ranging from diagnosis, prevention, cure, prognosis, and treatment options for dental care [ 120 ]. Some important applications in oral nanotechnology include dentition denaturalization, hypersensitivity cure, orthodontic realignment problems, and modernized enameling options for the maintenance of oral health [ 2 , 121 ]. Similarly, mechanical dentifrobots work to sensitize nerve impulse traffic at the core of a tooth in real-time calculation and hence could regulate tooth tissue penetration and maintenance for normal functioning [ 122 ]. The functioning is coupled with programmed nanocomputers to execute an action from external stimuli via connection with localized internal nerve stimuli. Similarly, there are other broad-range applications of nanotechnology in tooth repair, hypersensitivity treatment, tooth repositioning, and denaturalization technologies [ 4 , 118 , 120 , 121 ]. Some of the applications of nanotechnology in the field of dentistry are elaborated upon in Figure 3 .

An external file that holds a picture, illustration, etc.
Object name is molecules-28-00661-g003.jpg

Nanotechnology applications in field of dentistry. Nanotechnology can be largely used in dentistry to repair and treat dental issues.

2.10.2. Nanotechnology and Cosmetics Industry

The cosmetics industry, as part of the greater healthcare industry, is continuously evolving. Nanotechnology-based renovations are progressively incorporated into cosmetics industries as well. Products are designed with novel formulations, therapeutic benefits, and aesthetic output [ 123 ]. The nanocosmetics industry employs the usage of lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, nanosponges, nanoemulsions, nanogels, liposomes, aquasomes, niosomes, dendrimers, and fullerenes, etc., among other such nanoparticles [ 101 ]. These nanomaterials bring about specific characteristics such as drug delivery, enhanced absorption, improved esthetic value, and enhanced shelf life. The benefits of nanotechnology are greatly captured in the improvement of skin, hair, nail, lip, and dental care products, and those associated with hygienic concerns. Changes to the skin barrier have been largely curtailed owing to the function of the nano scale of materials. The nanosize of active ingredients allows them to easily permeate skin barriers and generate the required dermal effect [ 124 ].

More profoundly, nanomaterials’ application is encouraged in the production of sun-protective cosmetics products such as sunblock lotions and creams. The main ingredient used is the rational combination of cinnamates (derived from carnauba wax) and titanium dioxide nanosuspensions which provide sun-protective effects in cosmetics products [ 125 ]. Similarly, nanoparticle suspensions are being applied in nanostructured lipid carriers (NLCs) for dermal and pharmaceutical applications [ 126 ]. They exhibit the properties of controlled drug-carrying and realizing properties, along with direct drug targeting, occlusion, and increased penetration and absorption to the skin surface. Moreover, these carrier nanoemulsions exhibit excellent tolerability to intense environmental and body conditions [ 127 ]. Moreover, these lipid nanocarriers have been researched and declared safe for potential cosmetic and pharmaceutical applications. However, more research is still required to assess the risk/benefit ratio of their excessive application [ 128 ].

2.11. Nanotechnology Industries and Environment

The environment, society, and technology are becoming excessively linked under a common slogan of sustainable development. Nanotechnology plays a key role in the 21st century to modify the technical and experimental outlook of various industries. Environmental applications cannot stand still against revolutionary applications of nanotechnology. Since the environment has much to do with the physical and chemical world around a living being, the nano scale of products greatly changes and affects environmental sustainability [ 129 ]. The subsequent introduction of nanomaterials in chemistry, physics, biotechnology, computer science, and space, food, and chemical industries, in general, directly impacts environmental sciences.

With regard to environmental applications, the remarkable research and applications of nanotechnology are increasing in the processing of raw materials, product manufacturing, contaminate treatment, soil and wastewater treatment, energy storage, and hazardous waste management [ 130 ]. In developed nations, it is now widely suggested that nanotechnology could play an effective role in tackling environmental issues. In fact, the application of nanotechnology could be implemented for water and cell cleaning technologies, drinking safety measures, and the detoxification of contaminants and pollutants from the environment such as heavy metals, organochlorine pesticides, and solvents, etc., which may involve reprocessing although nanofiltration. Moreover, the efficiency and durability of materials can be increased with mechanical stress and weathering phenomena. Similarly, the use of nanocage-based emulsions is being used for optical imaging techniques [ 131 ].

In short, the literature provides immense relevance to how nanotechnology is proving itself through groundbreaking innovative technologies in environmental sciences. The focus, for now, is kept on remediation technologies with prime attention on water treatment, since water scarcity is being faced worldwide and is becoming critical with time. There is a need for the scientific community to actively conduct research on comprehending the properties of nanomaterials for their high surface area, related chemical properties, high mobility, and unique mechanical and magnetic properties which could be used for to achieve a sustainable environment [ 132 ].

2.12. Nanotechnology—Oil and Gas Industry

The oil and gas industry makes up a big part of the fossil industry, which is slowly depleting with the rising consumption. Although nanotechnology has been successfully applied to the fields of construction, medicine, and computer science, its application in the oil and gas industry is still limited, especially in exploration and production technologies [ 133 ]. The major issue in this industry is to improve oil recovery and the further exploitation of alternative energy sources. This is because the cost of oil production and further purification is immense compared to crude oil prices. Nanotechnologists believe that they could overcome the technological barriers to developing such nanomaterials that would help in curtailing these problems.

