critical thinking and argument

Internet Encyclopedia of Philosophy

Critical thinking.

Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where “good” means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely regarded as a species of informal logic, although critical thinking makes use of some formal methods. In contrast with formal reasoning processes that are largely restricted to deductive methods—decision theory, logic, statistics—the process of critical thinking allows a wide range of reasoning methods, including formal and informal logic, linguistic analysis, experimental methods of the sciences, historical and textual methods, and philosophical methods, such as Socratic questioning and reasoning by counterexample.

The goals of critical thinking are also more diverse than those of formal reasoning systems. While formal methods focus on deductive validity and truth, critical thinkers may evaluate a statement’s truth, its usefulness, its religious value, its aesthetic value, or its rhetorical value. Because critical thinking arose primarily from the Anglo-American philosophical tradition (also known as “analytic philosophy”), contemporary critical thinking is largely concerned with a statement’s truth. But some thinkers, such as Aristotle (in Rhetoric ), give substantial attention to rhetorical value.

The primary subject matter of critical thinking is the proper use and goals of a range of reasoning methods, how they are applied in a variety of social contexts, and errors in reasoning. This article also discusses the scope and virtues of critical thinking.

Critical thinking should not be confused with Critical Theory. Critical Theory refers to a way of doing philosophy that involves a moral critique of culture. A “critical” theory, in this sense, is a theory that attempts to disprove or discredit a widely held or influential idea or way of thinking in society. Thus, critical race theorists and critical gender theorists offer critiques of traditional views and latent assumptions about race and gender. Critical theorists may use critical thinking methodology, but their subject matter is distinct, and they also may offer critical analyses of critical thinking itself.

Table of Contents

  • Argument and Evaluation
  • Categorical Logic
  • Propositional Logic
  • Modal Logic
  • Predicate Logic
  • Other Formal Systems
  • Generalization
  • Causal Reasoning
  • Formal Fallacies
  • Informal Fallacies
  • Heuristics and Biases
  • The Principle of Charity/Humility
  • The Principle of Caution
  • The Expansiveness of Critical Thinking
  • Productivity and the Limits of Rationality
  • Classical Approaches
  • The Paul/Elder Model
  • Other Approaches
  • References and Further Reading

The process of evaluating a statement traditionally begins with making sure we understand it; that is, a statement must express a clear meaning. A statement is generally regarded as clear if it expresses a proposition , which is the meaning the author of that statement intends to express, including definitions, referents of terms, and indexicals, such as subject, context, and time. There is significant controversy over what sort of “entity” propositions are, whether abstract objects or linguistic constructions or something else entirely. Whatever its metaphysical status, it is used here simply to refer to whatever meaning a speaker intends to convey in a statement.

The difficulty with identifying intended propositions is that we typically speak and think in natural languages (English, Swedish, French), and natural languages can be misleading. For instance, two different sentences in the same natural language may express the same proposition, as in these two English sentences:

Jamie is taller than his father. Jamie’s father is shorter than he.

Further, the same sentence in a natural language can express more than one proposition depending on who utters it at a time:

I am shorter than my father right now.

The pronoun “I” is an indexical; it picks out, or “indexes,” whoever utters the sentence and, therefore, expresses a different proposition for each new speaker who utters it. Similarly, “right now” is a temporal indexical; it indexes the time the sentence is uttered. The proposition it is used to express changes each new time the sentence is uttered and, therefore, may have a different truth value at different times (as, say, the speaker grows taller: “I am now five feet tall” may be true today, but false a year from now). Other indexical terms that can affect the meaning of the sentence include other pronouns (he, she, it) and definite articles (that, the).

Further still, different sentences in different natural languages may express the same proposition . For example, all of the following express the proposition “Snow is white”:

Snow is white. (English)

Der Schnee ist weiss. (German)

La neige est blanche. (French)

La neve é bianca. (Italian)

Finally, statements in natural languages are often vague or ambiguous , either of which can obscure the propositions actually intended by their authors. And even in cases where they are not vague or ambiguous, statements’ truth values sometimes vary from context to context. Consider the following example.

The English statement, “It is heavy,” includes the pronoun “it,” which (when used without contextual clues) is ambiguous because it can index any impersonal subject. If, in this case, “it” refers to the computer on which you are reading this right now, its author intends to express the proposition, “The computer on which you are reading this right now is heavy.” Further, the term “heavy” reflects an unspecified standard of heaviness (again, if contextual clues are absent). Assuming we are talking about the computer, it may be heavy relative to other computer models but not to automobiles. Further still, even if we identify or invoke a standard of heaviness by which to evaluate the appropriateness of its use in this context, there may be no weight at which an object is rightly regarded as heavy according to that standard. (For instance, is an object heavy because it weighs 5.3 pounds but not if it weighs 5.2 pounds? Or is it heavy when it is heavier than a mouse but lighter than an anvil?) This means “heavy” is a vague term. In order to construct a precise statement, vague terms (heavy, cold, tall) must often be replaced with terms expressing an objective standard (pounds, temperature, feet).

Part of the challenge of critical thinking is to clearly identify the propositions (meanings) intended by those making statements so we can effectively reason about them. The rules of language help us identify when a term or statement is ambiguous or vague, but they cannot, by themselves, help us resolve ambiguity or vagueness. In many cases, this requires assessing the context in which the statement is made or asking the author what she intends by the terms. If we cannot discern the meaning from the context and we cannot ask the author, we may stipulate a meaning, but this requires charity, to stipulate a plausible meaning, and humility, to admit when we discover that our stipulation is likely mistaken.

2. Argument and Evaluation

Once we are satisfied that a statement is clear, we can begin evaluating it. A statement can be evaluated according to a variety of standards. Commonly, statements are evaluated for truth, usefulness, or rationality. The most common of these goals is truth, so that is the focus of this article.

The truth of a statement is most commonly evaluated in terms of its relation to other statements and direct experiences. If a statement follows from or can be inferred from other statements that we already have good reasons to believe, then we have a reason to believe that statement. For instance, the statement “The ball is blue” can be derived from “The ball is blue and round.” Similarly, if a statement seems true in light of, or is implied by, an experience, then we have a reason to believe that statement. For instance, the experience of seeing a red car is a reason to believe, “The car is red.” (Whether these reasons are good enough for us to believe is a further question about justification , which is beyond the scope of this article, but see “ Epistemic Justification .”) Any statement we derive in these ways is called a conclusion . Though we regularly form conclusions from other statements and experiences—often without thinking about it—there is still a question of whether these conclusions are true: Did we draw those conclusions well? A common way to evaluate the truth of a statement is to identify those statements and experiences that support our conclusions and organize them into structures called arguments . (See also, “ Argument .”)

An argument is one or more statements (called premises ) intended to support the truth of another statement (the conclusion ). Premises comprise the evidence offered in favor of the truth of a conclusion. It is important to entertain any premises that are intended to support a conclusion, even if the attempt is unsuccessful. Unsuccessful attempts at supporting a proposition constitute bad arguments, but they are still arguments. The support intended for the conclusion may be formal or informal. In a formal, or deductive, argument, an arguer intends to construct an argument such that, if the premises are true, the conclusion must be true. This strong relationship between premises and conclusion is called validity . This relationship between the premises and conclusion is called “formal” because it is determined by the form (that is, the structure) of the argument (see §3). In an informal, or inductive , argument, the conclusion may be false even if the premises are true. In other words, whether an inductive argument is good depends on something more than the form of the argument. Therefore, all inductive arguments are invalid, but this does not mean they are bad arguments. Even if an argument is invalid, its premises can increase the probability that its conclusion is true. So, the form of inductive arguments is evaluated in terms of the strength the premises confer on the conclusion, and stronger inductive arguments are preferred to weaker ones (see §4). (See also, “ Deductive and Inductive Arguments .”)

Psychological states, such as sensations, memories, introspections, and intuitions often constitute evidence for statements. Although these states are not themselves statements, they can be expressed as statements. And when they are, they can be used in and evaluated by arguments. For instance, my seeing a red wall is evidence for me that, “There is a red wall,” but the physiological process of seeing is not a statement. Nevertheless, the experience of seeing a red wall can be expressed as the proposition, “I see a red wall” and can be included in an argument such as the following:

  • I see a red wall in front of me.
  • Therefore, there is a red wall in front of me.

This is an inductive argument, though not a strong one. We do not yet know whether seeing something (under these circumstances) is reliable evidence for the existence of what I am seeing. Perhaps I am “seeing” in a dream, in which case my seeing is not good evidence that there is a wall. For similar reasons, there is also reason to doubt whether I am actually seeing. To be cautious, we might say we seem to see a red wall.

To be good , an argument must meet two conditions: the conclusion must follow from the premises—either validly or with a high degree of likelihood—and the premises must be true. If the premises are true and the conclusion follows validly, the argument is sound . If the premises are true and the premises make the conclusion probable (either objectively or relative to alternative conclusions), the argument is cogent .

Here are two examples:

  • Earth is larger than its moon.
  • Our sun is larger than Earth.
  • Therefore, our sun is larger than Earth’s moon.

In example 1, the premises are true. And since “larger than” is a transitive relation, the structure of the argument guarantees that, if the premises are true, the conclusion must be true. This means the argument is also valid. Since it is both valid and has true premises, this deductive argument is sound.

  Example 2:

  • It is sunny in Montana about 205 days per year.
  • I will be in Montana in February.
  • Hence, it will probably be sunny when I am in Montana.

In example 2, premise 1 is true, and let us assume premise 2 is true. The phrase “almost always” indicates that a majority of days in Montana are sunny, so that, for any day you choose, it will probably be a sunny day. Premise 2 says I am choosing days in February to visit. Together, these premises strongly support (though they do not guarantee) the conclusion that it will be sunny when I am there, and so this inductive argument is cogent.

In some cases, arguments will be missing some important piece, whether a premise or a conclusion. For instance, imagine someone says, “Well, she asked you to go, so you have to go.” The idea that you have to go does not follow logically from the fact that she asked you to go without more information. What is it about her asking you to go that implies you have to go? Arguments missing important information are called enthymemes . A crucial part of critical thinking is identifying missing or assumed information in order to effectively evaluate an argument. In this example, the missing premise might be that, “She is your boss, and you have to do what she asks you to do.” Or it might be that, “She is the woman you are interested in dating, and if you want a real chance at dating her, you must do what she asks.” Before we can evaluate whether her asking implies that you have to go, we need to know this missing bit of information. And without that missing bit of information, we can simply reply, “That conclusion doesn’t follow from that premise.”

The two categories of reasoning associated with soundness and cogency—formal and informal, respectively—are considered, by some, to be the only two types of argument. Others add a third category, called abductive reasoning, according to which one reasons according to the rules of explanation rather than the rules of inference . Those who do not regard abductive reasoning as a third, distinct category typically regard it as a species of informal reasoning. Although abductive reasoning has unique features, here it is treated, for reasons explained in §4d, as a species of informal reasoning, but little hangs on this characterization for the purposes of this article.

3. Formal Reasoning

Although critical thinking is widely regarded as a type of informal reasoning, it nevertheless makes substantial use of formal reasoning strategies. Formal reasoning is deductive , which means an arguer intends to infer or derive a proposition from one or more propositions on the basis of the form or structure exhibited by the premises. Valid argument forms guarantee that particular propositions can be derived from them. Some forms look like they make such guarantees but fail to do so (we identify these as formal fallacies in §5a). If an arguer intends or supposes that a premise or set of premises guarantee a particular conclusion, we may evaluate that argument form as deductive even if the form fails to guarantee the conclusion, and is thus discovered to be invalid.

Before continuing in this section, it is important to note that, while formal reasoning provides a set of strict rules for drawing valid inferences, it cannot help us determine the truth of many of our original premises or our starting assumptions. And in fact, very little critical thinking that occurs in our daily lives (unless you are a philosopher, engineer, computer programmer, or statistician) involves formal reasoning. When we make decisions about whether to board an airplane, whether to move in with our significant others, whether to vote for a particular candidate, whether it is worth it to drive ten miles faster the speed limit even if I am fairly sure I will not get a ticket, whether it is worth it to cheat on a diet, or whether we should take a job overseas, we are reasoning informally. We are reasoning with imperfect information (I do not know much about my flight crew or the airplane’s history), with incomplete information (no one knows what the future is like), and with a number of built-in biases, some conscious (I really like my significant other right now), others unconscious (I have never gotten a ticket before, so I probably will not get one this time). Readers who are more interested in these informal contexts may want to skip to §4.

An argument form is a template that includes variables that can be replaced with sentences. Consider the following form (found within the formal system known as sentential logic ):

  • If p, then q.
  • Therefore, q.

This form was named modus ponens (Latin, “method of putting”) by medieval philosophers. p and q are variables that can be replaced with any proposition, however simple or complex. And as long as the variables are replaced consistently (that is, each instance of p is replaced with the same sentence and the same for q ), the conclusion (line 3), q , follows from these premises. To be more precise, the inference from the premises to the conclusion is valid . “Validity” describes a particular relationship between the premises and the conclusion, namely: in all cases , the conclusion follows necessarily from the premises, or, to use more technical language, the premises logically guarantee an instance of the conclusion.

Notice we have said nothing yet about truth . As critical thinkers, we are interested, primarily, in evaluating the truth of sentences that express propositions, but all we have discussed so far is a type of relationship between premises and conclusion (validity). This formal relationship is analogous to grammar in natural languages and is known in both fields as syntax . A sentence is grammatically correct if its syntax is appropriate for that language (in English, for example, a grammatically correct simple sentence has a subject and a predicate—“He runs.” “Laura is Chairperson.”—and it is grammatically correct regardless of what subject or predicate is used—“Jupiter sings.”—and regardless of whether the terms are meaningful—“Geflorble rowdies.”). Whether a sentence is meaningful, and therefore, whether it can be true or false, depends on its semantics , which refers to the meaning of individual terms (subjects and predicates) and the meaning that emerges from particular orderings of terms. Some terms are meaningless—geflorble; rowdies—and some orderings are meaningless even though their terms are meaningful—“Quadruplicity drinks procrastination,” and “Colorless green ideas sleep furiously.”.

Despite the ways that syntax and semantics come apart, if sentences are meaningful, then syntactic relationships between premises and conclusions allow reasoners to infer truth values for conclusions. Because of this, a more common definition of validity is this: it is not possible for all the premises to be true and the conclusion false . Formal logical systems in which syntax allows us to infer semantic values are called truth-functional or truth-preserving —proper syntax preserves truth throughout inferences.

The point of this is to note that formal reasoning only tells us what is true if we already know our premises are true. It cannot tell us whether our experiences are reliable or whether scientific experiments tell us what they seem to tell us. Logic can be used to help us determine whether a statement is true, but only if we already know some true things. This is why a broad conception of critical thinking is so important: we need many different tools to evaluate whether our beliefs are any good.

Consider, again, the form modus ponens , and replace p with “It is a cat” and q with “It is a mammal”:

  • If it is a cat, then it is a mammal.
  • It is a cat.
  • Therefore, it is a mammal.

In this case, we seem to “see” (in a metaphorical sense of see ) that the premises guarantee the truth of the conclusion. On reflection, it is also clear that the premises might not be true; for instance, if “it” picks out a rock instead of a cat, premise 1 is still true, but premise 2 is false. It is also possible for the conclusion to be true when the premises are false. For instance, if the “it” picks out a dog instead of a cat, the conclusion “It is a mammal” is true. But in that case, the premises do not guarantee that conclusion; they do not constitute a reason to believe the conclusion is true.

Summing up, an argument is valid if its premises logically guarantee an instance of its conclusion (syntactically), or if it is not possible for its premises to be true and its conclusion false (semantically). Logic is truth-preserving but not truth-detecting; we still need evidence that our premises are true to use logic effectively.

            A Brief Technical Point

Some readers might find it worth noting that the semantic definition of validity has two counterintuitive consequences. First, it implies that any argument with a necessarily true conclusion is valid. Notice that the condition is phrased hypothetically: if the premises are true, then the conclusion cannot be false. This condition is met if the conclusion cannot be false:

  • Two added to two equals four.

This is because the hypothetical (or “conditional”) statement would still be true even if the premises were false:

  • If it is blue, then it flies.
  • It is an airplane.

It is true of this argument that if the premises were true, the conclusion would be since the conclusion is true no matter what.

Second, the semantic formulation also implies that any argument with necessarily false premises is valid. The semantic condition for validity is met if the premises cannot be true:

  • Some bachelors are married.
  • Earth’s moon is heavier than Jupiter.

In this case, if the premise were true, the conclusion could not be false (this is because anything follows syntactically from a contradiction), and therefore, the argument is valid. There is nothing particularly problematic about these two consequences. But they highlight unexpected implications of our standard formulations of validity, and they show why there is more to good arguments than validity.

Despite these counterintuitive implications, valid reasoning is essential to thinking critically because it is a truth-preserving strategy: if deductive reasoning is applied to true premises, true conclusions will result.

There are a number of types of formal reasoning, but here we review only some of the most common: categorical logic, propositional logic, modal logic, and predicate logic.

a. Categorical Logic

Categorical logic is formal reasoning about categories or collections of subjects, where subjects refers to anything that can be regarded as a member of a class, whether objects, properties, or events or even a single object, property, or event. Categorical logic employs the quantifiers “all,” “some,” and “none” to refer to the members of categories, and categorical propositions are formulated in four ways:

A claims: All As are Bs (where the capitals “A” and “B” represent categories of subjects).

E claims: No As are Bs.

I claims: Some As are Bs.

O claims: Some As are not Bs.

Categorical syllogisms are syllogisms (two-premised formal arguments) that employ categorical propositions. Here are two examples:

  • All cats are mammals. (A claim) 1. No bachelors are married. (E claim)
  • Some cats are furry. (I claim) 2. All the people in this building are bachelors. (A claim)
  • Therefore, some mammals are furry. (I claim) 3. Thus, no people in this building are married. (E claim)

There are interesting limitations on what categorical logic can do. For instance, if one premise says that, “Some As are not Bs,” may we infer that some As are Bs, in what is known as an “existential assumption”? Aristotle seemed to think so ( De Interpretatione ), but this cannot be decided within the rules of the system. Further, and counterintuitively, it would mean that a proposition such as, “Some bachelors are not married,” is false since it implies that some bachelors are married.

Another limitation on categorical logic is that arguments with more than three categories cannot be easily evaluated for validity. The standard method for evaluating the validity of categorical syllogisms is the Venn diagram (named after John Venn, who introduced it in 1881), which expresses categorical propositions in terms of two overlapping circles and categorical arguments in terms of three overlapping circles, each circle representing a category of subjects.

Venn diagram for claim and Venn diagram for argument

A, B, and C represent categories of objects, properties, or events. The symbol “ ∩ ” comes from mathematical set theory to indicate “intersects with.” “A∩B” means all those As that are also Bs and vice versa. 

Though there are ways of constructing Venn diagrams with more than three categories, determining the validity of these arguments using Venn diagrams is very difficult (and often requires computers). These limitations led to the development of more powerful systems of formal reasoning.

b. Propositional Logic

Propositional, or sentential , logic has advantages and disadvantages relative to categorical logic. It is more powerful than categorical logic in that it is not restricted in the number of terms it can evaluate, and therefore, it is not restricted to the syllogistic form. But it is weaker than categorical logic in that it has no operators for quantifying over subjects, such as “all” or “some.” For those, we must appeal to predicate logic (see §3c below).

Basic propositional logic involves formal reasoning about propositions (as opposed to categories), and its most basic unit of evaluation is the atomic proposition . “Atom” means the smallest indivisible unit of something, and simple English statements (subject + predicate) are atomic wholes because if either part is missing, the word or words cease to be a statement, and therefore ceases to be capable of expressing a proposition. Atomic propositions are simple subject-predicate combinations, for instance, “It is a cat” and “I am a mammal.” Variable letters such as p and q in argument forms are replaced with semantically rich constants, indicated by capital letters, such as A and B . Consider modus ponens again (noting that the atomic propositions are underlined in the English argument):

1. If , then . 1. If it is a cat, then it is a mammal. 1. If C, then M
2. . 2. It is a cat. 2. C
3. Therefore, . 3. Therefore, it is a mammal. 3. M

As you can see from premise 1 of the Semantic Replacement, atomic propositions can be combined into more complex propositions using symbols that represent their logical relationships (such as “If…, then…”). These symbols are called “operators” or “connectives.” The five standard operators in basic propositional logic are:

“not” ~ or ¬ or It is not the case that p. ~p
“and” & or • Both p and q. p & q
“or” v Either p or q. p v q
“If…, then…” à or ⊃ If p, then q. p ⊃ q
“if and only if” ≡ or ⬌ or iff p if and only if q. p ≡ q

These operations allow us to identify valid relations among propositions: that is, they allow us to formulate a set of rules by which we can validly infer propositions from and validly replace them with others. These rules of inference (such as modus ponens ; modus tollens ; disjunctive syllogism) and rules of replacement (such as double negation; contraposition; DeMorgan’s Law) comprise the syntax of propositional logic, guaranteeing the validity of the arguments employing them.

