Loading metrics

Open Access

Ten simple rules for effective presentation slides

* E-mail: [email protected]

Affiliation Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America

ORCID logo

  • Kristen M. Naegle

PLOS

Published: December 2, 2021

  • https://doi.org/10.1371/journal.pcbi.1009554
  • Reader Comments

Fig 1

Citation: Naegle KM (2021) Ten simple rules for effective presentation slides. PLoS Comput Biol 17(12): e1009554. https://doi.org/10.1371/journal.pcbi.1009554

Copyright: © 2021 Kristen M. Naegle. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The author received no specific funding for this work.

Competing interests: The author has declared no competing interests exist.

Introduction

The “presentation slide” is the building block of all academic presentations, whether they are journal clubs, thesis committee meetings, short conference talks, or hour-long seminars. A slide is a single page projected on a screen, usually built on the premise of a title, body, and figures or tables and includes both what is shown and what is spoken about that slide. Multiple slides are strung together to tell the larger story of the presentation. While there have been excellent 10 simple rules on giving entire presentations [ 1 , 2 ], there was an absence in the fine details of how to design a slide for optimal effect—such as the design elements that allow slides to convey meaningful information, to keep the audience engaged and informed, and to deliver the information intended and in the time frame allowed. As all research presentations seek to teach, effective slide design borrows from the same principles as effective teaching, including the consideration of cognitive processing your audience is relying on to organize, process, and retain information. This is written for anyone who needs to prepare slides from any length scale and for most purposes of conveying research to broad audiences. The rules are broken into 3 primary areas. Rules 1 to 5 are about optimizing the scope of each slide. Rules 6 to 8 are about principles around designing elements of the slide. Rules 9 to 10 are about preparing for your presentation, with the slides as the central focus of that preparation.

Rule 1: Include only one idea per slide

Each slide should have one central objective to deliver—the main idea or question [ 3 – 5 ]. Often, this means breaking complex ideas down into manageable pieces (see Fig 1 , where “background” information has been split into 2 key concepts). In another example, if you are presenting a complex computational approach in a large flow diagram, introduce it in smaller units, building it up until you finish with the entire diagram. The progressive buildup of complex information means that audiences are prepared to understand the whole picture, once you have dedicated time to each of the parts. You can accomplish the buildup of components in several ways—for example, using presentation software to cover/uncover information. Personally, I choose to create separate slides for each piece of information content I introduce—where the final slide has the entire diagram, and I use cropping or a cover on duplicated slides that come before to hide what I’m not yet ready to include. I use this method in order to ensure that each slide in my deck truly presents one specific idea (the new content) and the amount of the new information on that slide can be described in 1 minute (Rule 2), but it comes with the trade-off—a change to the format of one of the slides in the series often means changes to all slides.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

Top left: A background slide that describes the background material on a project from my lab. The slide was created using a PowerPoint Design Template, which had to be modified to increase default text sizes for this figure (i.e., the default text sizes are even worse than shown here). Bottom row: The 2 new slides that break up the content into 2 explicit ideas about the background, using a central graphic. In the first slide, the graphic is an explicit example of the SH2 domain of PI3-kinase interacting with a phosphorylation site (Y754) on the PDGFR to describe the important details of what an SH2 domain and phosphotyrosine ligand are and how they interact. I use that same graphic in the second slide to generalize all binding events and include redundant text to drive home the central message (a lot of possible interactions might occur in the human proteome, more than we can currently measure). Top right highlights which rules were used to move from the original slide to the new slide. Specific changes as highlighted by Rule 7 include increasing contrast by changing the background color, increasing font size, changing to sans serif fonts, and removing all capital text and underlining (using bold to draw attention). PDGFR, platelet-derived growth factor receptor.

https://doi.org/10.1371/journal.pcbi.1009554.g001

Rule 2: Spend only 1 minute per slide

When you present your slide in the talk, it should take 1 minute or less to discuss. This rule is really helpful for planning purposes—a 20-minute presentation should have somewhere around 20 slides. Also, frequently giving your audience new information to feast on helps keep them engaged. During practice, if you find yourself spending more than a minute on a slide, there’s too much for that one slide—it’s time to break up the content into multiple slides or even remove information that is not wholly central to the story you are trying to tell. Reduce, reduce, reduce, until you get to a single message, clearly described, which takes less than 1 minute to present.