Governments are putting millions of dollars into the exploration, drilling, production, refining, wastewater treatment, and transport of crude oil and gas. Nanotechnology can provide assistance in the precise measurement of reservoir conditions. Similarly, nanofluids have been proven to exhibit better performance in oil production industries. Nanocatalyses enhance the separation processing of oil, water, and gases, thus bringing an efficient impurity removal process to the oil and gas industry. Nanofabrication and nanomembrane technologies are excessively being utilized for the separation and purification of fossil materials [ 134 ]. Finally, functional and modified nanomaterials can produce smart, cost-effective, and durable equipment for the processing and manufacturing of oil and gas. In short, there is immense ground for the improvement of the fossil fuel industry if nanotechnology could be correctly directed in this industry [ 135 ].

2.13. Nanotechnology and Renewable Energy (Solar) Industry

Renewable energy sources are the solutions to many environmental problems in today’s world. This makes the renewable energy industry a major part of the environmental industry. Subsequently, nanotechnology needs to be considered in the energy affairs of the world. Nanotechnologies are increasingly applied in solar, hydrogen, biomass, geothermal, and tidal wave energy production. Although, scientists are convinced that much more needs to be discovered before enhancing the benefits of coupled nanotechnology and renewable energy [ 136 ].

Nanotechnology has procured its application way down the road of renewable energy sources. Solar collectors have been specifically given much importance since their usage is encouraged throughout the world, and with events of intense solar radiation, the production and dependence of solar energy will be helpful for fulfilling future energy needs. Research data are available regarding the theoretical, numerical, and experimental approaches adopted for upgrading solar collectors with the employment of nanotechnologies [ 137 ].

These applications include the nanoengineering of flat solar plates, direct absorption plates, parabolic troughs, and wavy plates and heat pipes. In most of these instruments and solar collection devices, the use of nanofluids is becoming common and plays a crucial role in increasing the working efficiency of these devices. A gap, however, exists concerning the usage of nanomaterials in the useful manufacturing design of solar panels and their associated possible efficiencies which could be brought to the solar panel industry. Moreover, work needs to be done regarding the cost-effectiveness and efficiency analyses of traditional and nanotechnology-based solar devices so that appropriate measures could be adopted for the future generation of nanosolar collectors [ 138 ].

2.14. Nanotechnology and Wood Industry

The wood industry is one of the main economic drivers in various countries where forest growth is immense and heavy industrial setups rely on manufacturing and selling wood-based products [ 139 ]. However, the rising environmental concerns against deforestation are a major cause for researchers to think about a method for the sustainable usage of wood products. Hence, nanotechnology has set its foot in the wood industry in various applications such as the production of biodegradable materials in the paper and pulp industry, timber and furniture industry, wood preservatives, wood composites, and applications in lignocellulosic-based materials [ 140 ]. Resultantly, new products are introduced into the market with enhanced performance (stronger yet lighter products), increased economic potential, and reduced environmental impact.

One method of nano-based application in the wood industry is the derivation of nanomaterials directly from the forest, which is now called nanocellulose material, known broadly for its sustainable characteristics [ 141 ]. This factor has pushed the wood industry to convert cellulosic material to nanocellulose with increased strength, low weight, and increased electromagnetic response along with a larger surface area [ 142 ]. These characteristics are then further used as reinforcing agents in different subcategories of wood-based industries, including substrate, stabilizer, electronics, batteries, sensor technologies, food, medicine, and cosmetics industries [ 143 ]. Moreover, functional characteristics such as the durability, UV absorption, fire resistance, and decreased water absorption of wood-based biodegradable products are also being improved with the application of nanomaterials such as nanozinc oxide or nanotitanium oxide [ 144 ]. Similarly, wood biodegradable properties are reduced through the application of nanoencapsulated preservatives to improve the impregnation of wood with the increasing penetration of applied chemicals and a reduced leaching effect.

Cellulosic nanomaterials exhibit nanofibrillar structures which can be made multifunctional for application in construction, furniture, food, pharmaceuticals, and other wood-based industries [ 145 ]. Research is emerging in which promising results are predicted in different industries in which nanofibers, nanofillers, nanoemulsions, nanocomposites, and nano-scaled chemical materials are used to increase the potential advantages of manufactured wood products [ 146 ]. The outstanding properties of nanocellulusice materials have largely curtailed the environmental concerns in the wood industry in the form of their potential renewable characteristics, self-assembling properties, and well-defined architecture. However, there are a few challenges related to such industries, such as cost/benefit analyses, a lack of compatibility and acceptability from the public owing to a lack of proper commercialization, and a persistent knowledge gap in some places [ 145 ]. Therefore, more effort is required to increase the applications and acceptability of nano-based wood products in the market worldwide.