Two Rules of Inference:

1. It is raining. 1. p 1. R
2. It is windy. 2. q 2. W
3. Therefore, it is raining and it is windy. 3. /.: (p & q) 3. /.: (R & W)
1. Either it is raining or my car is dirty. 1. (p v q) 1. (R v C)
2. My car is not dirty. 2. ~q 2. ~C
3. Therefore, it is raining. 3. /.: p 3. /.: R

Two Rules of Replacement:

if and only if . (p ⊃ q) ≡ (~p v q) (R ⊃ W) ≡ (~R v W)
It is not the case that if and only if . ~(p & q) ≡ (~p v ~q) ~(F & H) ≡ (~F v ~H)
It is not the case that he is either a lawyer or a nice guy if and only if he is neither a lawyer nor a nice guy. ~(p v q) ≡ (~p & ~q) ~(L v N) ≡ (~L & ~N)

For more, see “ Propositional Logic .”

c. Modal Logic

Standard propositional logic does not capture every type of proposition we wish to express (recall that it does not allow us to evaluate categorical quantifiers such as “all” or “some”). It also does not allow us to evaluate propositions expressed as possibly true or necessarily true, modifications that are called modal operators or modal quantifiers .

Modal logic refers to a family of formal propositional systems, the most prominent of which includes operators for necessity (□) and possibility (◊) (see §3d below for examples of other modal systems). If a proposition, p , is possibly true, ◊ p , it may or may not be true. If p is necessarily true, □ p , it must be true; it cannot be false. If p is necessarily false, either ~◊ p or □~ p , it must be false; it cannot be true.

There is a variety of modal systems, the weakest of which is called K (after Saul Kripke, who exerted important influence on the development of modal logic), and it involves only two additional rules:

Necessitation Rule:   If  A  is a theorem of  K , then so is □ A .

Distribution Axiom:  □( A ⊃ B ) ⊃ (□ A ⊃□ B ).  [If it is necessarily the case that if A, then B , then if it is necessarily the case that A, it is necessarily the case that B .]

Other systems maintain these rules and add others for increasing strength. For instance, the (S4) modal system includes axiom (4):

(4)  □ A ⊃ □□ A   [If it is necessarily the case that A, then it is necessarily necessary that A.]

An influential and intuitive way of thinking about modal concepts is the idea of “possible worlds” (see Plantinga, 1974; Lewis 1986). A world is just the set of all true propositions. The actual world is the set of all actually true propositions—everything that was true, is true, and (depending on what you believe about the future) will be true. A possible world is a way the actual world might have been. Imagine you wore green underwear today. The actual world might have been different in that way: you might have worn blue underwear. In this interpretation of modal quantifiers, there is a possible world in which you wore blue underwear instead of green underwear. And for every possibility like this, and every combination of those possibilities, there is a distinct possible world.

If a proposition is not possible, then there is no possible world in which that proposition is true. The statement, “That object is red all over and blue all over at the same time” is not true in any possible worlds. Therefore, it is not possible (~◊P), or, in other words, necessarily false (□~P). If a proposition is true in all possible worlds, it is necessarily true. For instance, the proposition, “Two plus two equal four,” is true in all possible worlds, so it is necessarily true (□P) or not possibly false (~◊~P).

All modal systems have a number of controversial implications, and there is not space to review them here. Here we need only note that modal logic is a type of formal reasoning that increases the power of propositional logic to capture more of what we attempt to express in natural languages. (For more, see “ Modal Logic: A Contemporary View .”)

d. Predicate Logic

Predicate logic, in particular, first-order predicate logic, is even more powerful than propositional logic. Whereas propositional logic treats propositions as atomic wholes, predicate logic allows reasoners to identify and refer to subjects of propositions, independently of their predicates. For instance, whereas the proposition, “Susan is witty,” would be replaced with a single upper-case letter, say “S,” in propositional logic, predicate logic would assign the subject “Susan” a lower-case letter, s, and the predicate “is witty” an upper-case letter, W, and the translation (or formula ) would be: Ws.

In addition to distinguishing subjects and predicates, first-order predicate logic allows reasoners to quantify over subjects. The quantifiers in predicate logic are “All…,” which is comparable to “All” quantifier in categorical logic and is sometimes symbolized with an upside-down A: ∀ (though it may not be symbolized at all), and “There is at least one…,” which is comparable to “Some” quantifier in categorical logic and is symbolized with a backward E: ∃. E and O claims are formed by employing the negation operator from propositional logic. In this formal system, the proposition, “Someone is witty,” for example, has the form: There is an x , such that x has the property of being witty, which is symbolized: (∃ x)(Wx). Similarly, the proposition, “Everyone is witty,” has the form: For all x, x has the property of being witty, which is symbolized (∀ x )( Wx ) or, without the ∀: ( x )( Wx ).

Predicate derivations are conducted according to the same rules of inference and replacement as propositional logic with the exception of four rules to accommodate adding and eliminating quantifiers.

Second-order predicate logic extends first-order predicate logic to allow critical thinkers to quantify over and draw inferences about subjects and predicates, including relations among subjects and predicates. In both first- and second-order logic, predicates typically take the form of properties (one-place predicates) or relations (two-place predicates), though there is no upper limit on place numbers. Second-order logic allows us to treat both as falling under quantifiers, such as e verything that is (specifically, that has the property of being) a tea cup and everything that is a bachelor is unmarried .

e. Other Formal Systems

It is worth noting here that the formal reasoning systems we have seen thus far (categorical, propositional, and predicate) all presuppose that truth is bivalent , that is, two-valued. The two values critical thinkers are most often concerned with are true and false , but any bivalent system is subject to the rules of inference and replacement of propositional logic. The most common alternative to truth values is the binary code of 1s and 0s used in computer programming. All logics that presuppose bivalence are called classical logics . In the next section, we see that not all formal systems are bivalent; there are non-classical logics . The existence of non-classical systems raises interesting philosophical questions about the nature of truth and the legitimacy of our basic rules of reasoning, but these questions are too far afield for this context. Many philosophers regard bivalent systems as legitimate for all but the most abstract and purely formal contexts. Included below is a brief description of three of the most common non-classical logics.

Tense logic , or temporal logic, is a formal modal system developed by Arthur Prior (1957, 1967, 1968) to accommodate propositional language about time. For example, in addition to standard propositional operators, tense logic includes four operators for indexing times: P “It has at some time been the case that…”; F “It will at some time be the case that…”; H “It has always been the case that…”; and G “It will always be the case that….”

Many-valued logic , or n -valued logic, is a family of formal logical systems that attempts to accommodate intuitions that suggest some propositions have values in addition to true and false. These are often motivated by intuitions that some propositions have neither of the classic truth values; their truth value is indeterminate (not just undeterminable, but neither true nor false), for example, propositions about the future such as, “There will be a sea battle tomorrow.” If the future does not yet exist, there is no fact about the future, and therefore, nothing for a proposition to express.

Fuzzy logic is a type of many-valued logic developed out of Lotfi Zadeh’s (1965) work on mathematical sets. Fuzzy logic attempts to accommodate intuitions that suggest some propositions have truth value in degrees, that is, some degree of truth between true and false. It is motivated by concerns about vagueness in reality, for example whether a certain color is red or some degree of red, or whether some temperature is hot or some degree of hotness.

Formal reasoning plays an important role in critical thinking, but not very often. There are significant limits to how we might use formal tools in our daily lives. If that is true, how do critical thinkers reason well when formal reasoning cannot help? That brings us to informal reasoning.

4. Informal Reasoning

Informal reasoning is inductive , which means that a proposition is inferred (but not derived) from one or more propositions on the basis of the strength provided by the premises (where “strength” means some degree of likelihood less than certainty or some degree of probability less than 1 but greater than 0; a proposition with 0% probability is necessarily false).

Particular premises grant strength to premises to the degree that they reflect certain relationships or structures in the world . For instance, if a particular type of event, p , is known to cause or indicate another type of event, q , then upon encountering an event of type p , we may infer that an event of type q is likely to occur. We may express this relationship among events propositionally as follows:

  • Events of type p typically cause or indicate events of type q .
  • An event of type p occurred.
  • Therefore, an event of type q probably occurred.

If the structure of the world (for instance, natural laws) makes premise 1 true, then, if premise 2 is true, we can reasonably (though not certainly) infer the conclusion.

Unlike formal reasoning, the adequacy of informal reasoning depends on how well the premises reflect relationships or structures in the world. And since we have not experienced every relationship among objects or events or every structure, we cannot infer with certainty that a particular conclusion follows from a true set of premises about these relationships or structures. We can only infer them to some degree of likelihood by determining to the best of our ability either their objective probability or their probability relative to alternative conclusions.

The objective probability of a conclusion refers to how likely, given the way the world is regardless of whether we know it , that conclusion is to be true. The epistemic probability of a conclusion refers to how likely that conclusion is to be true given what we know about the world , or more precisely, given our evidence for its objective likelihood.

Objective probabilities are determined by facts about the world and they are not truths of logic, so we often need evidence for objective probabilities. For instance, imagine you are about to draw a card from a standard playing deck of 52 cards. Given particular assumptions about the world (that this deck contains 52 cards and that one of them is the Ace of Spades), the objective likelihood that you will draw an Ace of Spades is 1/52. These assumptions allow us to calculate the objective probability of drawing an Ace of Spades regardless of whether we have ever drawn a card before. But these are assumptions about the world that are not guaranteed by logic: we have to actually count the cards, to be sure we count accurately and are not dreaming or hallucinating, and that our memory (once we have finished counting) reliably maintains our conclusions. None of these processes logically guarantees true beliefs. So, if our assumptions are correct, we know the objective probability of actually drawing an Ace of Spades in the real world. But since there is no logical guarantee that our assumptions are right, we are left only with the epistemic probability (the probability based on our evidence) of drawing that card. If our assumptions are right, then the objective probability is the same as our epistemic probability: 1/52. But even if we are right, objective and epistemic probabilities can come apart under some circumstances.

Imagine you draw a card without looking at it and lay it face down. What is the objective probability that that card is an Ace of Spades? The structure of the world has now settled the question, though you do not know the outcome. If it is an Ace of Spades, the objective probability is 1 (100%); it is the Ace of Spades. If it is not the Ace of Spades, the objective probability is 0 (0%); it is not the Ace of Spades. But what is the epistemic probability? Since you do not know any more about the world than you did before you drew the card, the epistemic probability is the same as before you drew it: 1/52.

Since much of the way the world is is hidden from us (like the card laid face down), and since it is not obvious that we perceive reality as it actually is (we do not know whether the actual coins we flip are evenly weighted or whether the actual dice we roll are unbiased), our conclusions about probabilities in the actual world are inevitably epistemic probabilities. We can certainly calculate objective probabilities about abstract objects (for instance, hypothetically fair coins and dice—and these calculations can be evaluated formally using probability theory and statistics), but as soon as we apply these calculations to the real world, we must accommodate the fact that our evidence is incomplete.

There are four well-established categories of informal reasoning: generalization, analogy, causal reasoning, and abduction.

a. Generalization

Generalization is a way of reasoning informally from instances of a type to a conclusion about the type. This commonly takes two forms: reasoning from a sample of a population to the whole population , and reasoning from past instances of an object or event to future instances of that object or event . The latter is sometimes called “enumerative induction” because it involves enumerating past instances of a type in order to draw an inference about a future instance. But this distinction is weak; both forms of generalization use past or current data to infer statements about future instances and whole current populations.

A popular instance of inductive generalization is the opinion poll: a sample of a population of people is polled with respect to some statement or belief. For instance, if we poll 57 sophomores enrolled at a particular college about their experiences of living in dorms, these 57 comprise our sample of the population of sophomores at that particular college. We want to be careful how we define our population given who is part of our sample. Not all college students are like sophomores, so it is not prudent to draw inferences about all college students from these sophomores. Similarly, sophomores at other colleges are not necessarily like sophomores at this college (it could be the difference between a liberal arts college and a research university), so it is prudent not to draw inferences about all sophomores from this sample at a particular college.

Let us say that 90% of the 57 sophomores we polled hate the showers in their dorms. From this information, we might generalize in the following way:

  • We polled 57 sophomores at Plato’s Academy. (the sample)
  • 90% of our sample hates the showers in their dorms. (the polling data)
  • Therefore, probably 90% of all sophomores at Plato’s Academy hate the showers in their dorms. (a generalization from our sample to the whole population of sophomores at Plato’s Academy)

Is this good evidence that 90% of all sophomores at that college hate the showers in their dorms?

A generalization is typically regarded as a good argument if its sample is representative of its population. A sample is representative if it is similar in the relevant respects to its population. A perfectly representative sample would include the whole population: the sample would be identical with the population, and thus, perfectly representative. In that case, no generalization is necessary. But we rarely have the time or resources to evaluate whole populations. And so, a sample is generally regarded as representative if it is large relative to its population and unbiased .

In our example, whether our inference is good depends, in part, on how many sophomores there are. Are there 100, 2,000? If there are only 100, then our sample size seems adequate—we have polled over half the population. Is our sample unbiased? That depends on the composition of the sample. Is it comprised only of women or only of men? If this college is not co-ed, that is not a problem. But if the college is co-ed and we have sampled only women, our sample is biased against men. We have information only about female freshmen dorm experiences, and therefore, we cannot generalize about male freshmen dorm experiences.

How large is large enough? This is a difficult question to answer. A poll of 1% of your high school does not seem large enough to be representative. You should probably gather more data. Yet a poll of 1% of your whole country is practically impossible (you are not likely to ever have enough grant money to conduct that poll). But could a poll of less than 1% be acceptable? This question is not easily answered, even by experts in the field. The simple answer is: the more, the better. The more complicated answer is: it depends on how many other factors you can control for, such as bias and hidden variables (see §4c for more on experimental controls).

Similarly, we might ask what counts as an unbiased sample. An overly simple answer is: the sample is taken randomly, that is, by using a procedure that prevents consciously or unconsciously favoring one segment of the population over another (flipping a coin, drawing lottery balls). But reality is not simple. In political polls, it is important not to use a selection procedure that results in a sample with a larger number of members of one political party than another relative to their distribution in the population, even if the resulting sample is random. For example, the two most prominent parties in the U.S. are the Democratic Party and the Republican Party. If 47% of the U.S. is Republican and 53% is Democrat, an unbiased sample would have approximately 47% Republicans and 53% Democrats. But notice that simply choosing at random may not guarantee that result; it could easily occur, just by choosing randomly, that our sample has 70% Democrats and 30% Republicans (suppose our computer chose, albeit randomly, from a highly Democratic neighborhood). Therefore, we want to control for representativeness in some criteria, such as gender, age, and education. And we explicitly want to avoid controlling for the results we are interested in; if we controlled for particular answers to the questions on our poll, we would not learn anything—we would get all and only the answers we controlled for.

Difficulties determining representativeness suggest that reliable generalizations are not easy to construct. If we generalize on the basis of samples that are too small or if we cannot control for bias, we commit the informal fallacy of hasty generalization (see §5b). In order to generalize well, it seems we need a bit of machinery to guarantee representativeness. In fact, it seems we need an experiment, one of the primary tools in causal reasoning (see §4c below).

Argument from Analogy , also called analogical reasoning , is a way of reasoning informally about events or objects based on their similarities. A classic instance of reasoning by analogy occurs in archaeology, when researchers attempt to determine whether a stone object is an artifact (a human-made item) or simply a rock. By comparing the features of an unknown stone with well-known artifacts, archaeologists can infer whether a particular stone is an artifact. Other examples include identifying animals’ tracks by their similarities with pictures in a guidebook and consumer reports on the reliability of products.

To see how arguments from analogy work in detail, imagine two people who, independently of one another, want to buy a new pickup truck. Each chooses a make and model he or she likes, and let us say they decide on the same truck. They then visit a number of consumer reporting websites to read reports on trucks matching the features of the make and model they chose, for instance, the year it was built, the size of the engine (6 cyl. or 8 cyl.), the type of transmission (2WD or 4WD), the fuel mileage, and the cab size (standard, extended, crew). Now, let us say one of our prospective buyers is interested in safety —he or she wants a tough, safe vehicle that will protect against injuries in case of a crash. The other potential buyer is interested in mechanical reliability —he or she does not want to spend a lot of time and money fixing mechanical problems.

With this in mind, here is how our two buyers might reason analogically about whether to purchase the truck (with some fake report data included):

  • The truck I have in mind was built in 2012, has a 6-cylinder engine, a 2WD transmission, and a king cab.
  • 62 people who bought trucks like this one posted consumer reports and have driven it for more than a year.
  • 88% of those 62 people report that the truck feels very safe.
  • Therefore, the truck I am looking at will likely be very safe.
  • 88% of those 62 people report that the truck has had no mechanical problems.
  • Therefore, the truck I am looking at will likely have no mechanical problems.

Are the features of these analogous vehicles (the ones reported on) sufficiently numerous and relevant for helping our prospective truck buyers decide whether to purchase the truck in question (the one on the lot)? Since we have some idea that the type of engine and transmission in a vehicle contribute to its mechanical reliability, Buyer 2 may have some relevant features on which to draw a reliable analogy. Fuel mileage and cab size are not obviously relevant, but engine specifications seem to be. Are these specifications numerous enough? That depends on whether anything else that we are not aware of contributes to overall reliability. Of course, if the trucks having the features we know also have all other relevant features we do not know (if there are any), then Buyer 2 may still be able to draw a reliable inference from analogy. Of course, we do not currently know this.

Alternatively, Buyer 1 seems to have very few relevant features on which to draw a reliable analogy. The features listed are not obviously related to safety. Are there safety options a buyer may choose but that are not included in the list? For example, can a buyer choose side-curtain airbags, or do such airbags come standard in this model? Does cab size contribute to overall safety? Although there are a number of similarities between the trucks, it is not obvious that we have identified features relevant to safety or whether there are enough of them. Further, reports of “feeling safe” are not equivalent to a truck actually being safe. Better evidence would be crash test data or data from actual accidents involving this truck. This information is not likely to be on a consumer reports website.

A further difficulty is that, in many cases, it is difficult to know whether many similarities are necessary if the similarities are relevant. For instance, if having lots of room for passengers is your primary concern, then any other features are relevant only insofar as they affect cab size. The features that affect cab size may be relatively small.

This example shows that arguments from analogy are difficult to formulate well. Arguments from analogy can be good arguments when critical thinkers identify a sufficient number of features of known objects that are also relevant to the feature inferred to be shared by the object in question. If a rock is shaped like a cutting tool, has marks consistent with shaping and sharpening, and has wear marks consistent with being held in a human hand, it is likely that rock is an artifact. But not all cases are as clear.

It is often difficult to determine whether the features we have identified are sufficiently numerous or relevant to our interests. To determine whether an argument from analogy is good, a person may need to identify a causal relationship between those features and the one in which she is interested (as in the case with a vehicle’s mechanical reliability). This usually takes the form of an experiment, which we explore below (§4c).

Difficulties with constructing reliable generalizations and analogies have led critical thinkers to develop sophisticated methods for controlling for the ways these arguments can go wrong. The most common way to avoid the pitfalls of these arguments is to identify the causal structures in the world that account for or underwrite successful generalizations and analogies. Causal arguments are the primary method of controlling for extraneous causal influences and identifying relevant causes. Their development and complexity warrant regarding them as a distinct form of informal reasoning.

c. Causal Reasoning

Causal arguments attempt to draw causal conclusions (that is, statements that express propositions about causes: x causes y ) from premises about relationships among events or objects. Though it is not always possible to construct a causal argument, when available, they have an advantage over other types of inductive arguments in that they can employ mechanisms (experiments) that reduce the risks involved in generalizations and analogies.

The interest in identifying causal relationships often begins with the desire to explain correlations among events (as pollen levels increase, so do allergy symptoms) or with the desire to replicate an event (building muscle, starting a fire) or to eliminate an event (polio, head trauma in football).

Correlations among events may be positive (where each event increases at roughly the same rate) or negative (where one event decreases in proportion to another’s increase). Correlations suggest a causal relationship among the events correlated.

But we must be careful; correlations are merely suggestive—other forces may be at work. Let us say the y-axis in the charts above represents the number of millionaires in the U.S. and the x-axis represents the amount of money U.S. citizens pay for healthcare each year. Without further analysis, a positive correlation between these two may lead someone to conclude that increasing wealth causes people to be more health conscious and to seek medical treatment more often. A negative correlation may lead someone to conclude that wealth makes people healthier and, therefore, that they need to seek medical care less frequently.