Rule 3: Make use of your heading

When each slide conveys only one message, use the heading of that slide to write exactly the message you are trying to deliver. Instead of titling the slide “Results,” try “CTNND1 is central to metastasis” or “False-positive rates are highly sample specific.” Use this landmark signpost to ensure that all the content on that slide is related exactly to the heading and only the heading. Think of the slide heading as the introductory or concluding sentence of a paragraph and the slide content the rest of the paragraph that supports the main point of the paragraph. An audience member should be able to follow along with you in the “paragraph” and come to the same conclusion sentence as your header at the end of the slide.

Rule 4: Include only essential points

While you are speaking, audience members’ eyes and minds will be wandering over your slide. If you have a comment, detail, or figure on a slide, have a plan to explicitly identify and talk about it. If you don’t think it’s important enough to spend time on, then don’t have it on your slide. This is especially important when faculty are present. I often tell students that thesis committee members are like cats: If you put a shiny bauble in front of them, they’ll go after it. Be sure to only put the shiny baubles on slides that you want them to focus on. Putting together a thesis meeting for only faculty is really an exercise in herding cats (if you have cats, you know this is no easy feat). Clear and concise slide design will go a long way in helping you corral those easily distracted faculty members.

Rule 5: Give credit, where credit is due

An exception to Rule 4 is to include proper citations or references to work on your slide. When adding citations, names of other researchers, or other types of credit, use a consistent style and method for adding this information to your slides. Your audience will then be able to easily partition this information from the other content. A common mistake people make is to think “I’ll add that reference later,” but I highly recommend you put the proper reference on the slide at the time you make it, before you forget where it came from. Finally, in certain kinds of presentations, credits can make it clear who did the work. For the faculty members heading labs, it is an effective way to connect your audience with the personnel in the lab who did the work, which is a great career booster for that person. For graduate students, it is an effective way to delineate your contribution to the work, especially in meetings where the goal is to establish your credentials for meeting the rigors of a PhD checkpoint.

Rule 6: Use graphics effectively

As a rule, you should almost never have slides that only contain text. Build your slides around good visualizations. It is a visual presentation after all, and as they say, a picture is worth a thousand words. However, on the flip side, don’t muddy the point of the slide by putting too many complex graphics on a single slide. A multipanel figure that you might include in a manuscript should often be broken into 1 panel per slide (see Rule 1 ). One way to ensure that you use the graphics effectively is to make a point to introduce the figure and its elements to the audience verbally, especially for data figures. For example, you might say the following: “This graph here shows the measured false-positive rate for an experiment and each point is a replicate of the experiment, the graph demonstrates …” If you have put too much on one slide to present in 1 minute (see Rule 2 ), then the complexity or number of the visualizations is too much for just one slide.

Rule 7: Design to avoid cognitive overload

The type of slide elements, the number of them, and how you present them all impact the ability for the audience to intake, organize, and remember the content. For example, a frequent mistake in slide design is to include full sentences, but reading and verbal processing use the same cognitive channels—therefore, an audience member can either read the slide, listen to you, or do some part of both (each poorly), as a result of cognitive overload [ 4 ]. The visual channel is separate, allowing images/videos to be processed with auditory information without cognitive overload [ 6 ] (Rule 6). As presentations are an exercise in listening, and not reading, do what you can to optimize the ability of the audience to listen. Use words sparingly as “guide posts” to you and the audience about major points of the slide. In fact, you can add short text fragments, redundant with the verbal component of the presentation, which has been shown to improve retention [ 7 ] (see Fig 1 for an example of redundant text that avoids cognitive overload). Be careful in the selection of a slide template to minimize accidentally adding elements that the audience must process, but are unimportant. David JP Phillips argues (and effectively demonstrates in his TEDx talk [ 5 ]) that the human brain can easily interpret 6 elements and more than that requires a 500% increase in human cognition load—so keep the total number of elements on the slide to 6 or less. Finally, in addition to the use of short text, white space, and the effective use of graphics/images, you can improve ease of cognitive processing further by considering color choices and font type and size. Here are a few suggestions for improving the experience for your audience, highlighting the importance of these elements for some specific groups:

  • Use high contrast colors and simple backgrounds with low to no color—for persons with dyslexia or visual impairment.
  • Use sans serif fonts and large font sizes (including figure legends), avoid italics, underlining (use bold font instead for emphasis), and all capital letters—for persons with dyslexia or visual impairment [ 8 ].
  • Use color combinations and palettes that can be understood by those with different forms of color blindness [ 9 ]. There are excellent tools available to identify colors to use and ways to simulate your presentation or figures as they might be seen by a person with color blindness (easily found by a web search).
  • In this increasing world of virtual presentation tools, consider practicing your talk with a closed captioning system capture your words. Use this to identify how to improve your speaking pace, volume, and annunciation to improve understanding by all members of your audience, but especially those with a hearing impairment.

Rule 8: Design the slide so that a distracted person gets the main takeaway

It is very difficult to stay focused on a presentation, especially if it is long or if it is part of a longer series of talks at a conference. Audience members may get distracted by an important email, or they may start dreaming of lunch. So, it’s important to look at your slide and ask “If they heard nothing I said, will they understand the key concept of this slide?” The other rules are set up to help with this, including clarity of the single point of the slide (Rule 1), titling it with a major conclusion (Rule 3), and the use of figures (Rule 6) and short text redundant to your verbal description (Rule 7). However, with each slide, step back and ask whether its main conclusion is conveyed, even if someone didn’t hear your accompanying dialog. Importantly, ask if the information on the slide is at the right level of abstraction. For example, do you have too many details about the experiment, which hides the conclusion of the experiment (i.e., breaking Rule 1)? If you are worried about not having enough details, keep a slide at the end of your slide deck (after your conclusions and acknowledgments) with the more detailed information that you can refer to during a question and answer period.

Rule 9: Iteratively improve slide design through practice

Well-designed slides that follow the first 8 rules are intended to help you deliver the message you intend and in the amount of time you intend to deliver it in. The best way to ensure that you nailed slide design for your presentation is to practice, typically a lot. The most important aspects of practicing a new presentation, with an eye toward slide design, are the following 2 key points: (1) practice to ensure that you hit, each time through, the most important points (for example, the text guide posts you left yourself and the title of the slide); and (2) practice to ensure that as you conclude the end of one slide, it leads directly to the next slide. Slide transitions, what you say as you end one slide and begin the next, are important to keeping the flow of the “story.” Practice is when I discover that the order of my presentation is poor or that I left myself too few guideposts to remember what was coming next. Additionally, during practice, the most frequent things I have to improve relate to Rule 2 (the slide takes too long to present, usually because I broke Rule 1, and I’m delivering too much information for one slide), Rule 4 (I have a nonessential detail on the slide), and Rule 5 (I forgot to give a key reference). The very best type of practice is in front of an audience (for example, your lab or peers), where, with fresh perspectives, they can help you identify places for improving slide content, design, and connections across the entirety of your talk.

Rule 10: Design to mitigate the impact of technical disasters

The real presentation almost never goes as we planned in our heads or during our practice. Maybe the speaker before you went over time and now you need to adjust. Maybe the computer the organizer is having you use won’t show your video. Maybe your internet is poor on the day you are giving a virtual presentation at a conference. Technical problems are routinely part of the practice of sharing your work through presentations. Hence, you can design your slides to limit the impact certain kinds of technical disasters create and also prepare alternate approaches. Here are just a few examples of the preparation you can do that will take you a long way toward avoiding a complete fiasco:

  • Save your presentation as a PDF—if the version of Keynote or PowerPoint on a host computer cause issues, you still have a functional copy that has a higher guarantee of compatibility.
  • In using videos, create a backup slide with screen shots of key results. For example, if I have a video of cell migration, I’ll be sure to have a copy of the start and end of the video, in case the video doesn’t play. Even if the video worked, you can pause on this backup slide and take the time to highlight the key results in words if someone could not see or understand the video.
  • Avoid animations, such as figures or text that flash/fly-in/etc. Surveys suggest that no one likes movement in presentations [ 3 , 4 ]. There is likely a cognitive underpinning to the almost universal distaste of pointless animations that relates to the idea proposed by Kosslyn and colleagues that animations are salient perceptual units that captures direct attention [ 4 ]. Although perceptual salience can be used to draw attention to and improve retention of specific points, if you use this approach for unnecessary/unimportant things (like animation of your bullet point text, fly-ins of figures, etc.), then you will distract your audience from the important content. Finally, animations cause additional processing burdens for people with visual impairments [ 10 ] and create opportunities for technical disasters if the software on the host system is not compatible with your planned animation.

Conclusions

These rules are just a start in creating more engaging presentations that increase audience retention of your material. However, there are wonderful resources on continuing on the journey of becoming an amazing public speaker, which includes understanding the psychology and neuroscience behind human perception and learning. For example, as highlighted in Rule 7, David JP Phillips has a wonderful TEDx talk on the subject [ 5 ], and “PowerPoint presentation flaws and failures: A psychological analysis,” by Kosslyn and colleagues is deeply detailed about a number of aspects of human cognition and presentation style [ 4 ]. There are many books on the topic, including the popular “Presentation Zen” by Garr Reynolds [ 11 ]. Finally, although briefly touched on here, the visualization of data is an entire topic of its own that is worth perfecting for both written and oral presentations of work, with fantastic resources like Edward Tufte’s “The Visual Display of Quantitative Information” [ 12 ] or the article “Visualization of Biomedical Data” by O’Donoghue and colleagues [ 13 ].

Acknowledgments

I would like to thank the countless presenters, colleagues, students, and mentors from which I have learned a great deal from on effective presentations. Also, a thank you to the wonderful resources published by organizations on how to increase inclusivity. A special thanks to Dr. Jason Papin and Dr. Michael Guertin on early feedback of this editorial.

  • View Article
  • PubMed/NCBI
  • Google Scholar
  • 3. Teaching VUC for Making Better PowerPoint Presentations. n.d. Available from: https://cft.vanderbilt.edu/guides-sub-pages/making-better-powerpoint-presentations/#baddeley .
  • 8. Creating a dyslexia friendly workplace. Dyslexia friendly style guide. nd. Available from: https://www.bdadyslexia.org.uk/advice/employers/creating-a-dyslexia-friendly-workplace/dyslexia-friendly-style-guide .
  • 9. Cravit R. How to Use Color Blind Friendly Palettes to Make Your Charts Accessible. 2019. Available from: https://venngage.com/blog/color-blind-friendly-palette/ .
  • 10. Making your conference presentation more accessible to blind and partially sighted people. n.d. Available from: https://vocaleyes.co.uk/services/resources/guidelines-for-making-your-conference-presentation-more-accessible-to-blind-and-partially-sighted-people/ .
  • 11. Reynolds G. Presentation Zen: Simple Ideas on Presentation Design and Delivery. 2nd ed. New Riders Pub; 2011.
  • 12. Tufte ER. The Visual Display of Quantitative Information. 2nd ed. Graphics Press; 2001.