2.15. Nanotechnology and Chemical Industries

Nanotechnology can be easily applied to various chemical compositions such as polymeric substances; this application can bring about structural and functional changes in those chemical materials and can address various industrial applications including medicine, physics, electronics, chemical, and material industries, among others [ 76 , 132 , 138 ]. One such industrial application is in electricity production, in which different nanomaterials driven from silver, golden, and organic sources could be utilized to make the overall production process cheaper and effective [ 147 ]. Another effective application is in the coatings and textile industry, which has already been discussed briefly. In these industries, enzymatic catalysis in combination with nanotechnology accelerates reaction times, saving money and bringing about high-quality final products. Similarly, the water cleaning industry can utilize the benefits of nanomaterials in the form of silver and magnetic nanoparticles to create strong forces of attraction that easily separate heavy material from untreated water [ 148 ]. Similarly, there is a wide range of chemicals that can be potentially upgraded, although the nano scale for application in biomedical industries is discussed under the heading of nanotechnology and medicine.

Another major application of nanotechnology in the chemical industry includes the surfactant industry, which is used for cleaning paper, inks, agrochemicals, drugs, pharmaceuticals, and some food products [ 149 ]. The traditional surfactant application was of great environmental and health concern, but with the newer and improved manufacturing and nanoscaling of surfactants, environmentally friendly applications have been made possible. These newer types may include biosurfactants obtained via the process of fermentation and bio-based surfactants produced through organic manufacturing. More research is required to establish the risks and side effects of these nanochemical agents [ 3 ].

3. Closing Remarks

Nanotechnology, within a short period, has taken over all disciplinary fields of science, whether it is physics, biology, or chemistry. Now, it is predicted to enormously impact manufacturing technology owing to the evidential and proven benefits of micro scaling. Every field of industry, such as computing, information technology, engineering, medicine, agriculture, and food, among others, is now originating an entire new field in association with nanotechnology. These industries are widely known as nanocomputer, nanoengineering, nanoinformatics, nanobiotechnology, nanomedicine, nanoagriculture, and nanofood industries. The most brilliant discoveries are being made in nanomedicine, while the most cost-effective and vibrant technologies are being introduced in materials and mechanical sciences.

The very purpose of nanotechnology, in layman’s terms, is to ease out the manufacturing process and improve the quality of end products and processes. In this regard, it is easy and predictable that it is not difficult for nanotechnology to slowly take out most of the manufacturing process for industrial improvement. With every coming year, more high-tech and more effective-looking nanotechnologies are being introduced. This is smoothing out the basis of a whole new era of nanomindustries. However, the constructive need is to expand the research basis of nanoapplications to entail the rigorous possible pros of this technology and simultaneously figure out a method to deal with the cons of the said technology.

The miniaturization of computer devices has continued for many years and is now being processed at the nanometer scale. However, a gap remains to explore further options for the nanoscaling of computers and complex electronic devices, including computer processors. Moreover, there is an immense need to enable the controlled production and usage of such nanotechnologies in the real world, because if not, they could threaten the world of technology. Scientists should keep on working on producing nanoelectronic devices with more power and energy efficiency. This is important in order to extract the maximum benefits from the hands of nanotechnology and computer sciences [ 5 ].

Under the influence of nanotechnology, food bioprocessing is showing improvement, as proven by several scientific types of research and industrial applications in food chain and agricultural fields. Moreover, the aspect of sustainability is being introduced to convert the environment, food chains, processing industries, and production methods to save some resources for future generations. The usage of precision farming technologies based upon nanoengineering, modern nano-scale fertilizers, and pesticides are of great importance in this regard. Moreover, a combined nanotechnological aspect is also being successfully applied to the food industry, affecting every dimension of packing, sensing, storage, manufacturing, and antimicrobial applications. It is pertinent to say that although the applications of nanotechnology in the food, agriculture, winemaking, poultry, and associated packaging industries are immense, the need is to accurately conduct the risk assessment and potential toxicity of nanomaterials to avoid any damage to the commercial food chains and animal husbandry practices [ 63 ].

The exposure of the nano-based building industry is immense for civil and mechanical engineers; now, we need to use these technologies to actually bring about changes in those countries in which the population is immense, construction material is depleting, and environmental sustainability problems are hovering upon the state. By carefully assessing the sustainability potential of these nanomaterials, their environmental, hazardous, and health risks could be controlled, and they could likely be removed from the construction and automobile industry all over the world with sincere scientific and technical rigor [ 150 ]. It is expected that soon, the construction and automobile industry will commercialize the nanotechnological perspectives alongside sustainability features in their branding strategies. These nano-scale materials could allow the lifecycle management of automotive and construction industries with the provision of sustainable, safe, comfortable, cost-effective, and more eco-friendly automobiles [ 32 ]. The need is to explore the unacknowledged and untapped potential of nanotechnology applications in these industry industries.

Similarly, nanotechnology-based applications in consumer products such as textile and esthetics industries are immense and impressive. Professional development involves the application of nanotechnology-based UV-protective coatings in clothes which are of utmost need with climatic changes [ 73 ]. The application of nanotechnology overcomes the limitations of conventional production methods and makes the process more suitable and green-technology-based. These properties have allowed the textile companies to effectively apply nanotechnology for the manufacture of better products [ 90 ]. With greater consumer acceptability and market demand, millions are spent in the cosmetic industry to enable the further usage of nanotechnology. Researchers are hopeful that nanotechnology would be used to further upgrade the cosmetics industry in the near future [ 123 ].

Furthermore, the breakthrough applications of nanomedicine are not hidden from the scientific community. If nanomedicine is accepted worldwide in the coming years, then the hope is that the domain of diagnosis and treatment will become more customized, personalized, and genetically targeted for individual patients. Treatment options will ultimately become excessive in number and more successful in accomplishment. However, these assumptions will stay a dream if the research remains limited to scientific understanding.