Unfortunately, correlations can occur without any causal structures (mere coincidence) or because of a third, as-yet-unidentified event (a cause common to both events, or “common cause”), or the causal relationship may flow in an unexpected direction (what seems like the cause is really the effect). In order to determine precisely which event (if any) is responsible for the correlation, reasoners must eliminate possible influences on the correlation by “controlling” for possible influences on the relationship (variables).

Critical thinking about causes begins by constructing hypotheses about the origins of particular events. A hypothesis is an explanation or event that would account for the event in question. For example, if the question is how to account for increased acne during adolescence, and we are not aware of the existence of hormones, we might formulate a number of hypotheses about why this happens: during adolescence, people’s diets change (parents no longer dictate their meals), so perhaps some types of food cause acne; during adolescence, people become increasingly anxious about how they appear to others, so perhaps anxiety or stress causes acne; and so on.

After we have formulated a hypothesis, we identify a test implication that will help us determine whether our hypothesis is correct. For instance, if some types of food cause acne, we might choose a particular food, say, chocolate, and say: if chocolate causes acne (hypothesis), then decreasing chocolate will decrease acne (test implication). We then conduct an experiment to see whether our test implication occurs.

Reasoning about our experiment would then look like one of the following arguments:

1. If H, then TI 1. If H, then TI.
2. TI. 2. Not-TI.
3. Therefore, probably H. 3. Therefore, probably Not-H.

There are a couple of important things to note about these arguments. First, despite appearances, both are inductive arguments. The one on the left commits the formal fallacy of affirming the consequent, so, at best, the premises confer only some degree of probability on the conclusion. The argument on the right looks to be deductive (on the face of it, it has the valid form modus tollens ), but it would be inappropriate to regard it deductively. This is because we are not evaluating a logical connection between H and TI, we are evaluating a causal connection—TI might be true or false regardless of H (we might have chosen an inappropriate test implication or simply gotten lucky), and therefore, we cannot conclude with certainty that H does not causally influence TI. Therefore, “If…, then…” statements in experiments must be read as causal conditionals and not material conditionals (the term for how we used conditionals above).

Second, experiments can go wrong in many ways, so no single experiment will grant a high degree of probability to its causal conclusion. Experiments may be biased by hidden variables (causes we did not consider or detect, such as age, diet, medical history, or lifestyle), auxiliary assumptions (the theoretical assumptions by which evaluating the results may be faulty), or underdetermination (there may be a number of hypotheses consistent with those results; for example, if it is actually sugar that causes acne, then chocolate bars, ice cream, candy, and sodas would yield the same test results). Because of this, experiments either confirm or disconfirm a hypothesis; that is, they give us some reason (but not a particularly strong reason) to believe our hypothesized causes are or are not the causes of our test implications, and therefore, of our observations (see Quine and Ullian, 1978). Because of this, experiments must be conducted many times, and only after we have a number of confirming or disconfirming results can we draw a strong inductive conclusion. (For more, see “ Confirmation and Induction .”)

Experiments may be formal or informal . In formal experiments, critical thinkers exert explicit control over experimental conditions: experimenters choose participants, include or exclude certain variables, and identify or introduce hypothesized events. Test subjects are selected according to control criteria (criteria that may affect the results and, therefore, that we want to mitigate, such as age, diet, and lifestyle) and divided into control groups (groups where the hypothesized cause is absent) and experimental groups (groups where the hypothesized cause is present, either because it is introduced or selected for).

Subjects are then placed in experimental conditions. For instance, in a randomized study, the control group receives a placebo (an inert medium) whereas the experimental group receives the hypothesized cause—the putative cause is introduced, the groups are observed, and the results are recorded and compared. When a hypothesized cause is dangerous (such as smoking) or its effects potentially irreversible (for instance, post-traumatic stress disorder), the experimental design must be restricted to selecting for the hypothesized cause already present in subjects, for example, in retrospective (backward-looking) and prospective (forward-looking) studies. In all types of formal experiments, subjects are observed under exposure to the test or placebo conditions for a specified time, and results are recorded and compared.

In informal experiments, critical thinkers do not have access to sophisticated equipment or facilities and, therefore, cannot exert explicit control over experimental conditions. They are left to make considered judgments about variables. The most common informal experiments are John Stuart Mill’s five methods of inductive reasoning, called Mill’s Methods, which he first formulated in A System of Logic (1843). Here is a very brief summary of Mill’s five methods:

(1) The Method of Agreement

If all conditions containing the event y also contain x , x is probably the cause of y .

For example:

“I’ve eaten from the same box of cereal every day this week, but all the times I got sick after eating cereal were times when I added strawberries. Therefore, the strawberries must be bad.”

(2) The Method of Difference

If all conditions lacking y also lack x , x is probably the cause of y .

“The organization turned all its tax forms in on time for years, that is, until our comptroller, George, left; after that, we were always late. Only after George left were we late. Therefore, George was probably responsible for getting our tax forms in on time.”

(3) The Joint Method of Agreement and Difference

If all conditions containing event y also contain event x , and all events lacking y also lack x , x is probably the cause of y .

“The conditions at the animal shelter have been pretty regular, except we had a string of about four months last year when the dogs barked all night, every night. But at the beginning of those four months we sheltered a redbone coonhound, and the barking stopped right after a family adopted her. All the times the redbone hound wasn’t present, there was no barking. Only the time she was present was there barking. Therefore, she probably incited all the other dogs to bark.”

(4) The Method of Concomitant Variation

If the frequency of event y increases and decreases as event x increases and decreases, respectively, x is probably the cause of y .

“We can predict the amount of alcohol sales by the rate of unemployment. As unemployment rises, so do alcohol sales. As unemployment drops, so do alcohol sales. Last quarter marked the highest unemployment in three years, and our sales last quarter are the highest they had been in those three years. Therefore, unemployment probably causes people to buy alcohol.”

(5) The Method of Residues

If a number of factors x , y , and z , may be responsible for a set of events A , B , and C , and if we discover reasons for thinking that x is the cause of A and y is the cause of B , then we have reason to believe z is the cause of C .

“The people who come through this medical facility are usually starving and have malaria, and a few have polio. We are particularly interested in treating the polio. Take this patient here: she is emaciated, which is caused by starvation; and she has a fever, which is caused by malaria. But notice that her muscles are deteriorating, and her bones are sore. This suggests she also has polio.”

d. Abduction

Not all inductive reasoning is inferential. In some cases, an explanation is needed before we can even begin drawing inferences. Consider Darwin’s idea of natural selection. Natural selection is not an object, like a blood vessel or a cellular wall, and it is not, strictly speaking, a single event. It cannot be detected in individual organisms or observed in a generation of offspring. Natural selection is an explanation of biodiversity that combines the process of heritable variation and environmental pressures to account for biomorphic change over long periods of time. With this explanation in hand, we can begin to draw some inferences. For instance, we can separate members of a single species of fruit flies, allow them to reproduce for several generations, and then observe whether the offspring of the two groups can reproduce. If we discover they cannot reproduce, this is likely due to certain mutations in their body types that prevent them from procreating. And since this is something we would expect if natural selection were true, we have one piece of confirming evidence for natural selection. But how do we know the explanations we come up with are worth our time?

Coined by C. S. Peirce (1839-1914), abduction , also called retroduction, or inference to the best explanation , refers to a way of reasoning informally that provides guidelines for evaluating explanations. Rather than appealing to types of arguments (generalization, analogy, causation), the value of an explanation depends on the theoretical virtues it exemplifies. A theoretical virtue is a quality that renders an explanation more or less fitting as an account of some event. What constitutes fittingness (or “loveliness,” as Peter Lipton (2004) calls it) is controversial, but many of the virtues are intuitively compelling, and abduction is a widely accepted tool of critical thinking.

The most widely recognized theoretical virtue is probably simplicity , historically associated with William of Ockham (1288-1347) and known as Ockham’s Razor . A legend has it that Ockham was asked whether his arguments for God’s existence prove that only one God exists or whether they allow for the possibility that many gods exist. He supposedly responded, “Do not multiply entities beyond necessity.” Though this claim is not found in his writings, Ockham is now famous for advocating that we restrict our beliefs about what is true to only what is absolutely necessary for explaining what we observe.

In contemporary theoretical use, the virtue of simplicity is invoked to encourage caution in how many mechanisms we introduce to explain an event. For example, if natural selection can explain the origin of biological diversity by itself, there is no need to hypothesize both natural selection and a divine designer. But if natural selection cannot explain the origin of, say, the duck-billed platypus, then some other mechanism must be introduced. Of course, not just any mechanism will do. It would not suffice to say the duck-billed platypus is explained by natural selection plus gremlins. Just why this is the case depends on other theoretical virtues; ideally, the virtues work together to help critical thinkers decide among competing hypotheses to test. Here is a brief sketch of some other theoretical virtues or ideals:

Conservatism – a good explanation does not contradict well-established views in a field.

Independent Testability – a good explanation is successful on different occasions under similar circumstances.

Fecundity – a good explanation leads to results that make even more research possible.

Explanatory Depth – a good explanation provides details of how an event occurs.

Explanatory Breadth – a good explanation also explains other, similar events.

Though abduction is structurally distinct from other inductive arguments, it functions similarly in practice: a good explanation provides a probabilistic reason to believe a proposition. This is why it is included here as a species of inductive reasoning. It might be thought that explanations only function to help critical thinkers formulate hypotheses, and do not, strictly speaking, support propositions. But there are intuitive examples of explanations that support propositions independently of however else they may be used. For example, a critical thinker may argue that material objects exist outside our minds is a better explanation of why we perceive what we do (and therefore, a reason to believe it) than that an evil demon is deceiving me , even if there is no inductive or deductive argument sufficient for believing that the latter is false. (For more, see “ Charles Sanders Peirce: Logic .”)

5. Detecting Poor Reasoning

Our attempts at thinking critically often go wrong, whether we are formulating our own arguments or evaluating the arguments of others. Sometimes it is in our interests for our reasoning to go wrong, such as when we would prefer someone to agree with us than to discover the truth value of a proposition. Other times it is not in our interests; we are genuinely interested in the truth, but we have unwittingly made a mistake in inferring one proposition from others. Whether our errors in reasoning are intentional or unintentional, such errors are called fallacies (from the Latin, fallax, which means “deceptive”). Recognizing and avoiding fallacies helps prevent critical thinkers from forming or maintaining defective beliefs.

Fallacies occur in a number of ways. An argument’s form may seem to us valid when it is not, resulting in a formal fallacy . Alternatively, an argument’s premises may seem to support its conclusion strongly but, due to some subtlety of meaning, do not, resulting in an informal fallacy . Additionally, some of our errors may be due to unconscious reasoning processes that may have been helpful in our evolutionary history, but do not function reliably in higher order reasoning. These unconscious reasoning processes are now widely known as heuristics and biases . Each type is briefly explained below.

a. Formal Fallacies

Formal fallacies occur when the form of an argument is presumed or seems to be valid (whether intentionally or unintentionally) when it is not. Formal fallacies are usually invalid variations of valid argument forms. Consider, for example, the valid argument form modus ponens (this is one of the rules of inference mentioned in §3b):

modus ponens (valid argument form)

1. p → q 1. If it is a cat, then it is a mammal.
2. p 2. It is a cat.
3. /.: q 3. Therefore, it is a mammal.

In modus ponens , we assume or “affirm” both the conditional and the left half of the conditional (called the antecedent ): (p à q) and p. From these, we can infer that q, the second half or consequent , is true. This a valid argument form: if the premises are true, the conclusion cannot be false.

Sometimes, however, we invert the conclusion and the second premise, affirming that the conditional, (p à q), and the right half of the conditional, q (the consequent), are true, and then inferring that the left half, p (the antecedent), is true. Note in the example below how the conclusion and second premise are switched. Switching them in this way creates a problem.

affirming the consequent
(valid argument form) (formal fallacy)
1. p → q 1. p → q
2. p 2. q q, the consequent of the conditional in premise 1, has been “affirmed” in premise 2
3. /.: q 3. /.: p (?)

To get an intuitive sense of why “affirming the consequent” is a problem, consider this simple example:

affirming the consequent

  • It is a mammal.
  • Therefore, it is a cat.(?)

From the fact that something is a mammal, we cannot conclude that it is a cat. It may be a dog or a mouse or a whale. The premises can be true and yet the conclusion can still be false. Therefore, this is not a valid argument form. But since it is an easy mistake to make, it is included in the set of common formal fallacies.

Here is a second example with the rule of inference called modus tollens . Modus tollens involves affirming a conditional, (p à q), and denying that conditional’s consequent: ~q. From these two premises, we can validly infer the denial of the antecedent: ~p. But if we switch the conclusion and the second premise, we get another fallacy, called denying the antecedent .

(valid argument form) (formal fallacy)
1. p → q 1. p → q p, the antecedent of the conditional in premise 1, has been “denied” in premise 2
2. ~q 2. ~p
3. ~p 3. /.: ~q(?)
1. If it is a cat, then it is a mammal. 1. If it is a cat, then it is a mammal.
2. It is not a mammal. 2. It is not a cat.
3. Therefore, it is not a cat. 3. Therefore, it is not a mammal.(?)

Technically, all informal reasoning is formally fallacious—all informal arguments are invalid. Nevertheless, since those who offer inductive arguments rarely presume they are valid, we do not regard them as reasoning fallaciously.

b. Informal Fallacies

Informal fallacies occur when the meaning of the terms used in the premises of an argument suggest a conclusion that does not actually follow from them (the conclusion either follows weakly or with no strength at all). Consider an example of the informal fallacy of equivocation , in which a word with two distinct meanings is used in both of its meanings:

  • Any law can be repealed by Congress.
  • Gravity is a law.
  • Therefore, gravity can be repealed by Congress.

In this case, the argument’s premises are true when the word “law” is rightly interpreted, but the conclusion does not follow because the word law has a different referent in premise 1 (political laws) than in premise 2 (a law of nature). This argument equivocates on the meaning of law and is, therefore, fallacious.

Consider, also, the informal fallacy of ad hominem , abusive, when an arguer appeals to a person’s character as a reason to reject her proposition:

“Elizabeth argues that humans do not have souls; they are simply material beings. But Elizabeth is a terrible person and often talks down to children and the elderly. Therefore, she could not be right that humans do not have souls.”

The argument might look like this:

  • Elizabeth is a terrible person and often talks down to children and the elderly.
  • Therefore, Elizabeth is not right that humans do not have souls.

The conclusion does not follow because whether Elizabeth is a terrible person is irrelevant to the truth of the proposition that humans do not have souls. Elizabeth’s argument for this statement is relevant, but her character is not.

Another way to evaluate this fallacy is to note that, as the argument stands, it is an enthymeme (see §2); it is missing a crucial premise, namely: If anyone is a terrible person, that person makes false statements. But this premise is clearly false. There are many ways in which one can be a terrible person, and not all of them imply that someone makes false statements. (In fact, someone could be terrible precisely because they are viciously honest.) Once we fill in the missing premise, we see the argument is not cogent because at least one premise is false.

Importantly, we face a number of informal fallacies on a daily basis, and without the ability to recognize them, their regularity can make them seem legitimate. Here are three others that only scratch the surface:

Appeal to the People: We are often encouraged to believe or do something just because everyone else does. We are encouraged to believe what our political party believes, what the people in our churches or synagogues or mosques believe, what people in our family believe, and so on. We are encouraged to buy things because they are “bestsellers” (lots of people buy them). But the fact that lots of people believe or do something is not, on its own, a reason to believe or do what they do.

Tu Quoque (You, too!): We are often discouraged from pursuing a conclusion or action if our own beliefs or actions are inconsistent with them. For instance, if someone attempts to argue that everyone should stop smoking, but that person smokes, their argument is often given less weight: “Well, you smoke! Why should everyone else quit?” But the fact that someone believes or does something inconsistent with what they advocate does not, by itself, discredit the argument. Hypocrites may have very strong arguments despite their personal inconsistencies.

Base Rate Neglect: It is easy to look at what happens after we do something or enact a policy and conclude that the act or policy caused those effects. Consider a law reducing speed limits from 75 mph to 55 mph in order to reduce highway accidents. And, in fact, in the three years after the reduction, highway accidents dropped 30%! This seems like a direct effect of the reduction. However, this is not the whole story. Imagine you looked back at the three years prior to the law and discovered that accidents had dropped 30% over that time, too. If that happened, it might not actually be the law that caused the reduction in accidents. The law did not change the trend in accident reduction. If we only look at the evidence after the law, we are neglecting the rate at which the event occurred without the law. The base rate of an event is the rate that the event occurs without the potential cause under consideration. To take another example, imagine you start taking cold medicine, and your cold goes away in a week. Did the cold medicine cause your cold to go away? That depends on how long colds normally last and when you took the medicine. In order to determine whether a potential cause had the effect you suspect, do not neglect to compare its putative effects with the effects observed without that cause.

For more on formal and informal fallacies and over 200 different types with examples, see “ Fallacies .”

c. Heuristics and Biases

In the 1960s, psychologists began to suspect there is more to human reasoning than conscious inference. Daniel Kahneman and Amos Tversky confirmed these suspicions with their discoveries that many of the standard assumptions about how humans reason in practice are unjustified. In fact, humans regularly violate these standard assumptions, the most significant for philosophers and economists being that humans are fairly good at calculating the costs and benefits of their behavior; that is, they naturally reason according to the dictates of Expected Utility Theory. Kahneman and Tversky showed that, in practice, reasoning is affected by many non-rational influences, such as the wording used to frame scenarios (framing bias) and information most vividly available to them (the availability heuristic).

Consider the difference in your belief about the likelihood of getting robbed before and after seeing a news report about a recent robbery, or the difference in your belief about whether you will be bitten by a shark the week before and after Discovery Channel’s “Shark Week.” For most of us, we are likely to regard their likelihood as higher after we have seen these things on television than before. Objectively, they are no more or less likely to happen regardless of our seeing them on television, but we perceive they are more likely because their possibility is more vivid to us. These are examples of the availability heuristic.

Since the 1960s, experimental psychologists and economists have conducted extensive research revealing dozens of these unconscious reasoning processes, including ordering bias , the representativeness heuristic , confirmation bias , attentional bias , and the anchoring effect . The field of behavioral economics, made popular by Dan Ariely (2008; 2010; 2012) and Richard Thaler and Cass Sunstein (2009), emerged from and contributes to heuristics and biases research and applies its insights to social and economic behaviors.

Ideally, recognizing and understanding these unconscious, non-rational reasoning processes will help us mitigate their undermining influence on our reasoning abilities (Gigerenzer, 2003). However, it is unclear whether we can simply choose to overcome them or whether we have to construct mechanisms that mitigate their influence (for instance, using double-blind experiments to prevent confirmation bias).

6. The Scope and Virtues of Good Reasoning

Whether the process of critical thinking is productive for reasoners—that is, whether it actually answers the questions they are interested in answering—often depends on a number of linguistic, psychological, and social factors. We encountered some of the linguistic factors in §1. In closing, let us consider some of the psychological and social factors that affect the success of applying the tools of critical thinking.

Not all psychological and social contexts are conducive for effective critical thinking. When reasoners are depressed or sad or otherwise emotionally overwhelmed, critical thinking can often be unproductive or counterproductive. For instance, if someone’s child has just died, it would be unproductive (not to mention cruel) to press the philosophical question of why a good God would permit innocents to suffer or whether the child might possibly have a soul that could persist beyond death. Other instances need not be so extreme to make the same point: your company’s holiday party (where most people would rather remain cordial and superficial) is probably not the most productive context in which to debate the president’s domestic policy or the morality of abortion.

The process of critical thinking is primarily about detecting truth, and truth may not always be of paramount value. In some cases, comfort or usefulness may take precedence over truth. The case of the loss of a child is a case where comfort seems to take precedence over truth. Similarly, consider the case of determining what the speed limit should be on interstate highways. Imagine we are trying to decide whether it is better to allow drivers to travel at 75 mph or to restrict them to 65. To be sure, there may be no fact of the matter as to which is morally better, and there may not be any difference in the rate of interstate deaths between states that set the limit at 65 and those that set it at 75. But given the nature of the law, a decision about which speed limit to set must be made. If there is no relevant difference between setting the limit at 65 and setting it at 75, critical thinking can only tell us that , not which speed limit to set. This shows that, in some cases, concern with truth gives way to practical or preferential concerns (for example, Should I make this decision on the basis of what will make citizens happy? Should I base it on whether I will receive more campaign contributions from the business community?). All of this suggests that critical thinking is most productive in contexts where participants are already interested in truth.

b. The Principle of Charity/Humility

Critical thinking is also most productive when people in the conversation regard themselves as fallible, subject to error, misinformation, and deception. The desire to be “right” has a powerful influence on our reasoning behavior. It is so strong that our minds bias us in favor of the beliefs we already hold even in the face of disconfirming evidence (a phenomenon known as “confirmation bias”). In his famous article, “The Ethics of Belief” (1878), W. K. Clifford notes that, “We feel much happier and more secure when we think we know precisely what to do, no matter what happens, than when we have lost our way and do not know where to turn. … It is the sense of power attached to a sense of knowing that makes men desirous of believing, and afraid of doubting” (2010: 354).