ORIGINAL RESEARCH article

Powerpoint® presentation flaws and failures: a psychological analysis.

scholarly articles on powerpoint presentations

  • 1 Center for Advanced Study in the Behavioral Sciences, Stanford University, Stanford, CA USA
  • 2 Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
  • 3 Department of Psychology, Stanford University, Stanford, CA, USA
  • 4 Division of Social Science, Harvard University, Cambridge, MA, USA

Electronic slideshow presentations are often faulted anecdotally, but little empirical work has documented their faults. In Study 1 we found that eight psychological principles are often violated in PowerPoint ® slideshows, and are violated to similar extents across different fields – for example, academic research slideshows generally were no better or worse than business slideshows. In Study 2 we found that respondents reported having noticed, and having been annoyed by, specific problems in presentations arising from violations of particular psychological principles. Finally, in Study 3 we showed that observers are not highly accurate in recognizing when particular slides violated a specific psychological rule. Furthermore, even when they correctly identified the violation, they often could not explain the nature of the problem. In sum, the psychological foundations for effective slideshow presentation design are neither obvious nor necessarily intuitive, and presentation designers in all fields, from education to business to government, could benefit from explicit instruction in relevant aspects of psychology.

Introduction

PowerPoint ® , Keynote ® , and their electronic slideshow siblings have become pervasive means of communication. Indeed, in 2001, Microsoft estimated that an average of 30 million PowerPoint ® presentations were given each day – and we can only imagine what that number is today ( Parker, 2001 ). Presentations using such computer programs are commonplace in academia, business, government, the military, and even K-12 schools. PowerPoint ® has been used to teach subjects as varied as the three-dimensional structure of the larynx ( Hu et al., 2009 ), prosthetics and orthotics ( Wong et al., 2004 ), how to perform a testicular exam ( Taylor et al., 2004 ), developmental psychology ( Susskind, 2008 ), and physics ( Gunel et al., 2006 ).

Observers have offered varied opinions about PowerPoint ® and the value of presentations that utilize it (e.g., for overviews, see Farkas, 2006 ; Stoner, 2007 ), and considerable empirical research has been conducted on the use of the medium (e.g., for reviews, see Susskind, 2005 , 2008 ; Levasseur and Sawyer, 2006 ; Savoy et al., 2009 ). One set of this research has examined whether using this medium improves learning or comprehension. For example, Gunel et al. (2006) found that students learned more physics from PowerPoint ® presentations than from chapter summaries, whereas other researchers have reported that students remember about the same amount of material following PowerPoint ® presentations as they do following other media (such as overheads and use of the blackboard; e.g., Szabo and Hastings, 2000 ; Beets and Lobingier, 2001 ; Campbell et al., 2004 ; Apperson et al., 2006 ; Experiments 1 and 3; Susskind, 2005 , 2008 ). Indeed, some studies find that PowerPoint ® actually impairs learning. For example, Savoy et al. (2009) showed that students recalled more verbal information from a traditional lecture than they did when that information was presented verbally during a PowerPoint ® -based lecture.

Researchers have also examined whether students prefer PowerPoint ® presentations to other types of presentations. The results of such studies generally indicate that students do like PowerPoint ® presentations ( Susskind, 2008 ; Savoy et al., 2009 ). Apperson et al. (2008) asked psychology students what in particular they liked about PowerPoint ® presentations, and found that they like to see lists built up one item at a time and that they also like outlines of key phrases, graphics, relevant sounds, and colored backgrounds. However, it is worth noting that Mahar et al. (2009) compared memory retention after an entire list had been presented simultaneously to retention when each item on the list had been presented individually, and found better memory (but only for two of the nine items on their test) in the simultaneous condition.

Even this brief overview of the literature reveals that the results are mixed. One reason for the varied results may lie in differences in the quality of the presentations: the medium is not the entire message; any medium can be used effectively or ineffectively. In our view, the key is not whether or not PowerPoint ® is used, but rather how it is used. Nobody should be surprised if a PowerPoint ® lecture utilizing poorly designed slides or presented by an inadequately prepared speaker is not effective. In this article, we use psychological principles to develop objective guidelines for slideshow design, slide preparation, and presentation execution, and use these guidelines to assess flaws in PowerPoint ® slides and presentations.