The real outcome will be the application of this research into the experimental domain and clinical practices to make them more productive and beneficial for the medical industry. For this cause, a combined effort of technical ability, professional skills, research, experimentation, and the cooperation of clinicians, physicians, researchers, and technology is imperative. However, despite all functional beneficial characteristics, work needs to be done and more exploration is required to learn more about nanotechnology and its potential in different industries, especially nanomedicine, and to take into account and curtail the risks and harms attached to the said domain of science.

Additionally, climatic conditions, as mentioned before, along with fossil fuel depletion, have pushed scientists to realize a low-energy-consuming and more productive technological renovation in the form of nanoengineered materials [ 48 ]. Now, they are employing nanomaterials to save energy and harvest the maximum remaining natural resources. There is immense ground for the improvement of the fossil fuel industry if nanotechnology could be correctly directed in this industry [ 135 ]. The beneficial applications within the solar industry, gas and oil industry, and conversion fields require comparative cost-effectiveness and efficiency analyses of traditional and nano-based technologies so that appropriate measures could be adopted for the future generation of nano-based products in said industries [ 138 ].

As every new technology is used in industries, linked social, ethical, environmental, and human safety issues arise to halt the pace of progress. These issues need to be addressed and analyzed along with improving nanotechnology so that this technology easily incorporates into different industries without creating social, moral, and ethical concerns. Wide-scale collaboration is needed among technologists, engineers, biologists, and industrials for a prospective future associated with the wide-scale application of nanotechnology in diversified fields.

4. Conclusions

Highly cost-effective and vibrant nanotechnologies are being introduced in materials and mechanical sciences. A comprehensive overview of such technologies has been covered in this study. This review will help researchers and professionals from different fields to delve deeper into the applications of nanotechnology in their particular areas of interest. Indeed, the applications of nanotechnology are immense, yet the risks attached to unlimited applications remain unclear and unpronounced. Thus, more work needs to be linked and carefully ascertained so that further solutions can be determined in the realm of nanotoxicology. Moreover, it is recommended that researchers, technicians, and industrialists should cooperate at the field and educational level to explore options and usefully exploit nanotechnology in field experiments. Additionally, more developments should be made and carefully assessed at the nano scale for a future world, so that we are aware of this massive technology. The magnificent applications of nanotechnology in the industrial world makes one think that soon, the offerings of nanotechnology will be incorporated into every possible industry. However, there is a need to take precautionary measures to be aware of and educate ourselves about the environmental and pollution concerns alongside health-related harms to living things that may arise due to the deviant use of nanotechnology. This is important because the aspect of sustainability is being increasingly considered throughout the world. So, by coupling the aspect of sustainability with nanotechnology, a prosperous future of nanotechnology can be guaranteed.

Funding Statement

K.M.’s work is supported by United Arab Emirates University-UPAR-Grant#G3458, SURE plus Grant#3908 and SDG research programme grant#4065.

Author Contributions

Conceptualization, Y.W. methodology, S.M. validation, S.M., K.M. and Y.W. formal analysis, S.M., K.M. and Y.W. investigation, S.M., K.M. and Y.W. resources, K.M. and Y.W. data curation, S.M., K.M. and Y.W. writing—original draft preparation, S.M. writing—review and editing, S.M., K.M. and Y.W. supervision, Y.W. project administration, K.M. and Y.W. funding acquisition, Y.W. and K.M. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

9 ways AI is helping tackle climate change

Artificial intelligence can help to tackle climate change.

Artificial intelligence can help to tackle climate change. Image:  Unsplash/anniespratt

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Victoria Masterson

essay about science and technology innovation amid the changing world

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} Artificial Intelligence is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:, artificial intelligence.

This article was originally published in January 2024 and updated in February 2024.

  • The use of artificial intelligence (AI) can contribute to the fight against climate change.
  • Existing AI systems include tools that predict weather, track icebergs and identify pollution.
  • AI can also be used to improve agriculture and reduce its environmental impact, the World Economic Forum says.

The power of artificial intelligence (AI) to process huge amounts of data and help humans make decisions is transforming industries.

As one of the world’s toughest challenges, combating climate change is another area where AI has transformational potential.

Almost 4 billion people already live in areas highly vulnerable to climate change , according to the World Health Organization.

And this is expected to lead to around 250,000 extra deaths a year between 2030 and 2050, from undernutrition, malaria, diarrhoea and heat stress alone.

Here are nine ways AI is already helping to tackle climate change.

1. Icebergs are melting – AI knows where and how fast

AI has been trained to measure changes in icebergs 10,000 times faster than a human could do it.

This will help scientists understand how much meltwater icebergs release into the ocean – a process accelerating as climate change warms the atmosphere .

Scientists at the University of Leeds in the United Kingdom say their AI can map large Antarctic icebergs in satellite images in just one-hundredth of a second, reports the European Space Agency.

For humans, this task is lengthy and time-consuming, and it’s hard to identify icebergs amid the white of clouds and sea ice.

2. Mapping deforestation with AI

AI, satellite images and ecology expertise are also being used to map the impact of deforestation on the climate crisis.