Nevertheless, when we are open to the possibility that we are wrong, that is, if we are humble about our conclusions and we interpret others charitably, we have a better chance at having rational beliefs in two senses. First, if we are genuinely willing to consider evidence that we are wrong—and we demonstrate that humility—then we are more likely to listen to others when they raise arguments against our beliefs. If we are certain we are right, there would be little reason to consider contrary evidence. But if we are willing to hear it, we may discover that we really are wrong and give up faulty beliefs for more reasonable ones.

Second, if we are willing to be charitable to arguments against our beliefs, then if our beliefs are unreasonable, we have an opportunity to see the ways in which they are unreasonable. On the other hand, if our beliefs are reasonable, then we can explain more effectively just how well they stand against the criticism. This is weakly analogous to competition in certain types of sporting events, such as basketball. If you only play teams that are far inferior to your own, you do not know how good your team really is. But if you can beat a well-respected team on fair terms, any confidence you have is justified.

c. The Principle of Caution

In our excitement over good arguments, it is easy to overextend our conclusions, that is, to infer statements that are not really warranted by our evidence. From an argument for a first, uncaused cause of the universe, it is tempting to infer the existence of a sophisticated deity such as that of the Judeo-Christian tradition. From an argument for the compatibilism of the free will necessary for moral responsibility and determinism, it is tempting to infer that we are actually morally responsible for our behaviors. From an argument for negative natural rights, it is tempting to infer that no violation of a natural right is justifiable. Therefore, it is prudent to continually check our conclusions to be sure they do not include more content than our premises allow us to infer.

Of course, the principle of caution must itself be used with caution. If applied too strictly, it may lead reasoners to suspend all belief, and refrain from interacting with one another and their world. This is not, strictly speaking, problematic; ancient skeptics, such as the Pyrrhonians, advocated suspending all judgments except those about appearances in hopes of experiencing tranquility. However, at least some judgments about the long-term benefits and harms seem indispensable even for tranquility, for instance, whether we should retaliate in self-defense against an attacker or whether we should try to help a loved one who is addicted to drugs or alcohol.

d. The Expansiveness of Critical Thinking

The importance of critical thinking cannot be overstated because its relevance extends into every area of life, from politics, to science, to religion, to ethics. Not only does critical thinking help us draw inferences for ourselves, it helps us identify and evaluate the assumptions behind statements, the moral implications of statements, and the ideologies to which some statements commit us. This can be a disquieting and difficult process because it forces us to wrestle with preconceptions that might not be accurate. Nevertheless, if the process is conducted well, it can open new opportunities for dialogue, sometimes called “critical spaces,” that allow people who might otherwise disagree to find beliefs in common from which to engage in a more productive conversation.

It is this possibility of creating critical spaces that allows philosophical approaches like Critical Theory to effectively challenge the way social, political, and philosophical debates are framed. For example, if a discussion about race or gender or sexuality or gender is framed in terms that, because of the origins those terms or the way they have functioned socially, alienate or disproportionately exclude certain members of the population, then critical space is necessary for being able to evaluate that framing so that a more productive dialogue can occur (see Foresman, Fosl, and Watson, 2010, ch. 10 for more on how critical thinking and Critical Theory can be mutually supportive).

e. Productivity and the Limits of Rationality

Despite the fact that critical thinking extends into every area of life, not every important aspect of our lives is easily or productively subjected to the tools of language and logic. Thinkers who are tempted to subject everything to the cold light of reason may discover they miss some of what is deeply enjoyable about living. The psychologist Abraham Maslow writes, “I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail” (1966: 16). But it is helpful to remember that language and logic are tools, not the projects themselves. Even formal reasoning systems depend on axioms that are not provable within their own systems (consider Euclidean geometry or Peano arithmetic). We must make some decisions about what beliefs to accept and how to live our lives on the basis of considerations outside of critical thinking.

Borrowing an example from William James (1896), consider the statement, “Religion X is true.” James says that, while some people find this statement interesting, and therefore, worth thinking critically about, others may not be able to consider the truth of the statement. For any particular religious tradition, we might not know enough about it to form a belief one way or the other, and even suspending judgment may be difficult, since it is not obvious what we are suspending judgment about.

If I say to you: ‘Be a theosophist or be a Mohammedan,’ it is probably a dead option, because for you neither hypothesis is likely to be alive. But if I say: ‘Be an agnostic or be a Christian,’ it is otherwise: trained as you are, each hypothesis makes some appeal, however small, to your belief (2010: 357).

Ignoring the circularity in his definition of “dead option,” James’s point seems to be that if you know nothing about a view or what statements it entails, no amount of logic or evidence could help you form a reasonable belief about that position.

We might criticize James at this point because his conclusion seems to imply that we have no duty to investigate dead options, that is, to discover if there is anything worth considering in them. If we are concerned with truth, the simple fact that we are not familiar with a proposition does not mean it is not true or potentially significant for us. But James’s argument is subtler than this criticism suggests. Even if you came to learn about a particularly foreign religious tradition, its tenets may be so contrary to your understanding of the world that you could not entertain them as possible beliefs of yours . For instance, you know perfectly well that, if some events had been different, Hitler would not have existed: his parents might have had no children, or his parents’ parents might have had no children. You know roughly what it would mean for Hitler not to have existed and the sort of events that could have made it true that he did not exist. But how much evidence would it take to convince you that, in fact, Hitler did not exist, that is, that your belief that Hitler did exist is false ? Could there be an argument strong enough? Not obviously. Since all the information we have about Hitler unequivocally points to his existence, any arguments against that belief would have to affect a very broad range of statements; they would have to be strong enough to make us skeptical of large parts of reality.

7. Approaches to Improving Reasoning through Critical Thinking

Recall that the goal of critical thinking is not just to study what makes reasons and statements good, but to help us improve our ability to reason, that is, to improve our ability to form, hold, and discard beliefs according to whether they meet the standards of good thinking. Some ways of approaching this latter goal are more effective than others. While the classical approach focuses on technical reasoning skills, the Paul/Elder model encourages us to think in terms of critical concepts, and irrationality approaches use empirical research on instances of poor reasoning to help us improve reasoning where it is least obvious we need it and where we need it most. Which approach or combination of approaches is most effective depends, as noted above, on the context and limits of critical thinking, but also on scientific evidence of their effectiveness. Those who teach critical thinking, of all people, should be engaged with the evidence relevant to determining which approaches are most effective.

a. Classical Approaches

The classic approach to critical thinking follows roughly the structure of this article: critical thinkers attempt to interpret statements or arguments clearly and charitably, and then they apply the tools of formal and informal logic and science, while carefully attempting to avoid fallacious inferences (see Weston, 2008; Walton, 2008; Watson and Arp, 2015). This approach requires spending extensive time learning and practicing technical reasoning strategies. It presupposes that reasoning is primarily a conscious activity, and that enhancing our skills in these areas will improve our ability to reason well in ordinary situations.

There are at least two concerns about this approach. First, it is highly time intensive relative to its payoff. Learning the terminology of systems like propositional and categorical logic and the names of the fallacies, and practicing applying these tools to hypothetical cases requires significant time and energy. And it is not obvious, given the problems with heuristics and biases, whether this practice alone makes us better reasoners in ordinary contexts. Second, many of the ways we reason poorly are not consciously accessible (recall the heuristics and biases discussion in §5c). Our biases, combined with the heuristics we rely on in ordinary situations, can only be detected in experimental settings, and addressing them requires restructuring the ways in which we engage with evidence (see Thaler and Sunstein, 2009).

b. The Paul/Elder Model

Richard Paul and Linda Elder (Paul and Elder, 2006; Paul, 2012) developed an alternative to the classical approach on the assumption that critical thinking is not something that is limited to academic study or to the discipline of philosophy. On their account, critical thinking is a broad set of conceptual skills and habits aimed at a set of standards that are widely regarded as virtues of thinking: clarity, accuracy, depth, fairness, and others. They define it simply as “the art of analyzing and evaluating thinking with a view to improving it” (2006: 4). Their approach, then, is to focus on the elements of thought and intellectual virtues that help us form beliefs that meet these standards.

The Paul/Elder model is made up of three sets of concepts: elements of thought, intellectual standards, and intellectual traits. In this model, we begin by identifying the features present in every act of thought. They use “thought” to mean critical thought aimed at forming beliefs, not just any act of thinking, musing, wishing, hoping, remembering. According to the model, every act of thought involves:

point of view concepts
purpose interpretation and inference
implications and consequences information
assumptions question at issue

These comprise the subject matter of critical thinking; that is, they are what we are evaluating when we are thinking critically. We then engage with this subject matter by subjecting them to what Paul and Elder call universal intellectual standards. These are evaluative goals we should be aiming at with our thinking:

clarity breadth
accuracy logic
precision significance
relevance fairness
depth

While in classical approaches, logic is the predominant means of thinking critically, in the Paul/Elder model, it is put on equal footing with eight other standards. Finally, Paul and Elder argue that it is helpful to approach the critical thinking process with a set of intellectual traits or virtues that dispose us to using elements and standards well.

intellectual humility intellectual perseverance
intellectual autonomy confidence in reason
intellectual integrity intellectual empathy
intellectual courage fairmindedness

To remind us that these are virtues of thought relevant to critical thinking, they use “intellectual” to distinguish these traits from their moral counterparts (moral integrity, moral courage, and so on).

The aim is that, as we become familiar with these three sets of concepts and apply them in everyday contexts, we become better at analyzing and evaluating statements and arguments in ordinary situations.

Like the classical approach, this approach presupposes that reasoning is primarily a conscious activity, and that enhancing our skills will improve our reasoning. This means that it still lacks the ability to address the empirical evidence that many of our reasoning errors cannot be consciously detected or corrected. It differs from the classical approach in that it gives the technical tools of logic a much less prominent role and places emphasis on a broader, and perhaps more intuitive, set of conceptual tools. Learning and learning to apply these concepts still requires a great deal of time and energy, though perhaps less than learning formal and informal logic. And these concepts are easy to translate into disciplines outside philosophy. Students of history, psychology, and economics can more easily recognize the relevance of asking questions about an author’s point of view and assumptions than perhaps determining whether the author is making a deductive or inductive argument. The question, then, is whether this approach improves our ability to think better than the classical approach.

c. Other Approaches

A third approach that is becoming popular is to focus on the ways we commonly reason poorly and then attempt to correct them. This can be called the Rationality Approach , and it takes seriously the empirical evidence (§5c) that many of our errors in reasoning are not due to a lack of conscious competence with technical skills or misusing those skills, but are due to subconscious dispositions to ignore or dismiss relevant information or to rely on irrelevant information.

One way to pursue this approach is to focus on beliefs that are statistically rare or “weird.” These include beliefs of fringe groups, such as conspiracy theorists, religious extremists, paranormal psychologists, and proponents of New Age metaphysics (see Gilovich, 1992; Vaughn and Schick, 2010; Coady, 2012). If we recognize the sorts of tendencies that lead to these controversial beliefs, we might be able to recognize and avoid similar tendencies in our own reasoning about less extreme beliefs, such as beliefs about financial investing, how statistics are used to justify business decisions, and beliefs about which public policies to vote for.

Another way to pursue this approach is to focus directly on the research on error, those ordinary beliefs that psychologists and behavioral economists have discovered we reason poorly, and to explore ways of changing how we frame decisions about what to believe (see Nisbett and Ross, 1980; Gilovich, 1992; Ariely, 2008; Kahneman, 2011). For example, in one study, psychologists found that judges issue more convictions just before lunch and the end of the day than in the morning or just after lunch (Danzinger, et al., 2010). Given that dockets do not typically organize cases from less significant crimes to more significant crimes, this evidence suggests that something as irrelevant as hunger can bias judicial decisions. Even though hunger has nothing to do with the truth of a belief, knowing that it can affect how we evaluate a belief can help us avoid that effect. This study might suggest something as simple as that we should avoid being hungry when making important decisions. The more we learn ways in which our brains use irrelevant information, the better we can organize our reasoning to avoid these mistakes. For more on how decisions can be improved by restructuring our decisions, see Thaler and Sunstein, 2009.

A fourth approach is to take more seriously the role that language plays in our reasoning. Arguments involve complex patterns of expression, and we have already seen how vagueness and ambiguity can undermine good reasoning (§1). The pragma-dialectics approach (or pragma-dialectical theory) is the view that the quality of an argument is not solely or even primarily a matter of its logical structure, but is more fundamentally a matter of whether it is a form of reasonable discourse (Van Eemeren and Grootendorst, 1992). The proponents of this view contend that, “The study of argumentation should … be construed as a special branch of linguistic pragmatics in which descriptive and normative perspectives on argumentative discourse are methodically integrated” (Van Eemeren and Grootendorst, 1995: 130).

The pragma-dialectics approach is a highly technical approach that uses insights from speech act theory, H. P. Grice’s philosophy of language, and the study of discourse analysis. Its use, therefore, requires a great deal of background in philosophy and linguistics. It has an advantage over other approaches in that it highlights social and practical dimensions of arguments that other approaches largely ignore. For example, argument is often public ( external ), in that it creates an opportunity for opposition, which influences people’s motives and psychological attitudes toward their arguments. Argument is also social in that it is part of a discourse in which two or more people try to arrive at an agreement. Argument is also functional ; it aims at a resolution that can only be accommodated by addressing all the aspects of disagreement or anticipated disagreement, which can include public and social elements. Argument also has a rhetorical role ( dialectical ) in that it is aimed at actually convincing others, which may have different requirements than simply identifying the conditions under which they should be convinced.

These four approaches are not mutually exclusive. All of them presuppose, for example, the importance of inductive reasoning and scientific evidence. Their distinctions turn largely on which aspects of statements and arguments should take precedence in the critical thinking process and on what information will help us have better beliefs.

8. References and Further Reading

  • Ariely, Dan. 2008. Predictably Irrational: The Hidden Forces that Shape Our Decisions. New York: Harper Perennial.
  • Ariely, Dan. 2010. The Upside of Irrationality. New York: Harper Perennial.
  • Ariely, Dan. 2012. The (Honest) Truth about Dishonesty. New York: Harper Perennial.
  • Aristotle. 2002. Categories and De Interpretatione, J. L. Akrill, editor. Oxford: University of Oxford Press.
  • Clifford, W. K. 2010. “The Ethics of Belief.” In Nils Ch. Rauhut and Robert Bass, eds., Readings on the Ultimate Questions: An Introduction to Philosophy, 3rd ed. Boston: Prentice Hall, 351-356.
  • Chomsky, Noam. 1957/2002. Syntactic Structures. Berlin: Mouton de Gruyter.
  • Coady, David. What To Believe Now: Applying Epistemology to Contemporary Issues. Malden, MA: Wiley-Blackwell, 2012.
  • Danzinger, Shai, Jonathan Levav, and Liora Avnaim-Pesso. 2011. “Extraneous Factors in Judicial Decisions.” Proceedings of the National Academy of Sciences of the United States of America. Vol. 108, No. 17, 6889-6892. doi: 10.1073/pnas.1018033108.
  • Foresman, Galen, Peter Fosl, and Jamie Carlin Watson. 2017. The Critical Thinking Toolkit. Malden, MA: Wiley-Blackwell.
  • Fogelin, Robert J. and Walter Sinnott-Armstrong. 2009. Understanding Arguments: An Introduction to Informal Logic, 8th ed. Belmont, CA: Wadsworth Cengage Learning.
  • Gigerenzer, Gerd. 2003. Calculated Risks: How To Know When Numbers Deceive You. New York: Simon and Schuster.
  • Gigerenzer, Gerd, Peter Todd, and the ABC Research Group. 2000. Simple Heuristics that Make Us Smart. Oxford University Press.
  • Gilovich, Thomas. 1992. How We Know What Isn’t So. New York: Free Press.
  • James, William. “The Will to Believe”, in Nils Ch. Rauhut and Robert Bass, eds., Readings on the Ultimate Questions: An Introduction to Philosophy, 3rd ed. Boston: Prentice Hall, 2010, 356-364.
  • Kahneman, Daniel. 2011. Thinking Fast and Slow. New York: Farrar, Strauss and Giroux.
  • Lewis, David. 1986. On the Plurality of Worlds. Oxford Blackwell.
  • Lipton, Peter. 2004. Inference to the Best Explanation, 2nd ed. London: Routledge.
  • Maslow, Abraham. 1966. The Psychology of Science: A Reconnaissance. New York: Harper & Row.
  • Mill, John Stuart. 2011. A System of Logic, Ratiocinative and Inductive. New York: Cambridge University Press.
  • Nisbett, Richard and Lee Ross. 1980. Human Inference: Strategies and Shortcomings of Social Judgment. Englewood Cliffs, NJ: Prentice Hall.
  • Paul, Richard. 2012. Critical Thinking: What Every Person Needs to Survive in a Rapidly Changing World. Tomales, CA: The Foundation for Critical Thinking.
  • Paul, Richard and Linda Elder. 2006. The Miniature Guide to Critical Thinking Concepts and Tools, 4th ed. Tomales, CA: The Foundation for Critical Thinking.
  • Plantinga, Alvin. 1974. The Nature of Necessity. Oxford Clarendon.
  • Prior, Arthur. 1957. Time and Modality. Oxford, UK: Oxford University Press.
  • Prior, Arthur. 1967. Past, Present and Future. Oxford, UK: Oxford University Press.
  • Prior, Arthur. 1968. Papers on Time and Tense. Oxford, UK: Oxford University Press.
  • Quine, W. V. O. and J. S. Ullian. 1978. The Web of Belief, 2nd ed. McGraw-Hill.
  • Russell, Bertrand. 1940/1996. An Inquiry into Meaning and Truth, 2nd ed. London: Routledge.
  • Thaler, Richard and Cass Sunstein. 2009. Nudge: Improving Decisions about Health, Wealth, and Happiness. New York: Penguin Books.
  • van Eemeren, Frans H. and Rob Grootendorst. 1992. Argumentation, Communication, and Fallacies: A Pragma-Dialectical Perspective. London: Routledge.
  • van Eemeren, Frans H. and Rob Grootendorst. 1995. “The Pragma-Dialectical Approach to Fallacies.” In Hans V. Hansen and Robert C. Pinto, eds. Fallacies: Classical and Contemporary Readings. Penn State University Press, 130-144.
  • Vaughn, Lewis and Theodore Schick. 2010. How To Think About Weird Things: Critical Thinking for a New Age, 6th ed. McGraw-Hill.
  • Walton, Douglas. 2008. Informal Logic: A Pragmatic Approach, 2nd ed. New York: Cambridge University Press.
  • Watson, Jamie Carlin and Robert Arp. 2015. Critical Thinking: An Introduction to Reasoning Well, 2nd ed. London: Bloomsbury Academic.
  • Weston, Anthony. 2008. A Rulebook for Arguments, 4th ed. Indianapolis: Hackett.
  • Zadeh, Lofti. 1965. “Fuzzy Sets and Systems.” In J. Fox, ed., System Theory. Brooklyn, NY: Polytechnic Press, 29-39.

Author Information

Jamie Carlin Watson Email: [email protected] University of Arkansas for Medical Sciences U. S. A.

An encyclopedia of philosophy articles written by professional philosophers.

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8 Arguments and Critical Thinking

J. anthony blair, introduction [1].

This chapter discusses two different conceptions of argument, and then discusses the role of arguments in critical thinking. It is followed by a chapter in which David Hitchcock carefully analyses one common concept of an argument.

1. Two meanings of ‘argument’

The word ‘argument’ is used in a great many ways. Any thorough understanding of arguments requires understanding ‘argument’ in each of its senses or uses. These may be divided into two large groupings: arguments had or engaged in , and arguments made or used . I begin with the former.

1.1 A n ‘a rgument’ as something two parties have with each othe r, something they get into, the kind of ‘argument’ one has in mind in de scribing two people as “arguing all the time ”

For many people outside academia or the practice of law, an argument is a quarrel . It is usually a verbal quarrel, but it doesn’t have to use words. If dishes are flying or people are glaring at each other in angry silence, it can still be an argument. What makes a quarrel an argument is that it involves a communication between two or more parties (however dysfunctional the communication may be) in which the parties disagree and in which that disagreement and reasons, actual or alleged, motivating it are expressed—usually in words or other communicative gestures.