In the three studies reported here, we empirically extend ideas presented in Kosslyn (2007 , 2010 ) and analyze how well PowerPoint ® slideshows, slides, and presentations respect principles of human perception, memory, and comprehension. Specifically, we hypothesize that the psychological principles presented in the following section are violated in PowerPoint ® slideshows across different fields (Study 1), that some types of presentation flaws will be noticeable and frustrating to audience members (Study 2), and that observers will have difficulties in identifying violations in the case of graphical displays in individual slides (Study 3).

Eight Cognitive Communication Principles

Levasseur and Sawyer (2006) note in their extensive review that remarkably little research provides direct guidelines for designing presentations (see also Suchoff, 2006 ). However, much research on basic psychological processes has been conducted that can be used to formulate such guidelines. This observation has been appreciated by many researchers, who have understood the fundamental point that effective displays must play to the strengths of human information processing and must avoid relying on the weaknesses of such processing (e.g., Aspillaga, 1996 ; Helander et al., 1997 ; Mejdal et al., 2001 ; Vekiri, 2002 ; Watzman, 2003 ; Stanney et al., 2004 ).

We acknowledge that the following formulation is but one of several possible ways to organize these guidelines within the conventional view of human information processing, but this one (from Kosslyn, 2007 ) appears to capture the major points of agreement among researchers. Moreover, this set of principles is a convenient way to organize the specific rules we examined, and it is these rules that identify the specific aspects of psychological processing we investigated. Thus, in addition to grouping the data according to the principles, we provide the data for each individual rule – which also allows readers to consider the results for those rules of particular interest.

In formulating our eight Cognitive Communication Principles, we began with a task analysis; that is, we considered what the viewer must do to understand a presentation. This analysis rests on the now-standard view that perception and comprehension can be decomposed into distinct classes of information processing operations (e.g., see Reisberg, 2006 ; Smith and Kosslyn, 2006 ), which underlie encoding , working memory , and accessing long-term memory . We focus here primarily on the visual modality because the visual aspects of the slide design are a major factor of PowerPoint ® presentations (although the presenter’s speaking style and structuring of the presentation are also important, as we address in Study 2). In what follows, we first present the basic findings about information processing that led us to formulate a specific principle, and then explain the principle and how we operationalized it. Crucially, because all of these principles stem from known bottlenecks in information processing, slideshows, slides, and presentations that violate them will tax human information processing.

In what follows, although we organize the information processing operations into three categories (encoding, working memory, and accessing long-term memory), we do not mean to imply that these processes work in lockstep sequence. Rather, by focusing on the operations, we are led to define the bottlenecks that can disrupt presentations.

Encoding Processes

When viewing a sequence of slides, audience members first must encode what they see; if they fail to encode material, it may as well not exist. We formulated three principles based on essential facts about encoding.

Discriminability

The initial step of encoding requires noticing the to-be-encoded material, which requires patterns to be clearly different from the background and from other patterns. This leads us to formulate the Principle of Discriminability : two properties (such as two colors, degrees of gray, or sizes) cannot convey different information unless they differ by a large enough proportion to be easily distinguished ( Woodson et al., 1992 ). This principle underlies camouflage, which occurs when two properties are so similar that they are not distinguishable – and there’s no place for camouflage in a presentation. In addition, we humans are not very good at discriminating among differences in the sizes of areas: we tend to underestimate areas, and do so to an increasingly large degree as the area increases ( Stevens, 1975 ). The Principle of Discriminability has the following corollaries:

(1) Unless typefaces are large enough, letters cannot easily be distinguished from each other.

(2) If the color of text or graphics is not clearly distinct from the color of the background on which they appear, they cannot be readily distinguished.

(3) Typefaces in which letters are similar (because they are visually complex, all upper case, all italics, or all bold) cannot be easily read.

(4) Because patterns that are registered by separate “spatial frequency channels” are easily distinguished ( Stromeyer and Klein, 1974 ; De Valois and De Valois, 1990 ), viewers can easily distinguish points that are about twice as thick as the lines that connect them and can easily distinguish texture patterns in which elements (e.g., stripes) vary by at least 2:1 (which will also avoid distracting “visual beats”).