Space Intelligence , a company based in Edinburgh, Scotland, says it is working in more than 30 countries and has mapped more than 1 million hectares of land from space using satellite data.

The company’s technology remotely measures metrics, such as deforestation rates and how much carbon is stored in a forest.

3. AI is helping communities facing climate risks in Africa

In Africa, AI is being used in a United Nations project to help communities vulnerable to climate change in Burundi, Chad and Sudan.

The IKI Project uses AI technology to help predict weather patterns, so communities and authorities can better plan how to adapt to climate change and mitigate its impact.

This includes improving access to clean energy, implementing proper waste management systems and encouraging reforestation.

4. Using AI to recycle more waste

Another AI system is helping to tackle climate change by making waste management more efficient.

Waste is a big producer of methane and is responsible for 16% of global greenhouse gas (GHG) emissions, according to the United States Environmental Protection Agency.

Greyparrot , a software startup based in London, United Kingdom, has developed an AI system that analyzes waste processing and recycling facilities to help them recover and recycle more waste material.

The company tracked 32 billion waste items across 67 waste categories in 2022, and says it identifies 86 tonnes of material on average that could be recovered but is being sent to landfill.

AI is helping to fight climate change in systems, including those that identify plastic pollution in the ocean.

5. AI is cleaning up the ocean

In the Netherlands, an environmental organization called The Ocean Cleanup is using AI and other technologies to help clear plastic pollution from the ocean.

AI that detects objects is helping the organization create detailed maps of ocean litter in remote locations. The ocean waste can then be gathered and removed , which is more efficient than previous cleanup methods using trawlers and aeroplanes.

Plastic pollution contributes to climate change by emitting GHGs and harming nature.

6. AI helps predict climate disasters

In São Paulo, Brazil, a company called Sipremo is using AI to predict where and when climate disasters will occur, and what type of climate disasters they will be.

The aim is to help businesses and governments better prepare for climate change and the growing challenges for communities that come with it.

The company works in industries including insurance, energy, logistics and sport, where its analysis of disaster conditions and factors such as air quality can inform decisions on whether to delay or suspend events.

7. A wish list of AI climate tools

Google DeepMind, Google’s AI research laboratory, says it is applying AI to help fight climate change in a number of areas.

This includes building a complete wish list of datasets that would advance global AI solutions for climate change. Google DeepMind is working on this with Climate Change AI , a non-profit organization set up by volunteers from academia and industry who see a key role for machine learning in combating climate change.

Other Google AI tools are focused on improving weather forecasting and increasing the value of wind energy by better predicting the output from a wind farm.

8. How AI can help industry decarbonize

AI is being used to help companies in the metal and mining, oil, and gas industries to decarbonize their operations. , based in California, United States, has developed an emissions-tracking platform that combines satellite imagery with data from machines and processes.

AI then analyzes this data to help companies track, trace and reduce their emissions by 20-30%.

Industrial sectors generate around 30% of greenhouse gas emissions globally.

In response to the uncertainties surrounding generative AI and the need for robust AI governance frameworks to ensure responsible and beneficial outcomes for all, the Forum’s Centre for the Fourth Industrial Revolution (C4IR) has launched the AI Governance Alliance .

The Alliance will unite industry leaders, governments, academic institutions, and civil society organizations to champion responsible global design and release of transparent and inclusive AI systems.

9. Reforesting hills in Brazil using drones

AI-powered computers are pairing up with drones in Brazil to reforest the hills around the coastal city of Rio de Janeiro, Reuters reports. The computers define the targets and number of seeds to be dropped.

The initiative, which launched in January 2024, is a partnership between Rio's city hall and start-up Morfo, and aims to grow seeds in hard-to-reach areas.

A single drone can disperse 180 seed capsules per minute, which is 100 times faster than using human hands for traditional reforestation, according to the local government.

The potential of AI in the future

AI is one of the key emerging technologies explored in the World Economic Forum’s Top 10 Emerging Technologies of 2023 report.

The report specifically looks at generative AI – a type of AI that creates content including text, images and computer programming.

In the future, generative AI could be used in contexts such as drug design, architecture and engineering, the Forum says.

AI can also be used to improve agriculture and reduce its environmental impact by processing data from sensors placed on crops.

The technologies listed in the report, including sustainable aviation fuel, can be used to help tackle global challenges like the climate crisis – but more innovation is needed, the authors point out.

Have you read?

Without ai, we won’t meet esg goals and address climate change, how artificial intelligence can help us prepare for climate adaptation, this is the ai balancing act: between its huge potential and growing emissions, don't miss any update on this topic.

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:

The agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} weekly.

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Artificial Intelligence .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

essay about science and technology innovation amid the changing world

Why protecting an open AI ecosystem should be a cornerstone of technology regulation

Alessandro Curioni

February 23, 2024

essay about science and technology innovation amid the changing world

With Generative AI we can reimagine education — and the sky is the limit

Oguz A. Acar

February 19, 2024

essay about science and technology innovation amid the changing world

How IP laws can be reimagined to stimulate innovation

Jens Martin Skibsted

essay about science and technology innovation amid the changing world

How to secure the modern cyber supply chain and surge in third-party risks amid AI automation

Anna Sarnek

essay about science and technology innovation amid the changing world

Digital Trust: Supporting Individual Agency

essay about science and technology innovation amid the changing world

Blending art and technology: Digital creativity and environmental innovation

Joseph Fowler

February 16, 2024

Essay on Science for Students and Children

500+ words essay on science.