Quarrels are emotional. The participants experience and express emotions, although that feature is not exclusive to arguments that are quarrels. People can and do argue emotionally, and (or) when inspired by strong emotions, when they are not quarrelling. Heated arguments are not necessarily quarrels; but quarrels tend to be heated.

What makes quarrels emotional in some cases is that at least one party experiences the disagreement as representing some sort of personal attack, and so experiences his or her ego or sense of self-worth as being threatened. Fear is a reaction to a perceived threat, and anger is a way of coping with fear and also with embarrassment and shame. In other cases, the argument about the ostensible disagreement is a reminder of or a pretext for airing another, deeper grievance. Jealousy and resentment fuel quarrels. Traces of ego-involvement often surface even in what are supposed to be more civilized argumentative exchanges, such as scholarly disputes. Quarrels tend not to be efficient ways of resolving the disagreements that gives rise to them because the subject of a disagreement changes as the emotional attacks escalate or because the quarrel was often not really about that ostensible disagreement in the first place.

In teaching that ‘argument’ has different senses, it is misleading to leave the impression (as many textbooks do) that quarrels are the only species of argument of this genus. In fact they are just one instance of a large class of arguments in this sense of extended, expressed, disagreements between or among two or more parties.

A dispute is an argument in this sense that need not be a quarrel. It is a disagreement between usually two parties about the legality, or morality, or the propriety on some other basis, of a particular act or policy. It can be engaged in a civil way by the disputants or their proxies (e.g., their spokespersons or their lawyers). Sometimes only the disputing parties settle their difference; sometimes a third party such as a mediator, arbitrator or judge is called in to impose a settlement.

A debate is another argument of this general kind. Debates are more or less formalized or regimented verbal exchanges between parties who might disagree, but in any case who take up opposing sides on an issue. Procedural rules that govern turn-taking, time available for each turn, and topics that may be addressed are agreed to when political opponents debate one another. Strict and precise rules of order govern who may speak, who must be addressed, sometimes time limits for interventions, in parliamentary or congressional debates in political decision-making bodies, or in formal intercollegiate competitive debates. Usually the “opponent” directly addressed in the debate is not the party that each speaker is trying to influence, so although the expressed goal is to “win” the debate, winning does not entail getting the opponent to concede. Instead, it calls for convincing an on-looking party or audience—the judge of the debate or the jury in a courtroom or the television audience or the press or the electorate as a whole—of the superior merits of one’s case for the opinion being argued for in the debate.

To be distinguished from a debate and a dispute by such factors as scale is a controversy . Think of such issues as the abortion controversy, the climate change controversy, the same-sex marriage controversy, the LGBT rights controversy, the animal rights controversy. The participants are many—often millions. The issues are complex and there are many disputes about details involved, including sometimes even formal debates between representatives of different sides. Typically there is a range of positions, and there might be several different sides each with positions that vary one from another. A controversy typically occurs over an extended period of time, often years and sometime decades long. But an entire controversy can be called an argument, as in, “the argument over climate change.” Controversies tend to be unregulated, unlike debates but like quarrels, although they need not be particularly angry even when they are emotional. Like quarrels, and unlike debates, the conditions under which controversies occur, including any constraints on them, are shaped by the participants.

Somewhere among quarrels, debates and controversies lie the theoretical arguments that theorists in academic disciplines engage in, in academic journals and scholarly monographs. In such arguments theorists take positions, sometimes siding with others and sometimes standing alone, and they argue back and forth about which theoretical position is the correct one. In a related type of argument, just two people argue back and forth about what is the correct position on some issue (including meta-level arguments about what is the correct way to frame the issue in the first place).

The stakes don’t have to be theories and the participants don’t have to be academics. Friends argue about which team will win the championship, where the best fishing spot is located, or what titles to select for the book club. Family members argue about how to spend their income, what school to send the children to, or whether a child is old enough to go on a date without a chaperone. Co-workers argue about the best way to do a job, whether to change service providers, whether to introduce a new product line, and so on. These arguments are usually amicable, whether or not they settle the question in dispute.

All of these kinds of “argument” in this sense of the term—quarrels, friendly disputes, arguments at work, professional arguments about theoretical positions, formal or informal debates, and various kinds of controversy—share several features.

  • They involve communications between or among two or more people. Something initiates the communication, and either something ends it or there are ways for participants to join and to exit the conversation. They entail turn-taking (less or more regimented), each side addressing the other side and in turn construing and assessing what the other has to say in reply and formulating and communicating a response to the replies of the other side. And, obviously, they involve the expression, usually verbal, of theses and of reasons for them or against alternatives and criticisms.
  • They have a telos or aim, although there seems to be no single end in mind for all of them or even for each of them. In a quarrel the goal might be to have one’s point of view prevail, to get one’s way, but it might instead (or in addition) be to humiliate the other person or to save one’s own self-respect. Some quarrels—think of the ongoing bickering between some long-married spouses—seem to be a way for two people to communicate, merely to acknowledge one another. In a debate, each side seeks to “win,” which can mean different things in different contexts ( cf. a collegiate debate vs. a debate between candidates in an election vs. a parliamentary debate). Some arguments seemed designed to convince the other to give up his position or accept the interlocutor’s position, or to get the other to act in some way or to adopt some policy. Some have the more modest goal of getting a new issue recognized for future deliberation and debate. Still others are clearly aimed not at changing anyone’s mind but at reinforcing or entrenching a point of view already held (as is usually the case with religious sermons or with political speeches to the party faithful). Some are intended to establish or to demonstrate the truth or reasonableness of some position or recommendation and (perhaps) also to get others to “see” that the truth has been established. Some seem designed to maintain disagreement, as when representatives of competing political parties argue with one another.
  • All these various kinds of argument are more or less extended, both in the sense that they occur over time, sometimes long stretches of time, and also in the sense that they typically involved many steps: extensive and complex support for a point of view and critique of its alternatives.
  • In nearly every case, the participants give reasons for the claims they make and they expect the other participants in the argument to give reasons for their claims. This is even a feature of quarrels, at least at the outset, although such arguments can deteriorate into name-calling and worse. (Notice that even the “yes you did; no I didn’t;…; did; didn’t” sequence of the Monty Python “Having an argument” skit breaks down and a reason is sought.)

The kinds of argument listed so far are all versions of having an argument (see Daniel J. O’Keefe, 1977, 1982). Some might think that this is not the sense of ‘argument’ that is pertinent to critical thinking instruction, but such arguments are the habitat of the kinds of argument that critical thinkers need to be able to identify, analyze and evaluate.

1.2 An argument a s something a person makes (or constructs, invents, borrows) consisting of purported reasons alleged to suggest, or support or prove a point and that is used for some purpose such as to persuade someone of some claim, to justify someone in maintaining the position claimed, or to test a claim .

When people have arguments—when they engage in one or another of the activities of arguing described above—one of the things they routinely do is present or allege or offer reasons in support of the claims that they advance, defend, challenge, dispute, question, or consider. That is, in having “arguments,” we typically make and use “arguments.” The latter obviously have to be arguments in different sense from the former. They are often called “reason-claim” complexes. If arguments that someone has had constitute a type of communication or communicative activity, arguments that someone has made or used are actual or potential contributions to such activities. Reason-claim complexes are typically made and used when engaged in an argument in the first sense, trying to convince someone of your point of view during a disagreement or dispute with them. Here is a list of some of the many definitions found in textbooks of ‘argument’ in this second sense.

“… here [the word ‘argument’] … is used in the … logical sense of giving reasons for or against some claim.” Understanding Arguments, Robert Fogelin and Walter Sinnott-Armstrong, 6th ed., p. 1. “Thus an argument is a discourse that contains at least two statements, one of which is asserted to be a reason for the other.” Monroe Beardsley, Practical Logic, p. 9. “An argument is a set of claims a person puts forward in an attempt to show that some further claim is rationally acceptable.” Trudy Govier. A Practical Study of Arguments, 5th ed., p. 3. An argument is “a set of clams some of which are presented as reasons for accepting some further claim.” Alec Fisher, Critical Thinking, An Introduction, p. 235. Argument: “A conclusion about an issue that is supported by reasons.” Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. “ Argument: An attempt to support a conclusion by giving reasons for it.” Robert Ennis, Critical Thinking, p. 396. “Argument – A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).” John Chaffee, Thinking Critically, p. 415 “When we use the word argument in this book we mean a message which attempts to establish a statement as true or worthy of belief on the basis of other statements.” James B. Freeman, Thinking Logically, p. 20 “Argument. A sequence of propositions intended to establish the truth of one of the propositions.” Richard Feldman, Reason and Argument, p. 447. “Arguments consist of conclusions and reasons for them, called ‘premises’.” Wayne Grennan, Argument Evaluation, p. 5. Argument: “A set of claims, one of which, the conclusion is supported by [i.e., is supposed to provide a reason for] one or more of the other claims. Reason in the Balance, Sharon Bailin & Mark Battersby, p. 41.

These are not all compatible, and most of them define ‘argument’ using other terms—‘reasons’, ‘claims’, ‘propositions’, ‘statements’, ‘premises’ and ‘conclusions’—that are in no less need of definition than it is. In the next chapter, David Hitchcock offers a careful analysis of this concept of an argument.

Some define argument in this second sense as a kind of communication; others conceive it as a kind of set of propositions that can serve communicative functions, but others as well (such as inquiry). Either way, the communicative character, or function, of arguments has been the subject of much of the research in the past several decades. Most recently what some have called “multi-modal” argument has attracted attention, focusing on the various ways arguments can be communicated, especially visually or in a mix of verbal and visual modes of communication. Some have contended that smells and sounds can play roles in argument communication as well. This area of research interest would seem to have relevance for the analysis of arguments on the web.

1.3 Argumentation

‘Argumentation’ is another slippery term. It is used in several different senses.

Sometimes it is used to mean the communicative activity in which arguments are exchanged: “During their argumentation they took turns advancing their own arguments and criticizing one another’s arguments.” Sometimes ‘argumentation’ denotes the body of arguments used in an argumentative exchange: “The evening’s argumentation was of high quality.” And occasionally you will find it used to refer to the reasons or premises supporting a conclusion, as in: “The argumentation provided weak support for the thesis.” ‘Argumentation theory’ is the term often used to denote theory about the nature of arguments and their uses, including their uses in communications involving exchanges of arguments.

2 The relation between critical thinking and argument

2 .1 arguments are both tools of critical thinking and objects of critical thinking.

In … [one] sense, thought denotes belief resting upon some basis, that is, real or supposed knowledge going beyond what is directly present. … Some beliefs are accepted when their grounds have not themselves been considered …. … such thoughts may mean a supposition accepted without reference to its real grounds. These may be adequate, they may not; but their value with reference to the support they afford the belief has not been considered. Such thoughts grow up unconsciously and without reference to the attainment of correct belief. They are picked up—we know not how. From obscure sources and by unnoticed channels they insinuate themselves into acceptance and become unconsciously a part of our mental furniture. Tradition, instruction, imitation—all of which depend upon authority in some form, or appeal to our advantage, or fall in with strong passions—are responsible for them. Such thoughts are prejudices, that is, prejudgments, not judgments proper that rest upon a survey of evidence. (John Dewey, How We Think , pp. 4-5, emphasis added.)

People—all of us—routinely adopt beliefs and attitudes that are prejudices in Dewey’s sense of being prejudgments, “not judgments proper that rest upon a survey of evidence.” One goal of critical thinking education is to provide our students with the means to be able, when it really matters, to “properly survey” the grounds for beliefs and attitudes.

Arguments supply one such means. The grounds for beliefs and attitudes are often expressed, or expressible, as arguments for them. And the “proper survey” of these arguments is to test them by subjecting them to the critical scrutiny of counter-arguments.

Arguments also come into play when the issue is not what to believe about a contentious issue, but in order just to understand the competing positions. Not only are we not entitled to reject a claim to our belief if we cannot counter the arguments that support it; we are not in possession of an understanding of that claim if we cannot formulate the arguments that support it to the satisfaction of its proponents.

Furthermore, arguments can be used to investigate a candidate for belief by those trying “to make up their own minds” about it. The investigator tries to find and express the most compelling arguments for and against the candidate. Which arguments count as “most compelling” are the ones that survive vigorous attempts, using arguments, to refute or undermine them. These survivors are then compared against one another, the pros weighed against the cons. More arguments come into play in assessing the attributed weights.

In these ways, a facility with arguments serves a critical thinker well. Such a facility includes skill in recognizing, interpreting and evaluating arguments, as well as in formulating them. That includes skill in laying out complex arguments, in recognizing argument strengths and weaknesses, and in making a case for one’s critique. It includes the ability to distinguish the more relevant evidence from the less, and to discriminate between minor, fixable flaws and major, serious problems, in arguments. Thus the critical thinker is at once adept at using arguments in various ways and at the same time sensitive in judging arguments’ merits, applying the appropriate criteria.

Moreover, arguments in the sense of “reasons-claim” complexes surround us in our daily lives. Our “familiars”, as Gilbert (2014) has dubbed them—our family members, the friends we see regularly, shopkeepers and others whose services we patronize daily, our co-workers—engage us constantly in argumentative discussions in which they invoke arguments to try to get us to do things, to agree, to judge, to believe. The public sphere—the worlds of politics, commerce, entertainment, leisure activities, social media (see Jackson’s chapter)—is another domain in which arguments can be found, although (arguably) mere assertion predominates there. In the various roles we play as we go through life—child, parent, spouse or partner, student, worker, patient, subordinate or supervisor, citizen (voter, jurist, community member), observer or participant, etc.—we are invited with arguments to agree or disagree, approve or disapprove, seek or avoid. We see others arguing with one another and are invited to judge the merits of the cases they make. Some of these arguments are cogent and their conclusions merit our assent, but others are not and we should not be influenced by them. Yet others are suggestive and deserve further thought.

We can simply ignore many of these arguments, but others confront us and force us to decide whether or not to accept them. Often it is unclear whether someone has argued or done something else: just vented, perhaps, or explained rather than argued, or merely expressed an opinion without arguing for it, or was confused. So we initially might have to decide whether there is an argument that we need to deal with. When it is an argument, often in order to make up our minds about it we need first to get clear about exactly what the argument consists of. So even before we evaluate this argument we have to identify and analyze it. (These operations are discussed in Chapter 12.)

In the end we have to decide for ourselves whether the argument makes its case or falls short. Does the conclusion really follow from the premises? Is there enough evidence to justify the conclusion? Is it the right kind of evidence? Are there well-known objections or arguments against the conclusion that haven’t been acknowledged and need to be answered satisfactorily? Can they be answered? And are the premises themselves believable or otherwise acceptable? Are there other arguments, as good or better, that support the claim?

Critical thinking can (and should!) come into all of these decisions we need to make in the identification, the analysis and the assessment of arguments.

2 .2  Critical thinking about things other than arguments

Many critical thinking textbooks focus exclusively on the analysis and evaluation of arguments. While the centrality of arguments to the art of critical thinking is unquestionable, a strong case can be made that critical thinking has other objectives in addition to appreciating arguments. In their analysis of the concept of critical thinking, Fisher and Scriven suggest the following definition:

Critical thinking is skilled and active interpretation and evaluation of o b servations and communications , information and argumentation. (1997, p. 21, emphasis added)

We agree with the gist of this claim, but notice what Fisher and Scriven propose as the objects to which critical thinking applies. Not just argumentation, but as well observations, communications and information. About observations, they note that:

What one sees (hears, etc.) are usually things and happenings, and one often has to interpret what one sees, sometimes calling on critical thinking skills to do so, most obviously in cases where the context involves weak lighting, strong emotions, possible drug effects, or putatively magical or parapsychological phenomena. Only after the application of critical thinking—and sometimes not even then—does one know what one “really saw”. … When the filter of critical thinking has been applied to the observations, and only then, one can start reasoning towards further conclusions using these observations as premises. ( Ibid ., p, 37)

An example is the recent large number of convictions in the U.S.A. that originally relied on eyewitness testimony but that have been overturned on the basis of DNA evidence. [2] ,  [3]

The DNA evidence proved that the accused was not the culprit, so the moral certainty of the eyewitness had to have been mistaken. The observation of the eyewitness was flawed. He or she did not think critically about whether the conditions need ed to make a reliable o b servation were present (e.g., were strong emotions like fear involved? was the lighting good? has he or she ordinarily a good memory for faces? was there time to observe carefully? were there distractions present?). Neither, probably, did the lawyers on either side, or else they immorally suppressed what should have been their doubts. As a consequence, innocent people languished in jail for years and guilty parties went free.

Communications are another object for critical thought. When in reply to Harry’s question, “How are you doing?” Morgan says, in a clipped and dull voice and a strained expression on her face, “I’m fine”, Harry needs to be aware that “How are you doing?” often functions as equivalent to a simple greeting, like “Hi” and so the response “Fine” could similarly be functioning as a polite return of the greeting, like “Hi back to you”, and not as an accurate report of the speaker’s condition. Harry needs to notice and interpret other aspects of Morgan’s communication—her lethargic tone of voice and her anxious facial expression—and to recognize the incompatibility between those signals and the interpretation of her response as an accurate depiction of Morgan’s state of well-being. He needs to employ critical interpretive skills to realize that Morgan has communicated that she is not fine at all, but for some reason isn’t offering to talk about it.

If President Trump did in fact say to his then F.B.I. director James Comey, about the F.B.I. investigation of former National Security Advisor Michaell Flynn “I hope you can let this go”, was it legitimate for Comey to interpret the President’s comment as a directive? And was Comey’s response, which was simply to ignore President Trump’s alleged comment, an appropriate response? What was going on? It takes critical thinking to try to sort out these issues. Taking the President’s alleged comment literally, it just expresses his attitude towards the FBI investigation of Flynn. But communications from the President in a tête-à-tête in the White House with the Director of the FBI are not occasions for just sharing attitudes. This was not an occasion on which they could step out of their political roles and chat person-to-person. The President can legitimately be presumed to be communicating his wishes as to what his FBI Director should do, and such expressions of wishes are, in this context, to be normally understood as directives. On the other hand, for the President to direct that an ongoing investigation by the FBI be stopped, or that it come up with a pre-determined finding, is illegal: it’s obstruction of justice. So Comey seemed faced with at least two possible interpretations of what he took the President to be saying: either an out-of-place expression of his attitude towards the outcome of the Flynn investigation or an illegal directive. Which was the President’s intention? However, there are other possibilities.

Was President Trump a political tyro whose lack of political experience might have left him ignorant of the fact that the FBI Director has to keep investigations free of political interference? Or might Trump have thought that the Presidency conveys the authority to influence the outcome of criminal investigations? Or might President Trump have been testing Mr. Comey to see if he could be manipulated? And Mr. Comey could have responded differently. He could have said, “I wish we could let this go too, Mr. President, but there are questions about General Flynn’s conduct that have to be investigated, and as you know, we cannot interfere with an ongoing FBI investigation”. Such a response would have forced the President to take back what he allegedly said, withdrawing any suggestion that his comment was a directive, or else to make it plain that he was indeed directing Comey to obstruct justice. In the event, apparently Mr. Comey did not take this way out, which would at once have displayed loyalty to the President (by protecting him from explicitly obstructing justice) and also have affirmed the independence of the FBI from interference from the White House. Perhaps he thought that the President clearly had directed him to obstruct justice, and judged that giving him an opportunity explicitly to withdraw that directive amounted to overlooking that illegal act, which would be a violation of his responsibilities as Director of the FBI. If so, however, simply not responding to the President’s comment, the path Comey apparently chose, also amounted to turning a blind eye to what he judged to be President Trump’s illegal directive.

As these two examples illustrate, the interpretation of communications, and the appropriate response to them can require critical thinking: recognizing different functions of communication, and being sensitive to the implications of different contexts of communication; being sensitive to the roles communicators occupy and to the rights, obligations, and limits attached to such roles.

As Fisher and Scriven acknowledge, “defining information is itself a difficult task.” They make a useful start by distinguishing information from raw data (“the numbers or bare descriptions obtained from measurements or observations”, op . cit., p. 41). No critical thinking is required for the latter; just the pains necessary to record raw data accurately, In many cases, though, the interpretation of raw data, the meaning or significance that they are said to have, can require critical thinking.