(5) Similarly, because orientations that differ by at least 30° are processed by different “orientation channels” ( Thomas and Gille, 1979 ; De Valois and De Valois, 1990 ), viewers can easily distinguish orientations of the lines in different regions when they vary by at least 30°.

(6) Finally, because of the way that different wavelengths of light focus on the retina, we have difficulty bringing cobalt blue (which is a mixture of red and blue) into focus, and we have difficulty focusing on red and blue at the same time (combinations of these colors tend to “shimmer”); thus text or other fine lines are difficult to distinguish if they are rendered in deep blues, and boundaries defined by adjacent red and blue regions are distracting.

Perceptual organization

Once material is noticed, processes that underlie figure/ground segregation organize the input into perceptual units that often correspond to objects (including words and graphics). This observation leads us to formulate the Principle of Perceptual Organization : people automatically organize elements into groups, which they then attend to and remember ( Larkin and Simon, 1987 ; Gropper, 1991 ; Aspillaga, 1996 ; Helander et al., 1997 ; Vekiri, 2002 ). Such groups emerge in numerous ways ( Palmer, 1992 ). Classical grouping “Laws” specify the perceptual conditions that lead viewers to see elements as a single group. For example, we tend to group together elements that are nearby (the so-called “Law of Proximity”). That is, we see “xxx xxx” as two groups of three each, not six separate x’s. Similarly, we tend to group together elements that appear similar (the so-called “Law of Similarity”). For instance, we see “///\\\” as two groups, not six separate lines.

Grouping also can be imposed by lines, such as those used in complex tables to define specific regions, which makes the tables easier to read. In addition, some visual dimensions are automatically grouped; these dimensions are “integral,” and cannot easily be considered independently. For example, height and width are not easily seen as distinct, but rather are organized into a single shape – and viewers register the overall area, not the two dimensions separately ( Macmillan and Ornstein, 1998 ). Other integral dimensions are hue, lightness, and saturation, which cannot easily be attended to independently; rather, our visual systems tend to group them into a single color – and thus these different dimensions of color cannot easily be used to convey separate measurements. The Principle of Perceptual Organization has the following corollaries:

(1) Labels initially are seen as applying to the closest graphic element.

(2) Common color organizes parts of a display into a group, even if they are separated in space.

(3) Common patterns or orderings organize parts of a display into a group, even if they are separated in space. For example, when the elements in a key (e.g., small squares of different colors, each associated with a label) are ordered the same way as the corresponding parts of the display (e.g., bars in a bar graph), the elements in the key will be grouped appropriately with the corresponding parts of the display.

(4) Because shape and location largely are processed separately in the visual system ( Ungerleider and Mishkin, 1982 ), an element in one location will not always be easily grouped with elements in other locations. Hence, it is useful to construct a display so that separated-but-related elements are explicitly grouped (e.g., by using inner grid lines to group the tops of bars in a bar graph with locations along the Y axis at the left of the graph, if specific point values are to be read).

(5) Comprehension is impaired by spurious groups, which form accidentally because of the grouping laws (e.g., such as those that can form when pairs of measurements for two or more categories are plotted in the same scatter plot, or when a banner at the top of a slide groups with specific objects in the display because of proximity or similarity).

Not all perceptual units can be processed simultaneously, if only because they are in different locations and the visual acuity of the eye is greatest at the fovea (and hence whatever people fixate their gazes on will be encoded with higher resolution). Thus, some units are encoded in detail before others. Attention selects which patterns will be processed in detail, and attention is automatically drawn to what is different; we immediately notice the nail that sticks above the floorboards or the one red light in a group of green lights. The Principle of Salience states: attention is drawn to large perceptible differences. In fact, a part of the brain (the superior colliculus) operates as an attentional reflex, automatically drawing our visual attention to large differences among stimuli ( Posner, 1980 ; Glimcher and Sparks, 1992 ; Krauzlis et al., 2004 ). The Principle of Salience has the following corollaries:

(1) Because movement is a particularly salient cue ( Buchel et al., 1998 ), animation captures and directs attention.