Essay on science:  As we look back in our ancient times we see so much development in the world. The world is full of gadgets and machinery . Machinery does everything in our surroundings. How did it get possible? How did we become so modern? It was all possible with the help of science. Science has played a major role in the development of our society. Furthermore, Science has made our lives easier and carefree.

Essay on science

Science in our Daily Lives

As I have mentioned earlier Science has got many changes in our lives. First of all, transportation is easier now. With the help of Science it now easier to travel long distances . Moreover, the time of traveling is also reduced. Various high-speed vehicles are available these days. These vehicles have totally changed. The phase of our society. Science upgraded steam engines to electric engines. In earlier times people were traveling with cycles. But now everybody travels on motorcycles and cars. This saves time and effort. And this is all possible with the help of Science.

Secondly, Science made us reach to the moon. But we never stopped there. It also gave us a glance at Mars. This is one of the greatest achievements. This was only possible with Science. These days Scientists make many satellites . Because of which we are using high-speed Internet. These satellites revolve around the earth every day and night. Even without making us aware of it. Science is the backbone of our society. Science gave us so much in our present time. Due to this, the teacher in our schools teaches Science from an early age.

Get the huge list of more than 500 Essay Topics and Ideas

Science as a Subject

In class 1 only a student has Science as a subject. This only tells us about the importance of Science. Science taught us about Our Solar System. The Solar System consists of 9 planets and the Sun. Most Noteworthy was that it also tells us about the origin of our planet. Above all, we cannot deny that Science helps us in shaping our future. But not only it tells us about our future, but it also tells us about our past.

When the student reaches class 6, Science gets divided into three more subcategories. These subcategories were Physics, Chemistry, and Biology. First of all, Physics taught us about the machines. Physics is an interesting subject. It is a logical subject.

Furthermore, the second subject was Chemistry . Chemistry is a subject that deals with an element found inside the earth. Even more, it helps in making various products. Products like medicine and cosmetics etc. result in human benefits.

Last but not least, the subject of Biology . Biology is a subject that teaches us about our Human body. It tells us about its various parts. Furthermore, it even teaches the students about cells. Cells are present in human blood. Science is so advanced that it did let us know even that.

Leading Scientists in the field of Science

Finally, many scientists like Thomas Edison , Sir Isaac Newton were born in this world. They have done great Inventions. Thomas Edison invented the light bulb. If he did not invent that we would stay in dark. Because of this Thomas Edison’s name marks in history.

Another famous Scientist was Sir Isaac Newton . Sir Isaac Newton told us about Gravity. With the help of this, we were able to discover many other theories.

In India Scientists A..P.J Abdul was there. He contributed much towards our space research and defense forces. He made many advanced missiles. These Scientists did great work and we will always remember them.

Customize your course in 30 seconds

Which class are you in.


  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play


Supported by

OpenAI Completes Deal That Values the Company at $80 Billion

The A.I. start-up’s valuation tripled in less than 10 months.

  • Share full article

People walking along a sunny sidewalk between a building and a parking area filled with cars.

By Cade Metz and Tripp Mickle

Reporting from San Francisco

OpenAI has completed a deal that values the San Francisco artificial intelligence company at $80 billion or more, nearly tripling its valuation in less than 10 months, according to three people with knowledge of the deal.

The company would sell existing shares in a so-called tender offer led by the venture firm Thrive Capital, the people said. The deal lets employees cash out their shares in the company, rather than a traditional funding round that would raise money for business operations.

OpenAI, which declined to comment, is now one of the world’s most valuable tech start-ups, behind ByteDance and SpaceX, according to figures from the data tracker CB Insights .

The deal is another example of the Silicon Valley deal-making machine pumping money into a handful of companies that specialize in generative A.I. — technology that can generate text, sounds and images on its own. The funding boom kicked off early last year, after OpenAI captured the public’s imagination with the release of the online chatbot ChatGPT .

(The New York Times sued OpenAI and its partner, Microsoft, in December, claiming copyright infringement of news content related to A.I. systems.)

The deal comes at a critical time for OpenAI, providing it with an important vote of confidence after a year of controversy. In November, the company’s board fired Sam Altman, its chief executive, because it lost confidence in his leadership. The dismissal ignited a week of chaos and threw the company’s future into doubt, as employees threatened to resign in solidarity with Mr. Altman. Ultimately, he was reinstated and several board members resigned.

In an attempt to resolve last year’s turmoil, OpenAI hired the law firm WilmerHale to review the board’s actions and Mr. Altman’s leadership. WilmerHale is expected to finish its report on the episode early this year.

The company agreed to a similar deal early last year. The venture-capital firms Thrive Capital, Sequoia Capital, Andreessen Horowitz and K2 Global agreed to buy OpenAI shares in a tender offer, valuing the company at around $29 billion.

Thrive declined to comment.

Investors are eager to pour money into A.I. companies. Last January, Microsoft invested $10 billion in OpenAI, bringing its total investment in the San Francisco start-up to $13 billion.