One might go beyond Fisher and Scriven’s list of other things besides arguments to which critical thinking can be applied. A thoughtful appreciation of novels or movies, plays or poetry, paintings or sculptures requires skilled interpretation, imagining alternatives, thoughtful selection of appropriate criteria of evaluation and then the selection and application of appropriate standards, and more. A good interior designer must consider the effects and interactions of space and light and color and fabrics and furniture design, and coordinate these with clients’ lifestyles, habits and preferences. Advanced practical skills in various sciences come into play. A coach of a sports team must think about each individual team member’s skills and deficiencies, personality and life situation; about plays and strategies, opponents’ skills sets; approaches to games; and much more. Conventional approaches need to be reviewed as to their applicability to the current situation. Alternative possibilities need to be creatively imagined and critically assessed. And all of this is time-sensitive, sometimes calling for split-second decisions. The thinking involved in carrying out the tasks of composing a review of some work of literature or art or of coaching a sports team can be routine and conventional, or it can be imaginative, invoking different perspectives and challenging standard criteria.

The list could go on. The present point is that, while argument is central to critical thinking, critical thinking about and using arguments is not all there is to critical thinking. [4]

Bailin, Sharon & Battersby, Mark. (2010). Reason in the Balance , An I n quiry Approach to Critical Thinking , 1 st ed. Toronto: McGraw-Hill Ryerson.

Beardsley, Monroe C. (1950). Practical L ogic . Englewood Cliffs, NJ: Prentice-Hall.

Chaffee, John. 1985. Thinking Critically . Boston: Houghton Mifflin.

Dewey, John. (1910, 1991). How We Think . Lexington, MAD.C. Heath; Buffalo, NY: Prometheus Books.

Diestler, Sherry. (2005). Becoming a Critical Thinker , 4 th ed. Upper Saddle River, NJ: Pearson Education.

Ennis, Robert H. (1996). Critical Thinking . Upper Saddle River, NJ: Prentice-Hall.

Feldman, Richard. (1993). Reason and Argument , 2 nd ed. Upper Saddle River, NJ: Prentice-Hall.

Fisher, Alex.(2001). Critical Thinking, An Introduction . Cambridge: Cambridge University Press.

Fisher, Alec & Scriven, Michael. (1997). Critical Thinking, Its Definition and Assessment . Point

Reyes, CA: EdgePress; Norwich, UK: Center for Research in Critical Thinking.

Fogelin, Robert & Sinnott-Armstrong, Walter. (2001). Understanding A r guments , An Introduction to Informal Logic , 6 th ed. Belmont, CA: Wadsworth.

Freeman, James B. (1988.) Thinking Logically , Basic Concepts of Reaso n ing . Englewood Cliffs, NJ: Prentice-Hall.

Grennan, Wayne . (1984). Argument Evaluation . Lanham, MD: University Press of America.

Govier, Trudy. (2001). A Practical Study of Argument , 5 th ed. Belmont, CA: Wadsworth.

O’Keefe, Daniel J. (1977). Two concepts of argument. Journal of the Amer i can Forensic Association , 13 , 121-128.

O‘Keefe, Daniel J. (1982). The concepts of argument and arguing. In J. R. Cox & C. A. Willard (Eds.), Advances in Argumentation Theory and R e search , pp. 3-23. Carbondale, IL: Southern Illinois University Press.

  • © J. Anthony Blair ↵
  • According to the Innocence Project, “Eyewitness misidentification is the greatest contributing factor to wrongful convictions proven by DNA testing, playing a role in more than 70% of convictions [in the U.S.A.] overturned through DNA testing nationwide.” (https://www.innocenceproject.org/causes/eyewitness-misidentification/, viewed August 2017). ↵
  • I owe the general organization and many of the specific ideas of this chapter to a series of lectures by Jean Goodwin at the Summer Institute on Argumentation sponsored by the Centre for Research in Reasoning, Argumentation and Rhetoric at the University of Windsor. ↵

Studies in Critical Thinking Copyright © by J. Anthony Blair is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Pursuing Truth: A Guide to Critical Thinking

Chapter 2 arguments.

The fundamental tool of the critical thinker is the argument. For a good example of what we are not talking about, consider a bit from a famous sketch by Monty Python’s Flying Circus : 3

2.1 Identifying Arguments

People often use “argument” to refer to a dispute or quarrel between people. In critical thinking, an argument is defined as

A set of statements, one of which is the conclusion and the others are the premises.

There are three important things to remember here:

  • Arguments contain statements.
  • They have a conclusion.
  • They have at least one premise

Arguments contain statements, or declarative sentences. Statements, unlike questions or commands, have a truth value. Statements assert that the world is a particular way; questions do not. For example, if someone asked you what you did after dinner yesterday evening, you wouldn’t accuse them of lying. When the world is the way that the statement says that it is, we say that the statement is true. If the statement is not true, it is false.

One of the statements in the argument is called the conclusion. The conclusion is the statement that is intended to be proved. Consider the following argument:

Calculus II will be no harder than Calculus I. Susan did well in Calculus I. So, Susan should do well in Calculus II.

Here the conclusion is that Susan should do well in Calculus II. The other two sentences are premises. Premises are the reasons offered for believing that the conclusion is true.

2.1.1 Standard Form

Now, to make the argument easier to evaluate, we will put it into what is called “standard form.” To put an argument in standard form, write each premise on a separate, numbered line. Draw a line underneath the last premise, the write the conclusion underneath the line.

  • Calculus II will be no harder than Calculus I.
  • Susan did well in Calculus I.
  • Susan should do well in Calculus II.

Now that we have the argument in standard form, we can talk about premise 1, premise 2, and all clearly be referring to the same thing.

2.1.2 Indicator Words

Unfortunately, when people present arguments, they rarely put them in standard form. So, we have to decide which statement is intended to be the conclusion, and which are the premises. Don’t make the mistake of assuming that the conclusion comes at the end. The conclusion is often at the beginning of the passage, but could even be in the middle. A better way to identify premises and conclusions is to look for indicator words. Indicator words are words that signal that statement following the indicator is a premise or conclusion. The example above used a common indicator word for a conclusion, ‘so.’ The other common conclusion indicator, as you can probably guess, is ‘therefore.’ This table lists the indicator words you might encounter.

Therefore Since
So Because
Thus For
Hence Is implied by
Consequently For the reason that
Implies that
It follows that

Each argument will likely use only one indicator word or phrase. When the conlusion is at the end, it will generally be preceded by a conclusion indicator. Everything else, then, is a premise. When the conclusion comes at the beginning, the next sentence will usually be introduced by a premise indicator. All of the following sentences will also be premises.

For example, here’s our previous argument rewritten to use a premise indicator:

Susan should do well in Calculus II, because Calculus II will be no harder than Calculus I, and Susan did well in Calculus I.

Sometimes, an argument will contain no indicator words at all. In that case, the best thing to do is to determine which of the premises would logically follow from the others. If there is one, then it is the conclusion. Here is an example:

Spot is a mammal. All dogs are mammals, and Spot is a dog.

The first sentence logically follows from the others, so it is the conclusion. When using this method, we are forced to assume that the person giving the argument is rational and logical, which might not be true.

2.1.3 Non-Arguments

One thing that complicates our task of identifying arguments is that there are many passages that, although they look like arguments, are not arguments. The most common types are:

  • Explanations
  • Mere asssertions
  • Conditional statements
  • Loosely connected statements

Explanations can be tricky, because they often use one of our indicator words. Consider this passage:

Abraham Lincoln died because he was shot.

If this were an argument, then the conclusion would be that Abraham Lincoln died, since the other statement is introduced by a premise indicator. If this is an argument, though, it’s a strange one. Do you really think that someone would be trying to prove that Abraham Lincoln died? Surely everyone knows that he is dead. On the other hand, there might be people who don’t know how he died. This passage does not attempt to prove that something is true, but instead attempts to explain why it is true. To determine if a passage is an explanation or an argument, first find the statement that looks like the conclusion. Next, ask yourself if everyone likely already believes that statement to be true. If the answer to that question is yes, then the passage is an explanation.

Mere assertions are obviously not arguments. If a professor tells you simply that you will not get an A in her course this semester, she has not given you an argument. This is because she hasn’t given you any reasons to believe that the statement is true. If there are no premises, then there is no argument.

Conditional statements are sentences that have the form “If…, then….” A conditional statement asserts that if something is true, then something else would be true also. For example, imagine you are told, “If you have the winning lottery ticket, then you will win ten million dollars.” What is being claimed to be true, that you have the winning lottery ticket, or that you will win ten million dollars? Neither. The only thing claimed is the entire conditional. Conditionals can be premises, and they can be conclusions. They can be parts of arguments, but that cannot, on their own, be arguments themselves.

Finally, consider this passage:

I woke up this morning, then took a shower and got dressed. After breakfast, I worked on chapter 2 of the critical thinking text. I then took a break and drank some more coffee….

This might be a description of my day, but it’s not an argument. There’s nothing in the passage that plays the role of a premise or a conclusion. The passage doesn’t attempt to prove anything. Remember that arguments need a conclusion, there must be something that is the statement to be proved. Lacking that, it simply isn’t an argument, no matter how much it looks like one.

2.2 Evaluating Arguments

The first step in evaluating an argument is to determine what kind of argument it is. We initially categorize arguments as either deductive or inductive, defined roughly in terms of their goals. In deductive arguments, the truth of the premises is intended to absolutely establish the truth of the conclusion. For inductive arguments, the truth of the premises is only intended to establish the probable truth of the conclusion. We’ll focus on deductive arguments first, then examine inductive arguments in later chapters.

Once we have established that an argument is deductive, we then ask if it is valid. To say that an argument is valid is to claim that there is a very special logical relationship between the premises and the conclusion, such that if the premises are true, then the conclusion must also be true. Another way to state this is

An argument is valid if and only if it is impossible for the premises to be true and the conclusion false.

An argument is invalid if and only if it is not valid.

Note that claiming that an argument is valid is not the same as claiming that it has a true conclusion, nor is it to claim that the argument has true premises. Claiming that an argument is valid is claiming nothing more that the premises, if they were true , would be enough to make the conclusion true. For example, is the following argument valid or not?

  • If pigs fly, then an increase in the minimum wage will be approved next term.
  • An increase in the minimum wage will be approved next term.

The argument is indeed valid. If the two premises were true, then the conclusion would have to be true also. What about this argument?

  • All dogs are mammals
  • Spot is a mammal.
  • Spot is a dog.

In this case, both of the premises are true and the conclusion is true. The question to ask, though, is whether the premises absolutely guarantee that the conclusion is true. The answer here is no. The two premises could be true and the conclusion false if Spot were a cat, whale, etc.

Neither of these arguments are good. The second fails because it is invalid. The two premises don’t prove that the conclusion is true. The first argument is valid, however. So, the premises would prove that the conclusion is true, if those premises were themselves true. Unfortunately, (or fortunately, I guess, considering what would be dropping from the sky) pigs don’t fly.

These examples give us two important ways that deductive arguments can fail. The can fail because they are invalid, or because they have at least one false premise. Of course, these are not mutually exclusive, an argument can be both invalid and have a false premise.

If the argument is valid, and has all true premises, then it is a sound argument. Sound arguments always have true conclusions.

A deductively valid argument with all true premises.

Inductive arguments are never valid, since the premises only establish the probable truth of the conclusion. So, we evaluate inductive arguments according to their strength. A strong inductive argument is one in which the truth of the premises really do make the conclusion probably true. An argument is weak if the truth of the premises fail to establish the probable truth of the conclusion.

There is a significant difference between valid/invalid and strong/weak. If an argument is not valid, then it is invalid. The two categories are mutually exclusive and exhaustive. There can be no such thing as an argument being more valid than another valid argument. Validity is all or nothing. Inductive strength, however, is on a continuum. A strong inductive argument can be made stronger with the addition of another premise. More evidence can raise the probability of the conclusion. A valid argument cannot be made more valid with an additional premise. Why not? If the argument is valid, then the premises were enough to absolutely guarantee the truth of the conclusion. Adding another premise won’t give any more guarantee of truth than was already there. If it could, then the guarantee wasn’t absolute before, and the original argument wasn’t valid in the first place.

2.3 Counterexamples

One way to prove an argument to be invalid is to use a counterexample. A counterexample is a consistent story in which the premises are true and the conclusion false. Consider the argument above:

By pointing out that Spot could have been a cat, I have told a story in which the premises are true, but the conclusion is false.

Here’s another one:

  • If it is raining, then the sidewalks are wet.
  • The sidewalks are wet.
  • It is raining.

The sprinklers might have been on. If so, then the sidewalks would be wet, even if it weren’t raining.

Counterexamples can be very useful for demonstrating invalidity. Keep in mind, though, that validity can never be proved with the counterexample method. If the argument is valid, then it will be impossible to give a counterexample to it. If you can’t come up with a counterexample, however, that does not prove the argument to be valid. It may only mean that you’re not creative enough.

  • An argument is a set of statements; one is the conclusion, the rest are premises.
  • The conclusion is the statement that the argument is trying to prove.
  • The premises are the reasons offered for believing the conclusion to be true.
  • Explanations, conditional sentences, and mere assertions are not arguments.
  • Deductive reasoning attempts to absolutely guarantee the truth of the conclusion.
  • Inductive reasoning attempts to show that the conclusion is probably true.
  • In a valid argument, it is impossible for the premises to be true and the conclusion false.
  • In an invalid argument, it is possible for the premises to be true and the conclusion false.
  • A sound argument is valid and has all true premises.
  • An inductively strong argument is one in which the truth of the premises makes the the truth of the conclusion probable.
  • An inductively weak argument is one in which the truth of the premises do not make the conclusion probably true.
  • A counterexample is a consistent story in which the premises of an argument are true and the conclusion is false. Counterexamples can be used to prove that arguments are deductively invalid.

( Cleese and Chapman 1980 ) . ↩︎

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Prevent plagiarism. Run a free check.

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved September 9, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

loading

Library Home

Arguments in Context

critical thinking and argument

Thaddeus Robinson, Muhlenberg College

Copyright Year: 2021

Publisher: Muhlenberg College

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial

Learn more about reviews.

Reviewed by Sarah Lonelodge, Assistant Professor of English/Writing Program Director, Eastern New Mexico University on 12/19/23

Robinson presents a very comprehensive text focused on critical thinking and the analysis and evaluation of arguments. Numerous forms of argument are presented, and the author offers useful tools that students will be able to apply. The text does... read more

Comprehensiveness rating: 4 see less

Robinson presents a very comprehensive text focused on critical thinking and the analysis and evaluation of arguments. Numerous forms of argument are presented, and the author offers useful tools that students will be able to apply. The text does not offer students explicit instruction in creating or writing arguments, but this goal is not mentioned as one of the aims of the text. However, it is clear that students would be able to develop thoughtful arguments after reading and interacting with this text. While an index/glossary is not provided, the author presents a summary and key terms in a summary portion for each section.

Content Accuracy rating: 5

The content looks accurate and unbiased to me. Robinson provides a thorough discussion of various methods and possibilities for argument identification, analysis, and evaluation. The examples employed throughout the chapters tend to be based on very neutral situations.

Relevance/Longevity rating: 4

Because the text is focused on critical thinking, I do not see it becoming obsolete any time soon. Perhaps a few of the examples will eventually need updates, but most are fairly timeless. Robinson also presents an effective discussion of media literacy with social media and web-based arguments. Again, this presentation is effective; however, the growth of social media and the expansion of platforms and apps will require updates in the near future to maintain relevance.

Clarity rating: 4

The content of the book is clear and well organized; however, some terminology may be difficult for some students to grasp easily. Depending on the level of student who is using this text, the language may not be an issue. For first- or second-year students, the style and word choice may cause some frustration or may require the use of a dictionary.

Consistency rating: 5

The book is very consistent in its use of language, examples, etc., and its organization/framework is easy to navigate. From chapter to chapter, students will know what to expect.

Modularity rating: 5

I think the book is well modulated. Robinson has created seven distinct units or sections, and each of them have 3-5 chapters of relatively similar length. The length may feel a bit long for some readers, but this determination will depend on the level of student assigned this text.

Organization/Structure/Flow rating: 5

Each unit/section is well organized into a text overall and would flow well from one concept to the next. Within each unit/section, the chapters follow a similarly effective organization pattern. I particularly appreciate the summaries at the end of each unit/section as these additions would likely offer students a clear picture of the outcomes of what they read.

Interface rating: 5

I don't see any interface or navigation issues. The display is well organized and easy to follow and read.

Grammatical Errors rating: 5

I didn't notice any grammatical issues.

Cultural Relevance rating: 5

I did not notice any culturally insensitive or offensive content. The few images used were neutral and typically more decorative than content specific. The examples utilized through the book were based on concepts that are unlikely to offend anyone, such as a sibling borrowing a vehicle, sports, calculating GPA, and similar topics.

I think this book would be very useful for upper-division college courses in which students would need to identify, analyze, and evaluate arguments. The text is very specific about types and uses of argumentation, and Robinson provides a number of quick, illustrative examples that would likely help readers comprehend the concepts presented.

Table of Contents

  • I. An Introduction to Reasoning
  • II. Argument Analysis
  • III. An Introduction to Evaluation
  • IV. An Introduction to Deductive Arguments
  • V. Common Inductive Arguments
  • VI. Social Arguments
  • VII. Scientific Reasoning

Ancillary Material

About the book.

Arguments in Context is a comprehensive introduction to critical thinking that covers all the basics in student-friendly language.  Intended for use in a semester-long course, the text features classroom-tested examples and exercises that have been chosen to emphasize the relevance and applicability of the subject to everyday life.  Three themes are developed as the text proceeds from argument identification and analysis, to the standards and techniques of evaluation: (i) the importance of asking the right questions, (ii) the influence of biases, cognitive illusions, and other psychological factors, and (iii) the ways that social situations and structures can enhance and impoverish our thinking.  On this last point, the text includes sustained discussion of disagreement, cooperative dialogue, testimony, trust, and social media.  Overall, the text aims to equip readers with a set of tools for working through important decisions and disagreements, and to help them become more careful and active thinkers.

About the Contributors

Thaddeus Robinson . Associate Professor of Philosophy, Muhlenberg College

An Introduction to Critical Thinking and Creativity: Think More, Think Better by

Get full access to An Introduction to Critical Thinking and Creativity: Think More, Think Better and 60K+ other titles, with a free 10-day trial of O'Reilly.

There are also live events, courses curated by job role, and more.

IDENTIFYING ARGUMENTS

8.1 WHAT IS AN ARGUMENT?

In ordinary usage, an argument is often taken to be a somewhat heated dispute between people. But in logic and critical thinking, an argument is a list of statements, one of which is the conclusion and the others are the premises or assumptions of the argument. An example:

It is raining.

So you should bring an umbrella.

In this argument, the first statement is the premise and the second one the conclusion. The premises of an argument are offered as reasons for accepting the conclusion. It is therefore irrational to accept an argument as a good one and yet refuse to accept the conclusion. Giving reasons is a central part of critical thinking. It is not the same as simply expressing an opinion. If you say “that dress looks nice,” you are only expressing an opinion. But if you say “that dress looks nice because the design is very elegant,” then it would be an argument indeed. Dogmatic people tend to make assertions without giving arguments. When they cannot defend themselves, they often resort to responses such as “this is a matter of opinion,” “this is just what you think,” or “I have the right to believe whatever I want.”

The ability to construct, identify, and evaluate arguments is a crucial part of critical thinking. Giving good arguments helps us convince other people, and improve our presentation and debating skills. More important, using arguments to support our beliefs with reasons is likely to help us discover the ...

Get An Introduction to Critical Thinking and Creativity: Think More, Think Better now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.

Don’t leave empty-handed

Get Mark Richards’s Software Architecture Patterns ebook to better understand how to design components—and how they should interact.

It’s yours, free.

Cover of Software Architecture Patterns

Check it out now on O’Reilly

Dive in for free with a 10-day trial of the O’Reilly learning platform—then explore all the other resources our members count on to build skills and solve problems every day.

critical thinking and argument

  • For Individuals
  • For Businesses
  • For Universities
  • For Governments
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Excelsior OWL

an Excelsior University site

Argument & Critical Thinking

Welcome to argument & critical thinking.

The Thinker sculpture by Rodin. Learn more about argument and critical thinking.

With practice activities, infographics, and videos, Argument & Critical Thinking has something to help you as you work through any stage of creating an argumentative project.

Of course, you may be wondering what critical thinking really is. Essentially, critical thinking is about gathering and analyzing information in order to come to new conclusions on your own—or a new way of thinking. Obviously, this is going to take many forms in your college career, but in writing, it’s about using all available information to make informed decisions about effective writing—and being persuasive.

The Argument & Critical Thinking area is here to help!

Write  |  Read  |  Educators

Argument & Critical Thinking

critical thinking and argument

Grumble... Applaud... Please give us your feedback!

  • Argument & Critical Thinking »

Logo for OPEN OKSTATE

1 Introduction to Critical Thinking

I. what is c ritical t hinking [1].

Critical thinking is the ability to think clearly and rationally about what to do or what to believe.  It includes the ability to engage in reflective and independent thinking. Someone with critical thinking skills is able to do the following:

  • Understand the logical connections between ideas.
  • Identify, construct, and evaluate arguments.
  • Detect inconsistencies and common mistakes in reasoning.
  • Solve problems systematically.
  • Identify the relevance and importance of ideas.
  • Reflect on the justification of one’s own beliefs and values.

Critical thinking is not simply a matter of accumulating information. A person with a good memory and who knows a lot of facts is not necessarily good at critical thinking. Critical thinkers are able to deduce consequences from what they know, make use of information to solve problems, and to seek relevant sources of information to inform themselves.

Critical thinking should not be confused with being argumentative or being critical of other people. Although critical thinking skills can be used in exposing fallacies and bad reasoning, critical thinking can also play an important role in cooperative reasoning and constructive tasks. Critical thinking can help us acquire knowledge, improve our theories, and strengthen arguments. We can also use critical thinking to enhance work processes and improve social institutions.

Some people believe that critical thinking hinders creativity because critical thinking requires following the rules of logic and rationality, whereas creativity might require breaking those rules. This is a misconception. Critical thinking is quite compatible with thinking “out-of-the-box,” challenging consensus views, and pursuing less popular approaches. If anything, critical thinking is an essential part of creativity because we need critical thinking to evaluate and improve our creative ideas.

II. The I mportance of C ritical T hinking

Critical thinking is a domain-general thinking skill. The ability to think clearly and rationally is important whatever we choose to do. If you work in education, research, finance, management or the legal profession, then critical thinking is obviously important. But critical thinking skills are not restricted to a particular subject area. Being able to think well and solve problems systematically is an asset for any career.

Critical thinking is very important in the new knowledge economy.  The global knowledge economy is driven by information and technology. One has to be able to deal with changes quickly and effectively. The new economy places increasing demands on flexible intellectual skills, and the ability to analyze information and integrate diverse sources of knowledge in solving problems. Good critical thinking promotes such thinking skills, and is very important in the fast-changing workplace.

Critical thinking enhances language and presentation skills. Thinking clearly and systematically can improve the way we express our ideas. In learning how to analyze the logical structure of texts, critical thinking also improves comprehension abilities.

Critical thinking promotes creativity. To come up with a creative solution to a problem involves not just having new ideas. It must also be the case that the new ideas being generated are useful and relevant to the task at hand. Critical thinking plays a crucial role in evaluating new ideas, selecting the best ones and modifying them if necessary.

Critical thinking is crucial for self-reflection. In order to live a meaningful life and to structure our lives accordingly, we need to justify and reflect on our values and decisions. Critical thinking provides the tools for this process of self-evaluation.

Good critical thinking is the foundation of science and democracy. Science requires the critical use of reason in experimentation and theory confirmation. The proper functioning of a liberal democracy requires citizens who can think critically about social issues to inform their judgments about proper governance and to overcome biases and prejudice.

Critical thinking is a   metacognitive skill . What this means is that it is a higher-level cognitive skill that involves thinking about thinking. We have to be aware of the good principles of reasoning, and be reflective about our own reasoning. In addition, we often need to make a conscious effort to improve ourselves, avoid biases, and maintain objectivity. This is notoriously hard to do. We are all able to think but to think well often requires a long period of training. The mastery of critical thinking is similar to the mastery of many other skills. There are three important components: theory, practice, and attitude.

III. Improv ing O ur T hinking S kills

If we want to think correctly, we need to follow the correct rules of reasoning. Knowledge of theory includes knowledge of these rules. These are the basic principles of critical thinking, such as the laws of logic, and the methods of scientific reasoning, etc.

Also, it would be useful to know something about what not to do if we want to reason correctly. This means we should have some basic knowledge of the mistakes that people make. First, this requires some knowledge of typical fallacies. Second, psychologists have discovered persistent biases and limitations in human reasoning. An awareness of these empirical findings will alert us to potential problems.

However, merely knowing the principles that distinguish good and bad reasoning is not enough. We might study in the classroom about how to swim, and learn about the basic theory, such as the fact that one should not breathe underwater. But unless we can apply such theoretical knowledge through constant practice, we might not actually be able to swim.

Similarly, to be good at critical thinking skills it is necessary to internalize the theoretical principles so that we can actually apply them in daily life. There are at least two ways to do this. One is to perform lots of quality exercises. These exercises don’t just include practicing in the classroom or receiving tutorials; they also include engaging in discussions and debates with other people in our daily lives, where the principles of critical thinking can be applied. The second method is to think more deeply about the principles that we have acquired. In the human mind, memory and understanding are acquired through making connections between ideas.

Good critical thinking skills require more than just knowledge and practice. Persistent practice can bring about improvements only if one has the right kind of motivation and attitude. The following attitudes are not uncommon, but they are obstacles to critical thinking:

  • I prefer being given the correct answers rather than figuring them out myself.
  • I don’t like to think a lot about my decisions as I rely only on gut feelings.
  • I don’t usually review the mistakes I have made.
  • I don’t like to be criticized.

To improve our thinking we have to recognize the importance of reflecting on the reasons for belief and action. We should also be willing to engage in debate, break old habits, and deal with linguistic complexities and abstract concepts.

The  California Critical Thinking Disposition Inventory  is a psychological test that is used to measure whether people are disposed to think critically. It measures the seven different thinking habits listed below, and it is useful to ask ourselves to what extent they describe the way we think:

  • Truth-Seeking—Do you try to understand how things really are? Are you interested in finding out the truth?
  • Open-Mindedness—How receptive are you to new ideas, even when you do not intuitively agree with them? Do you give new concepts a fair hearing?
  • Analyticity—Do you try to understand the reasons behind things? Do you act impulsively or do you evaluate the pros and cons of your decisions?
  • Systematicity—Are you systematic in your thinking? Do you break down a complex problem into parts?
  • Confidence in Reasoning—Do you always defer to other people? How confident are you in your own judgment? Do you have reasons for your confidence? Do you have a way to evaluate your own thinking?
  • Inquisitiveness—Are you curious about unfamiliar topics and resolving complicated problems? Will you chase down an answer until you find it?
  • Maturity of Judgment—Do you jump to conclusions? Do you try to see things from different perspectives? Do you take other people’s experiences into account?

Finally, as mentioned earlier, psychologists have discovered over the years that human reasoning can be easily affected by a variety of cognitive biases. For example, people tend to be over-confident of their abilities and focus too much on evidence that supports their pre-existing opinions. We should be alert to these biases in our attitudes towards our own thinking.

IV. Defining Critical Thinking

There are many different definitions of critical thinking. Here we list some of the well-known ones. You might notice that they all emphasize the importance of clarity and rationality. Here we will look at some well-known definitions in chronological order.

1) Many people trace the importance of critical thinking in education to the early twentieth-century American philosopher John Dewey. But Dewey did not make very extensive use of the term “critical thinking.” Instead, in his book  How We Think (1910), he argued for the importance of what he called “reflective thinking”:

…[when] the ground or basis for a belief is deliberately sought and its adequacy to support the belief examined. This process is called reflective thought; it alone is truly educative in value…

Active, persistent and careful consideration of any belief or supposed form of knowledge in light of the grounds that support it, and the further conclusions to which it tends, constitutes reflective thought.

There is however one passage from How We Think where Dewey explicitly uses the term “critical thinking”:

The essence of critical thinking is suspended judgment; and the essence of this suspense is inquiry to determine the nature of the problem before proceeding to attempts at its solution. This, more than any other thing, transforms mere inference into tested inference, suggested conclusions into proof.

2) The  Watson-Glaser Critical Thinking Appraisal  (1980) is a well-known psychological test of critical thinking ability. The authors of this test define critical thinking as:

…a composite of attitudes, knowledge and skills. This composite includes: (1) attitudes of inquiry that involve an ability to recognize the existence of problems and an acceptance of the general need for evidence in support of what is asserted to be true; (2) knowledge of the nature of valid inferences, abstractions, and generalizations in which the weight or accuracy of different kinds of evidence are logically determined; and (3) skills in employing and applying the above attitudes and knowledge.

3) A very well-known and influential definition of critical thinking comes from philosopher and professor Robert Ennis in his work “A Taxonomy of Critical Thinking Dispositions and Abilities” (1987):

Critical thinking is reasonable reflective thinking that is focused on deciding what to believe or do.

4) The following definition comes from a statement written in 1987 by the philosophers Michael Scriven and Richard Paul for the  National Council for Excellence in Critical Thinking (link), an organization promoting critical thinking in the US:

Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue, assumptions, concepts, empirical grounding; reasoning leading to conclusions, implications and consequences, objections from alternative viewpoints, and frame of reference.

The following excerpt from Peter A. Facione’s “Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction” (1990) is quoted from a report written for the American Philosophical Association:

We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. CT is essential as a tool of inquiry. As such, CT is a liberating force in education and a powerful resource in one’s personal and civic life. While not synonymous with good thinking, CT is a pervasive and self-rectifying human phenomenon. The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fairminded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, clear about issues, orderly in complex matters, diligent in seeking relevant information, reasonable in the selection of criteria, focused in inquiry, and persistent in seeking results which are as precise as the subject and the circumstances of inquiry permit. Thus, educating good critical thinkers means working toward this ideal. It combines developing CT skills with nurturing those dispositions which consistently yield useful insights and which are the basis of a rational and democratic society.

V. Two F eatures of C ritical T hinking

A. how not what .

Critical thinking is concerned not with what you believe, but rather how or why you believe it. Most classes, such as those on biology or chemistry, teach you what to believe about a subject matter. In contrast, critical thinking is not particularly interested in what the world is, in fact, like. Rather, critical thinking will teach you how to form beliefs and how to think. It is interested in the type of reasoning you use when you form your beliefs, and concerns itself with whether you have good reasons to believe what you believe. Therefore, this class isn’t a class on the psychology of reasoning, which brings us to the second important feature of critical thinking.

B. Ought N ot Is ( or Normative N ot Descriptive )

There is a difference between normative and descriptive theories. Descriptive theories, such as those provided by physics, provide a picture of how the world factually behaves and operates. In contrast, normative theories, such as those provided by ethics or political philosophy, provide a picture of how the world should be. Rather than ask question such as why something is the way it is, normative theories ask how something should be. In this course, we will be interested in normative theories that govern our thinking and reasoning. Therefore, we will not be interested in how we actually reason, but rather focus on how we ought to reason.

In the introduction to this course we considered a selection task with cards that must be flipped in order to check the validity of a rule. We noted that many people fail to identify all the cards required to check the rule. This is how people do in fact reason (descriptive). We then noted that you must flip over two cards. This is how people ought to reason (normative).

  • Section I-IV are taken from http://philosophy.hku.hk/think/ and are in use under the creative commons license. Some modifications have been made to the original content. ↵

Critical Thinking Copyright © 2019 by Brian Kim is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

1: Introduction to Critical Thinking, Reasoning, and Logic

  • Last updated
  • Save as PDF
  • Page ID 29580

  • Golden West College via NGE Far Press

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

What is thinking? It may seem strange to begin a logic textbook with this question. ‘Thinking’ is perhaps the most intimate and personal thing that people do. Yet the more you ‘think’ about thinking, the more mysterious it can appear. It is the sort of thing that one intuitively or naturally understands, and yet cannot describe to others without great difficulty. Many people believe that logic is very abstract, dispassionate, complicated, and even cold. But in fact the study of logic is nothing more intimidating or obscure than this: the study of good thinking.

  • 1.1: Prelude to Chapter
  • 1.2: Introduction and Thought Experiments- The Trolley Problem
  • 1.3: Truth and Its Role in Argumentation - Certainty, Probability, and Monty Hall Only certain sorts of sentences can be used in arguments. We call these sentences propositions, statements or claims.
  • 1.4: Distinction of Proof from Verification; Our Biases and the Forer Effect
  • 1.5: The Scientific Method The procedure that scientists use is also a standard form of argument. Its conclusions only give you the likelihood or the probability that something is true (if your theory or hypothesis is confirmed), and not the certainty that it’s true. But when it is done correctly, the conclusions it reaches are very well-grounded in experimental evidence.
  • 1.6: Diagramming Thoughts and Arguments - Analyzing News Media
  • 1.7: Creating a Philosophical Outline

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Defining Critical Thinking


Everyone thinks; it is our nature to do so. But much of our thinking, left to itself, is biased, distorted, partial, uninformed or down-right prejudiced. Yet the quality of our life and that of what we produce, make, or build depends precisely on the quality of our thought. Shoddy thinking is costly, both in money and in quality of life. Excellence in thought, however, must be systematically cultivated.


Critical thinking is that mode of thinking - about any subject, content, or problem - in which the thinker improves the quality of his or her thinking by skillfully taking charge of the structures inherent in thinking and imposing intellectual standards upon them.



Foundation for Critical Thinking Press, 2008)

Teacher’s College, Columbia University, 1941)



Module Four: Delivery of Demonstration Speeches

Critical thinking & reasoning: logic and the role of arguments.

Critical thinkers tend to exhibit certain traits that are common to them. These traits are summarized in Table 6.1: [1]

Table 6.1 Traits of Critical Thinkers
Critical thinkers are open and receptive to all ideas and arguments, even those with which they may disagree. Critical thinkers reserve judgment on a message until they have examined the claims, logic, reasoning, and evidence used. Critical thinkers are fair-minded and understand that a message is not inherently wrong or flawed if it differs from their own thoughts. Critical thinkers remain open to the possibility of changing their view on an issue when logic and evidence supports doing so.
Critical thinkers are interested in understanding what is happening in a message. Critical thinkers ask questions of the message, breaking it into its individual components and examining each in turn. Critical thinkers dissect these components looking for sound logic and reasoning.
Critical thinkers avoid jumping to conclusions. Critical thinkers take the time to systematically examine a message. Critical thinkers apply accepted criteria or conditions to their analyses.
Critical thinkers are curious by nature. Critical thinkers ask questions of what is going on around them and in a message. Critical thinkers want to know more and take action to learn more.
Critical thinkers are prudent in acting and making judgments. Critical thinkers are sensible in their actions. That is, they don’t just jump on the bandwagon of common thought because it looks good or everyone else is doing it.
Critical thinkers exercise an ethical foundation based in searching for the truth. Critical thinkers understand that even the wisest people may be wrong at times.
Critical thinkers have faith in the power of logic and sound reasoning. Critical thinkers understand that it is in everyone’s best interest to encourage and develop sound logic. More importantly, critical thinkers value the power of letting others draw their own conclusions.

Recall that critical thinking is an active mode of thinking. Instead of just receiving messages and accepting them as is, we consider what they are saying. We ask if messages are well-supported. We determine if their logic is sound or slightly flawed. In other words, we act on the messages before we take action based on them. When we enact critical thinking on a message, we engage a variety of skills including: listening, analysis, evaluation, inference and interpretation or explanation, and self-regulation [2]

Next, we will examine each of these skills and their role in critical thinking in greater detail. As you read through the explanation of and examples for each skill, think about how it works in conjunction with the others. It’s important to note that while our discussion of the skills is presented in a linear manner, in practice our use of each skill is not so straightforward. We may exercise different skills simultaneously or jump forward and backward.

Martha Stewart

“ Martha Stewart ” by nrkbeta.  CC-BY-SA .

Without an open-minded mind, you can never be a great success. ~ Martha Stewart

In order to understand listening, we must first understand the difference between listening and hearing . At its most basic, hearing refers to the physiological process of receiving sounds, while listening refers to the  psychological process of interpreting or making sense of those sounds.

Every minute of every day we are surrounded by hundreds of different noises and sounds. If we were to try to make sense of each different sound we would probably spend our day just doing this. While we may hear all of the noises, we filter out many of them. They pass through our lives without further notice. Certain noises, however, jump to the forefront of our consciousness. As we listen to them, we make sense of these sounds. We do this every day without necessarily thinking about the process. Like many other bodily functions, it happens without our willing it to happen.

Critical thinking requires that we consciously listen to messages. We must focus on what is being said – and not said. We must strive not to be distracted by other outside noises or the internal noise of our own preconceived ideas. For the moment we only need to take in the message.

Listening becomes especially difficult when the message contains highly charged information. Think about what happens when you try to discuss a controversial issue such as abortion. As the other person speaks, you may have every good intention of listening to the entire argument.

However, when the person says something you feel strongly about you start formulating a counter-argument in your head. The end result is that both sides end up talking past each other without ever really listening to what the other says.

Once we have listened to a message, we can begin to analyze it. In practice we often begin analyzing messages while still listening to them. When we analyze something, we consider it in greater detail, separating out the main components of the message. In a sense, we are acting like a surgeon on the message, carving out all of the different elements and laying them out for further consideration and possible action.

Let’s return to Shonda’s persuasive speech to see analysis in action. As part of the needs section of her speech, Shonda makes the following remarks:

Americans today are some of the unhealthiest people on Earth. It seems like not a week goes by without some news story relating how we are the fattest country in the world. In addition to being overweight, we suffer from a number of other health problems. When I was conducting research for my speech, I read somewhere that heart attacks are the number one killer of men and the number two killer of women. Think about that. My uncle had a heart attack and had to be rushed to the hospital. They hooked him up to a bunch of different machines to keep him alive. We all thought he was going to die. He’s ok now, but he has to take a bunch of pills every day and eat a special diet. Plus he had to pay thousands of dollars in medical bills. Wouldn’t you like to know how to prevent this from happening to you?

If we were to analyze this part of Shonda’s speech (see Table 6.2), we could begin by looking at the claims she makes. We could then look at the evidence she presents in support of these claims. Having parsed out the various elements, we are then ready to evaluate them and by extension the message as a whole.

When we evaluate something we continue the process of analysis by assessing the various claims and arguments for validity. One way we evaluate a message is to ask questions about what is being said and who is saying it. The following is a list of typical questions we may ask, along with an evaluation of the ideas in Shonda’s speech.

Is the speaker credible?

Yes. While Shonda may not be an expert per se on the issue of health benefits related to wine, she has made herself a mini-expert through conducting research.

Does the statement ring true or false based on common sense?

It sounds kind of fishy. Four or more glasses of wine in one sitting doesn’t seem right. In fact, it seems like it might be bordering on binge drinking.

Does the logic employed hold up to scrutiny?

Based on the little bit of Shonda’s speech we see here, her logic does seem to be sound. As we will see later on, she actually commits a few fallacies.

What questions or objections are raised by the message?

In addition to the possibility of Shonda’s proposal being binge drinking, it also raises the possibility of creating alcoholism or causing other long term health problems.

How will further information affect the message?

More information will probably contradict her claims. In fact, most medical research in this area contradicts the claim that drinking 4 or more glasses of wine a day is a good thing.

Will further information strengthen or weaken the claims?

Most likely Shonda’s claims will be weakened.

What questions or objections are raised by the claims?

In addition to the objections we’ve already discussed, there is also the problem of the credibility of Shonda’s expert “doctor.”

Table 6.2 Analysis of Shonda’s Speech
Claims Evidence

A wise man proportions his belief to the evidence. ~ David Hume

Inference and Interpretation or Explanation

“Imply” or “Infer”?

For two relatively small words, imply and infer seem to generate an inordinately large amount of confusion. Understanding the difference between the two and knowing when to use the right one is not only a useful skill, but it also makes you sound a lot smarter!

Let’s begin with imply. Imply means to suggest or convey an idea. A speaker or a piece of writing implies things. For example, in Shonda’s speech, she implies it is better to drink more red wine. In other words, she never directly says that we need to drink more red wine, but she clearly hints at it when she suggests that drinking four or more glasses a day will provide us with health benefits.

Now let’s consider infer. Infer means that something in a speaker’s words or a piece of writing helps us to draw a conclusion outside of his/her words. We infer a conclusion. Returning to Shonda’s speech, we can infer she would want us to drink more red wine rather than less. She never comes right out and says this. However, by considering her overall message, we can draw this conclusion.

Another way to think of the difference between imply and infer is: A speaker (or writer for that matter) implies. The audience infers.

Therefore, it would be incorrect to say that Shonda infers we should drink more rather than less wine. She implies this. To help you differentiate between the two, remember that an inference is something that comes from outside the spoken or written text.

The next step in critically examining a message is to interpret or explain the conclusions that we draw from it. At this phase we consider the evidence and the claims together. In effect we are reassembling the components that we parsed out during analysis. We are continuing our evaluation by looking at the evidence, alternatives, and possible conclusions.