Since then, Anthropic, an OpenAI rival, has raised $6 billion from Google and Amazon. Cohere, a start-up founded by former Google researchers, raised $270 million, bringing its total funding to more than $440 million, and Inflection AI, founded by a former Google executive, also raised a $1.3 billion round, bringing its total to $1.5 billion.

OpenAI appeared to be close to finalizing its latest deal in November, when Mr. Altman was unexpectedly fired. In the week that followed, the potential deal loomed over Mr. Altman’s efforts to negotiate his way back into the company. Before he was reinstated, over 700 of the company’s 770 employees signed a petition calling for his reinstatement .

Cade Metz writes about artificial intelligence, driverless cars, robotics, virtual reality and other emerging areas of technology. More about Cade Metz

  More about Tripp Mickle

Explore Our Coverage of Artificial Intelligence

News  and Analysis

Google has temporarily suspended the ability of its Gemini chatbot  to generate images of people, after the A.I. generated images of people of color in German military uniforms from World War II  — an obvious historical inaccuracy.

Nvidia, the Silicon Valley chip maker, released quarterly financial results that reinforced how the company has become one of the biggest winners of the A.I. boom .

OpenAI announced that it was releasing a new version of ChatGPT that would remember all prior conversations with users  so it could use that information in future chats. The start-up also unveiled technology that creates videos that look like they were lifted from a Hollywood movie .

The Age of A.I.

Few companies better illustrate how A.I. is changing Silicon Valley deal-making than Anthropic, one of the world’s hottest A.I. start-ups .

A year ago, a rogue A.I. tried to break up our columnist’s marriage. Did the backlash that ensued help make chatbots too boring? Here’s how we tame d the chatbots.

Amid an intractable real estate crisis, fake luxury houses offer a delusion of one’s own. Here’s how A.I. is remodeling the fantasy home .

New technology has made it easier to insert digital, realistic-looking versions of soda cans and shampoo on videos on social media. A growing group of creators and advertisers is jumping at the chance for an additional revenue stream .

A start-up called Perplexity shows what’s possible for a search engine built from scratch with A.I. Are the days of turning to Google for answers numbered ?


  1. How will science and technology change your lives in the future? Free

    essay about science and technology innovation amid the changing world

  2. How Science and Technology Is Going to Change the Future (500 Words

    essay about science and technology innovation amid the changing world

  3. Essay on Science and Technology

    essay about science and technology innovation amid the changing world

  4. Science and Technology innovation Amid the Changing world (POSTER

    essay about science and technology innovation amid the changing world

  5. Advantages and Disadvantages of Science and Technology in our Lives

    essay about science and technology innovation amid the changing world

  6. 5 Revolutionary Technological Innovations that Changed the World

    essay about science and technology innovation amid the changing world


  1. Innovation in Education

  2. August month astronomical events #science #sciencefacts

  3. Science Industry Talk 2021– Translating Science into Business

  4. introduction to the world of innovation

  5. Why Does Innovation Matter?

  6. AYGS Masterclass Series: The role of science, technology, innovation in the implementation of AfCFTA


  1. How Is Technology Changing the World, and How Should the World Change

    At the heart of fights over new technologies and their resulting global changes are often two conflicting visions of technology: a fundamentally optimistic one that believes humans use it as a tool to achieve greater goals, and a fundamentally pessimistic one that holds that technological systems have reached a point beyond our control.

  2. PDF Science, technology and innovation in a 21st century context

    This editorial essay was prepared by John H. ''Jack'' Marburger for a workshop on the ''science of science and innovation policy'' held in 2009 that was the basis for this special issue. It is published posthumously. Linking the words ''science,'' ''technology,'' and ''innovation,'' may suggest that we know

  3. How science, tech and innovation can help beyond the pandemic

    International cooperation on the science, technology and innovation frontiers can fast-track sustainable development progress after the COVID-19 crisis, experts say. The coronavirus pandemic has compelled leaders, policymakers and everyday people to think carefully about what makes healthy and resilient communities.

  4. Science and Technology Will Change Our Future Essay

    Science and Technology Will Change Our Future Essay Exclusively available on IvyPanda Updated: Nov 2nd, 2023 Table of Contents Introduction Science and technology have continued to play a central role in providing means through which people improve their well-being and health, alleviate poverty, and define themselves as a nation and people.

  5. (PDF) Science and Technology education in a changing world

    This paper considers the current and future role of education in science and technology in the context of an ever-changing world. The students of today will be the leaders, developers and...

  6. The world is changing at a rapid pace, driven by science and technology

    The world is changing at a rapid pace, driven by science and technology Read this excerpt from the report 'Inventing a better future' The countless manifestations of science pervade our world, and they profoundly affect the social, economic, and cultural outlooks of societies and individuals alike.

  7. Science, Technology and Innovation Indicators in a Changing World

    As the world interconnects, science, technology and innovation policies cannot be seen as standing alone. There is a growing interest from central banks and ministries of finance in improving the understanding of how science, technology and innovation create value in the form of increased productivity and profits, and contribute to the valuation of enterprises, and ultimately stimulate the ...

  8. Science in a changing world

    The highest science and technology advisory board to the Japanese prime minister - the Council for Science, Technology and Innovation - recently added innovation to its name, while the government's research budget has swiftly changed priority from basic to applied research and innovation.