Before we draw any inferences or attempt any explanations, we should look at the evidence provided. When we consider evidence we must first determine what, if any, kind of support is provided. Of the evidence we then ask:

  • Is the evidence sound?
  • Does the evidence say what thespeaker says it does?
  • Does contradictory evidenceexist?
  • Is the evidence from a validcredible source?

Seatbelt

Seatbelt by M.Minderhoud, CC-BY-SA .

Even though these are set up as yes or no questions, you’ll probably find in practice that your answers are a bit more complex. For example, let’s say you’re writing a speech on why we should wear our seatbelts at all times while driving. You’ve researched the topic and found solid, credible information setting forth the numerous reasons why wearing a seatbelt can help save your life and decrease the number of injuries experienced during a motor vehicle accident. Certainly, there exists contradictory evidence arguing seat belts can cause more injuries. For example, if you’re in an accident where your car is partially submerged in water, wearing a seatbelt may impede your ability to quickly exit the vehicle. Does the fact that this evidence exists negate your claims? Probably not, but you need to be thorough in evaluating and considering how you use your evidence.

A man who does not think for himself does not think at all. ~ Oscar Wilde

Self-Regulation

The final step in critically examining a message is actually a skill we should exercise throughout the entire process. With self-regulation, we consider our pre-existing thoughts on the subject and any biases we may have. We examine how what we think on an issue may have influenced the way we understand (or think we understand) the message and any conclusions we have drawn. Just as contradictory evidence doesn’t automatically negate our claims or invalidate our arguments, our biases don’t necessarily make our conclusions wrong. The goal of practicing self-regulation is not to disavow or deny our opinions. The goal is to create distance between our opinions and the messages we evaluate.

Man on bus

Man thinking on bus , by IG8. CC-BY .

The Value of Critical Thinking

In public speaking, the value of being a critical thinker cannot be overstressed. Critical thinking helps us to determine the truth or validity of arguments. However, it also helps us to formulate strong arguments for our speeches. Exercising critical thinking at all steps of the speech writing and delivering process can help us avoid situations like Shonda found herself in. Critical thinking is not a magical panacea that will make us super speakers. However, it is another tool that we can add to our speech toolbox.

As we will learn in the following pages, we construct arguments based on logic. Understanding the ways logic can be used and possibly misused is a vital skill. To help stress the importance of it, the Foundation for Critical Thinking has set forth universal standards of reasoning. These standards can be found in Table 6.3.

When the mind is thinking, it is talking to itself. ~ Plato

Table 6.3
Universal Standards of Reasoning
All reasoning has a purpose.
All reasoning is an attempt to figure something out, to settle some question, to solve some problem.
All reasoning is based on assumptions.
All reasoning is done from some point of view.
All reasoning is based on data, information, and evidence.
All reasoning is expressed through, and shaped by, concepts and ideas.
All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data.
All reasoning leads somewhere or has implications and consequences.

Logic and the Role of Arguments

Billboard that says Sharia Law threatens America.

“Sharia Law Billboard” by Matt57. Public domain.

We use logic every day. Even if we have never formally studied logical reasoning and fallacies, we can often tell when a person’s statement doesn’t sound right. Think about the claims we see in many advertisements today—Buy product X, and you will be beautiful/thin/happy or have the carefree life depicted in the advertisement. With very little critical thought, we know intuitively that simply buying a product will not magically change our lives. Even if we can’t identify the specific fallacy at work in the argument (non causa in this case), we know there is some flaw in the argument.

By studying logic and fallacies we can learn to formulate stronger and more cohesive arguments, avoiding problems like that mentioned above. The study of logic has a long history. We can trace the roots of modern logical study back to Aristotle in ancient Greece. Aristotle’s simple definition of logic as the means by which we come to know anything still provides a concise understanding of logic. [3] Of the classical pillars of a core liberal arts education of logic, grammar, and rhetoric, logic has developed as a fairly independent branch of philosophical studies. We use logic everyday when we construct statements, argue our point of view, and in myriad other ways. Understanding how logic is used will help us communicate more efficiently and effectively.

Defining Arguments

When we think and speak logically, we pull together statements that combine reasoning with evidence to support an assertion, arguments. A logical argument should not be confused with the type of argument you have with your sister or brother or any other person. When you argue with your sibling, you participate in a conflict in which you disagree about something. You may, however, use a logical argument in the midst of the argument with your sibling. Consider this example:

Man and woman arguing

“Man and Woman Arguing” by mzacha. morgueFile .

Brother and sister, Sydney and Harrison are arguing about whose turn it is to clean their bathroom. Harrison tells Sydney she should do it because she is a girl and girls are better at cleaning. Sydney responds that being a girl has nothing to do with whose turn it is. She reminds Harrison that according to their work chart, they are responsible for cleaning the bathroom on alternate weeks. She tells him she cleaned the bathroom last week; therefore, it is his turn this week. Harrison, still unconvinced, refuses to take responsibility for the chore. Sydney then points to the work chart and shows him where it specifically says it is his turn this week. Defeated, Harrison digs out the cleaning supplies.

Throughout their bathroom argument, both Harrison and Sydney use logical arguments to advance their point. You may ask why Sydney is successful and Harrison is not. This is a good question. Let’s critically think about each of their arguments to see why one fails and one succeeds.

Let’s start with Harrison’s argument. We can summarize it into three points:

  • Girls are better at cleaning bathrooms than boys.
  • Sydney is a girl.
  • Therefore, Sydney should clean the bathroom.

Harrison’s argument here is a form of deductive reasoning, specifically a syllogism. We will consider syllogisms in a few minutes. For our purposes here, let’s just focus on why Harrison’s argument fails to persuade Sydney. Assuming for the moment that we agree with Harrison’s first two premises, then it would seem that his argument makes sense. We know that Sydney is a girl, so the second premise is true. This leaves the first premise that girls are better at cleaning bathrooms than boys. This is the exact point where Harrison’s argument goes astray. The only way his entire argument will work is if we agree with the assumption girls are better at cleaning bathrooms than boys.

Let’s now look at Sydney’s argument and why it works. Her argument can be summarized as follows:

1. The bathroom responsibilities alternate weekly according to the work chart.

2. Sydney cleaned the bathroom last week.

3. The chart indicates it is Harrison’s turn to clean the bathroom this week.

4. Therefore, Harrison should clean the bathroom.

Toilet seat

“Decorative toilet seat” by Bartux~commonswikiv. Public domain.

Sydney’s argument here is a form of inductive reasoning. We will look at inductive reasoning in depth below. For now, let’s look at why Sydney’s argument succeeds where Harrison’s fails. Unlike Harrison’s argument, which rests on assumption for its truth claims, Sydney’s argument rests on evidence. We can define evidence as anything used to support the validity of an assertion. Evidence includes: testimony, scientific findings, statistics, physical objects, and many others. Sydney uses two primary pieces of evidence: the work chart and her statement that she cleaned the bathroom last week. Because Harrison has no contradictory evidence, he can’t logically refute Sydney’s assertion and is therefore stuck with scrubbing the toilet.

Defining Deduction

Deductive reasoning refers to an argument in which the truth of its premises guarantees the truth of its conclusions. Think back to Harrison’s argument for Sydney cleaning the bathroom. In order for his final claim to be valid, we must accept the truth of his claims that girls are better at cleaning bathrooms than boys. The key focus in deductive arguments is that it must be impossible for the premises to be true and the conclusion to be false. The classic example is:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

We can look at each of these statements individually and see each is true in its own right. It is virtually impossible for the first two propositions to be true and the conclusion to be false. Any argument which fails to meet this standard commits a logical error or fallacy. Even if we might accept the arguments as good and the conclusion as possible, the argument fails as a form of deductive reasoning.

A few observations and much reasoning lead to error; many observations and a little reasoning to truth. ~ Alexis Carrel

Another way to think of deductive reasoning is to think of it as moving from a general premise to a specific premise. The basic line of reasoning looks like this:

Major premise to minor premise to conclusion.

“Deductive Reasoning” CC-BY-NC-ND .

This form of deductive reasoning is called a syllogism. A syllogism need not have only three components to its argument, but it must have at least three. We have Aristotle to thank for identifying the syllogism and making the study of logic much easier. The focus on syllogisms dominated the field of philosophy for thousands of years. In fact, it wasn’t until the early nineteenth century that we began to see the discussion of other types of logic and other forms of logical reasoning.

It is easy to fall prey to missteps in reasoning when we focus on syllogisms and deductive reasoning. Let’s return to Harrison’s argument and see what happens.

Logic: the art of thinking and reasoning in strict accordance with the limitations and incapacities of the human misunderstanding. ~ Ambrose Bierce

Girls are better at cleaning bathrooms. Sydney is a girl. Therefore, Sydney should clean the bathroom.

“Applied Deductive Reasoning” CC-BY-NC-ND .

Considered in this manner, it should be clear how the strength of the conclusion depends upon us accepting as true the first two statements. This need for truth sets up deductive reasoning as a very rigid form of reasoning. If either one of the first two premises isn’t true, then the entire argument fails.

Let’s turn to recent world events for another example.

The United States should invade any countries holding weapons of mass destruction. According to our experts, Iraq has weapons of mass destruction. Therefore, we should invade Iraq.

“US Invasion Deductive Reasoning Example” CC-BY-NC-ND .

In the debates over whether the United States should take military action in Iraq, this was the basic line of reasoning used to justify an invasion. This logic was sufficient for the United States to invade Iraq; however, as we have since learned, this line of reasoning also shows how quickly logic can go bad. We subsequently learned that the “experts” weren’t quite so confident, and their “evidence” wasn’t quite as concrete as originally represented.

Defining Induction

Inductive reasoning is often though of as the opposite of deductive reasoning; however, this approach is not wholly accurate. Inductive reasoning does move from the specific to the general. However, this fact alone does not make it the opposite of deductive reasoning. An argument which fails in its deductive reasoning may still stand inductively.

Unlike deductive reasoning, there is no standard format inductive arguments must take, making them more flexible. We can define an inductive argument as one in which the truth of its propositions lends support to the conclusion. The difference here in deduction is the truth of the propositions establishes with absolute certainty the truth of the conclusion. When we analyze an inductive argument, we do not focus on the truth of its premises. Instead we analyze inductive arguments for their strength or soundness.

Case one, Case two, and Case three in a funnel. They come out to form a conclusion.

“Inductive Reasoning Model” CC-BY-NC-ND .

Another significant difference between deduction and induction is inductive arguments do not have a standard format. Let’s return to Sydney’s argument to see how induction develops in action:

  • Bathroom cleaning responsibilities alternate weekly according to the work chart.
  • Sydney cleaned the bathroom last week.
  • The chart indicates it is Harrison’s turn to clean the bathroom this week.
  • Therefore, Harrison should clean the bathroom.

What Sydney does here is build to her conclusion that Harrison should clean the bathroom. She begins by stating the general house rule of alternate weeks for cleaning. She then adds in evidence before concluding her argument. While her argument is strong, we don’t know if it is true. There could be other factors Sydney has left out. Sydney may have agreed to take Harrison’s week of bathroom cleaning in exchange for him doing another one of her chores. Or there may be some extenuating circumstances preventing Harrison from bathroom cleaning this week.

You should carefully study the Art of Reasoning, as it is what most people are very deficient in, and I know few things more disagreeable than to argue, or even converse with a man who has no idea of inductive and deductive philosophy. ~ William John Wills

Let’s return to the world stage for another example. After the 9/11 attacks on the World Trade Center, we heard variations of the following arguments:

  • The terrorists were Muslim (or Arab or Middle Eastern)
  • The terrorists hated America.
  • Therefore, all Muslims (or Arabs or Middle Easterners) hate America.

Rubble of the World Trade Center.

“1993 Word Trade Center bombing” by Bureau of ATF 1993 Explosives Incident Report. Public domain.

Clearly, we can see the problem in this line of reasoning. Beyond being a scary example of hyperbolic rhetoric, we can all probably think of at least one counter example to disprove the conclusion. However, individual passions and biases caused many otherwise rational people to say these things in the weeks following the attacks. This example also clearly illustrates how easy it is to get tripped up in your use of logic and the importance of practicing self-regulation.

  • Adapted from Facione, P. A. (1990). Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction, The Delphi Report (Executive Summary) . Millbrae, CA: California Academic Press. ↵
  • Adapted from Facione, P. A. (1990). ↵
  • Aristotle. (1989). Prior Analytics (Trans. Robin Smith). Cambridge, MA: Hackett Publishing. ↵
  • Image of man and woman arguing. Authored by : mzacha. Provided by : MorgueFile. Located at : http://mrg.bz/ynkIUa . License : All Rights Reserved . License Terms : Free to remix, commercial use, no attribution required. http://www.morguefile.com/license/morguefile
  • Chapter 6 Logic and the Role of Arguments. Authored by : Terri Russ, J.D., Ph.D.. Provided by : Saint Mary's College, Notre Dame, IN. Located at : http://publicspeakingproject.org/psvirtualtext.html . Project : The Public Speaking Project. License : CC BY-NC-ND: Attribution-NonCommercial-NoDerivatives
  • Martha Stewart nrkbeta. Authored by : nrkbeta. Located at : http://commons.wikimedia.org/wiki/File:Martha_Stewart_nrkbeta.jpg . License : CC BY-SA: Attribution-ShareAlike
  • Seat belt BX. Authored by : M.Minderhoud. Located at : http://commons.wikimedia.org/wiki/File:Seat_belt_BX.jpg . License : CC BY-SA: Attribution-ShareAlike
  • Man thinking in a bus. Authored by : IG8. Located at : https://www.flickr.com/photos/ig8/4295549232/ . License : CC BY: Attribution
  • Sharia-Law-Billboard. Authored by : Matt57. Located at : http://commons.wikimedia.org/wiki/File:Sharia-law-Billboard.jpg . License : Public Domain: No Known Copyright
  • Decorative toilet seat. Authored by : Bartux. Located at : http://commons.wikimedia.org/wiki/File:Decorative_toilet_seat.jpg%20 . License : Public Domain: No Known Copyright
  • Image of 1993 World Trade Center bombing. Provided by : Bureau of ATF 1993 Explosives Incident Report. Located at : http://commons.wikimedia.org/wiki/File:WTC_1993_ATF_Commons.jpg . License : Public Domain: No Known Copyright

Critical thinking definition

critical thinking and argument

Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement.

Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process, which is why it's often used in education and academics.

Some even may view it as a backbone of modern thought.

However, it's a skill, and skills must be trained and encouraged to be used at its full potential.

People turn up to various approaches in improving their critical thinking, like:

  • Developing technical and problem-solving skills
  • Engaging in more active listening
  • Actively questioning their assumptions and beliefs
  • Seeking out more diversity of thought
  • Opening up their curiosity in an intellectual way etc.

Is critical thinking useful in writing?

Critical thinking can help in planning your paper and making it more concise, but it's not obvious at first. We carefully pinpointed some the questions you should ask yourself when boosting critical thinking in writing:

  • What information should be included?
  • Which information resources should the author look to?
  • What degree of technical knowledge should the report assume its audience has?
  • What is the most effective way to show information?
  • How should the report be organized?
  • How should it be designed?
  • What tone and level of language difficulty should the document have?

Usage of critical thinking comes down not only to the outline of your paper, it also begs the question: How can we use critical thinking solving problems in our writing's topic?

Let's say, you have a Powerpoint on how critical thinking can reduce poverty in the United States. You'll primarily have to define critical thinking for the viewers, as well as use a lot of critical thinking questions and synonyms to get them to be familiar with your methods and start the thinking process behind it.

Are there any services that can help me use more critical thinking?

We understand that it's difficult to learn how to use critical thinking more effectively in just one article, but our service is here to help.

We are a team specializing in writing essays and other assignments for college students and all other types of customers who need a helping hand in its making. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

  • Select the topic and the deadline of your essay.
  • Provide us with any details, requirements, statements that should be emphasized or particular parts of the essay writing process you struggle with.
  • Leave the email address, where your completed order will be sent to.
  • Select your prefered payment type, sit back and relax!

With lots of experience on the market, professionally degreed essay writers , online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

COMMENTS

  1. Critical Thinking

    Critical Thinking

  2. Think Again I: How to Understand Arguments

    Think Again I: How to Understand Arguments

  3. 8 Arguments and Critical Thinking

    Arguments and Critical Thinking - Studies in Critical Thinking

  4. Introduction to Logic and Critical Thinking

    Introduction to Logic and Critical Thinking - Open Textbook ...

  5. Chapter 2 Arguments

    Chapter 2 Arguments. Chapter 2. Arguments. The fundamental tool of the critical thinker is the argument. For a good example of what we are not talking about, consider a bit from a famous sketch by Monty Python's Flying Circus: 3. Man: (Knock) Mr. Vibrating: Come in.

  6. What Is Critical Thinking?

    What Is Critical Thinking? | Definition & Examples

  7. Critical Thinking

    Critical Thinking - Stanford Encyclopedia of Philosophy

  8. Arguing Using Critical Thinking

    Critical thinking is a series learned skills. In each chapter of this book you will find a variety of skills that will help you improve your thinking and argumentative ability. As you improve, you will grow into a more confident person being more in charge of your world and the decisions you make.

  9. Critical Thinking

    Critical Thinking - Developing the Right Mindset and Skills

  10. Arguments in Context

    Arguments in Context is a comprehensive introduction to critical thinking that covers all the basics in student-friendly language. Intended for use in a semester-long course, the text features classroom-tested examples and exercises that have been chosen to emphasize the relevance and applicability of the subject to everyday life. Three themes are developed as the text proceeds from argument ...

  11. LOGOS: Critical Thinking, Arguments, and Fallacies

    LOGOS: Critical Thinking, Arguments, and Fallacies Heather Wilburn, Ph.D. Critical Thinking: With respect to critical thinking, it seems that everyone uses this phrase. Yet, there is a fear that this is becoming a buzz-word (i.e. a word or phrase you use because it's popular or enticing in some way).

  12. Critical Thinking Skills: Effective Analysis, Argument and Reflection

    · Evaluate the material used to support arguments · Apply critical thinking when reading, writing and making notes · Write excellent essays and reports The 4th edition features a new section on argument mapping techniques, which help readers to visualize the structures of an argument. It also contains new and updated examples that link to ...

  13. Chapter 8: Identifying Arguments

    In this argument, the first statement is the premise and the second one the conclusion. The premises of an argument are offered as reasons for accepting the conclusion. It is therefore irrational to accept an argument as a good one and yet refuse to accept the conclusion. Giving reasons is a central part of critical thinking.

  14. What Are Critical Thinking Skills and Why Are They Important?

    What Are Critical Thinking Skills and Why Are They ...

  15. 1.1: What is an Argument?

    Both logic and critical thinking centrally involve the analysis and assessment of arguments. "Argument" is a word that has multiple distinct meanings, so it is important to be clear from the start about the sense of the word that is relevant to the study of logic. In one sense of the word, an argument is a heated exchange of differing views ...

  16. Logic and the Study of Arguments

    Logic and the Study of Arguments - Critical Thinking

  17. Argument & Critical Thinking

    Welcome to Argument & Critical Thinking! In this learning area, you will learn how to develop an argumentative essay and stronger critical thinking skills. This learning area will help you develop your arguments, understand your audience, evaluate source material, approach arguments rhetorically, and avoid logical fallacies.

  18. 1 Introduction to Critical Thinking

    Introduction to Critical Thinking

  19. 1: Introduction to Critical Thinking, Reasoning, and Logic

    29580. Noah Levin. Golden West College NGE Far Press. What is thinking? It may seem strange to begin a logic textbook with this question. 'Thinking' is perhaps the most intimate and personal thing that people do.

  20. Defining Critical Thinking

    Critical Thinking as Defined by the National Council for Excellence in Critical Thinking, 1987 . ... to appraise evidence and evaluate arguments, to recognize the existence (or non-existence) of logical relationships between propositions, to draw warranted conclusions and generalizations, to put to test the conclusions and generalizations at ...

  21. Critical Thinking & Reasoning: Logic and the Role of Arguments

    Critical Thinking & Reasoning: Logic and the Role of Arguments. Critical thinkers tend to exhibit certain traits that are common to them. These traits are summarized in Table 6.1: [1] Critical thinkers are open and receptive to all ideas and arguments, even those with which they may disagree. Critical thinkers reserve judgment on a message ...

  22. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  23. Using Critical Thinking in Essays and other Assignments

    Critical thinking, as described by Oxford Languages, is the objective analysis and evaluation of an issue in order to form a judgement. Active and skillful approach, evaluation, assessment, synthesis, and/or evaluation of information obtained from, or made by, observation, knowledge, reflection, acumen or conversation, as a guide to belief and action, requires the critical thinking process ...