  9. Science, technology and innovation in a 21st century context

    This editorial essay was prepared by John H. "Jack" Marburger for a workshop on the "science of science and innovation policy" held in 2009 that was the basis for this special issue. It is published posthumously.

  10. Science and technology on fast forward

    Science and technology feed off of one another, propelling both forward. Scientific knowledge allows us to build new technologies, which often allow us to make new observations about the world, which, in turn, allow us to build even more scientific knowledge, which then inspires another technology … and so on. As an example, we'll start with a single scientific idea and trace its ...

  11. Science and Technology Essay for Students in English

    Science and technology is the ultimate need of an hour that changes the overall perspective of the human towards life. Over the centuries, there have been new inventions in the field of science and technology that help in modernizing. Right from connecting with people to using digital products, everything involves science and technology.

  12. Essay on Science and Technology for Students: 100, 200, 350 Words

    Essay on Science and Technology in 100 Words. Everything we do, every breath we take, every move we make, every interaction with any object, and even the thoughts we have, and the dreams we see, all involve science. Similarly, as the world is progressing, technology is getting intertwined with even the basic aspects of our lives.

  13. Sample Essay on Technology science and innovation

    Technology, science and innovation. Science and Technology has been the wheel that rides the current society. From time immemorial, there has been constant change and advancement in these sectors. Technology had been started in the ancient times and this led to various inventions of tools, skills and researches.

  14. Science, technology and innovation

    Science, Technology and Innovation (STI) play a key role in achieving the Sustainable Development Goals (SDGs), particularly in targets that concern human well-being, such as health, clean water and sanitation, climate change, clean energy, decent work, and responsible production, among others. At the same time, the importance of innovation is ...

  15. Innovation, change, and order: Reflections on science and technology in

    Rodney W. Nichols, Consultant on Science and Technology Policy, was President and CEO of the New York Academy of Sciences from 1992 to 2001, previously Scholar-in-Residence at the Carnegie Corporation of New York (1990-1992), and Vice President and Executive Vice President of The Rockefeller University (1970-1990). Earlier he served as a physicist and manager in industry and then in the ...

  16. Understanding Technology, Changing the World

    Understanding Technology, Changing the World. Largely due to the continuing difficulties caused by and connected with the pandemic, there was no time to write editorials for this year's two earlier issues of our journal NanoEthics: Studies of New and Emerging Technologies. The present editorial for the third issue thus constitutes a kind of ...

  17. Essay About Science and Technology

    Download Today sciencemade the impossible things possible. Science, technology have made the life safe, secure and comfortable. Today we are totally depended on science whether it is inside or outsidehome. Now we can enjoy every second in our life through them. Technology has totally changed the field of entertainment.

  18. How technology is reinventing K-12 education

    "Technology is a game-changer for education - it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching," said Dan ...

  19. Essay on Science and Technology for Students and Children

    Indeed our existence itself depends on it now. Every day new technologies are coming up which are making human life easier and more comfortable. Thus, we live in an era of science and technology. Essentially, Science and Technology have introduced us to the establishment of modern civilization.

  20. How Science And Technology Have Changed The World Over The ...

    I got a job in a cubicle. But slowly things started to change. Since 1992, in fact, in the US salaries have gone down from $36,000 to $33,000 (average salary adjusted for inflation) for people ...

  21. Nanotechnology: A Revolution in Modern Industry

    Abstract. Nanotechnology, contrary to its name, has massively revolutionized industries around the world. This paper predominantly deals with data regarding the applications of nanotechnology in the modernization of several industries. A comprehensive research strategy is adopted to incorporate the latest data driven from major science platforms.

  22. Science, Technology and Innovation: Working Together for Growth and

    Science, technology, and innovation play a vital role in every sphere of life, and education is no exception. Don't use plagiarized sources. Get your custom essay on " Science, Technology and Innovation: Working Together for Growth and Development " Get custom paper NEW! smart matching with writer

  23. 9 ways AI is helping tackle climate change

    The use of artificial intelligence (AI) can contribute to the fight against climate change. Existing AI systems include tools that predict weather, track icebergs and identify pollution. AI can also be used to improve agriculture and reduce its environmental impact, the World Economic Forum says.

  24. Essay on Science for Students and Children

    Essay on science: As we look back in our ancient times we see so much development in the world. The world is full of gadgets and machinery. Machinery does everything in our surroundings. How did it get possible? How did we become so modern? It was all possible with the help of science.

  25. OpenAI Completes Deal That Values the Company at $80 Billion

    Few companies better illustrate how A.I. is changing Silicon Valley deal-making than Anthropic, one of the world's hottest A.I. start-ups. A year ago, a rogue A.I. tried to break up our ...

  26. make an essay about "science technology innovation amid the

    make an essay about "science technology innovation amid the changing world" ARTS & HUMANITIES ENGLISH ENGLISH LITERATURE SCIENCE 101 Answer & Explanation Solved by verified expert Answered by margallomichael The 21st century has been marked by incredible advances in science and technology.

  27. Newspaper headlines: 'King and tonic' and potential abortion rule change

    According to the Daily Express, Esther Rantzen's campaign to force a vote on assisted dying has taken a step forward, with the government saying it would allow MPs to decide on changing the law ...