(2) Text with a distinct format (color, size, or typeface) draws attention.

(3) Visual disparities draw attention. For example, we notice a wedge exploded from a pie chart because the boundary has been disrupted; however, if more than one or two wedges are exploded, the boundary becomes so disrupted that the separated pieces are no longer salient.

(4) If salience is aligned with importance ( Helander et al., 1997 ), the more important aspects of the slide (e.g., the title or topic sentence) or of an illustration (graph, diagram, demo) draw the audience members’ attention – which will also enhance later memory for those aspects ( Schmidt, 1991 ).

(5) A special case of salience arises with colors: because of a quirk in how the corneas diffuse light and project it onto the retinas, “warm” colors (i.e., those with relatively long wavelengths, such as red) seem closer to the viewer than do “cool” colors (i.e., those with relatively short wavelengths, such as blue; see Held, 1980 ; Allen and Rubin, 1981 ; Travis, 1991 ). Thus, if warmer colors are used for lines that pass beneath other lines, viewers will experience an annoying illusion in which material at the back appears to be struggling to move forward.

Working Memory

After visual patterns are encoded, they must be integrated. In a typical presentation, material must be integrated in working memory over the course of multiple slides, each of which may require multiple eye fixations. This integrating process is a prelude to fully comprehending both individual displays and the entire presentation. The high demands on working memory lead to the following two specific principles.

Limited capacity

One of the key facts about working memory is that it has a very limited capacity (e.g., Baddeley, 2007 ). The Principle of Limited Capacity states that people have a limited capacity to retain and to process information and will not understand a message if too much information must be retained or processed ( Smith and Mosier, 1986 ; Shneiderman, 1992 ; Helander et al., 1997 ; Lund, 1997 ; Sweller et al., 1998 ). The Principle of Limited Capacity has the following corollaries:

(1) The amount of information that people can retain in working memory is defined in terms of psychological units, such as the perceptual groups produced by the classical perceptual grouping laws. We can hold in working memory only about four such units ( Cowan, 2001 ). However, each of these units in turn can comprise four units – and thus hierarchical organization can enhance our ability to hold information in mind.

(2) In general, humans can track the movement of only about four units at the same time ( Intriligator and Cavanagh, 2001 – although under special circumstances, more can be tracked; Alvarez and Franconeri, 2007 ).

(3) Eliminating the need to search for labels – for instance by directly labeling items in a display rather than using a key – reduces processing load (c.f. Sweller, 1999 ).

(4) Audience members need time to process the information that is presented.

(5) However, conversely, if slides fade-in or fade-out very slowly, the audience members may organize them incorrectly and then have to break their initial organization – which also requires effort ( Potter, 1966 ).

Informative change

Because working memory has limited capacity, extraneous information can easily overwhelm it at the expense of relevant information. But, by the same token, visual or auditory cues can be used to help organize the information. According to the Principle of Informative Change , people expect changes in perceptual properties to carry information, and expect every necessary piece of information to be conveyed by such a perceptible change. Indeed, the very concept of “information” has been defined in terms of change: only when there is a change is information conveyed ( Shannon, 1948 ). The Principle of Informative Change has the following corollaries:

(1) Audience members assume that words, graphics, or other changes in appearance convey new information ( Smith and Mosier, 1986 ; Shneiderman, 1992 ; Aspillaga, 1996 ; Helander et al., 1997 ; Lund, 1997 ). For example, audience members assume that new information is being conveyed by changes in the appearance of the background, bullet points, or color or typeface of text. Random or arbitrary changes in appearance, in transitions between slides, or in terminology (“fowl” versus “bird”) can lead the audience astray.

(2) Clearly marking the beginnings and ends of sections of a presentation (for instance by presenting a title or concluding slide with a distinct format, typeface, or background) helps audience members follow the presentation.

Accessing Long-Term Memory

Our task analysis leads us to posit a third class of relevant processes. Encoding information and integrating it appropriately would be useless if the meaning of the material were not extracted. In order to ascribe meaning to stimuli, one must compare them with material previously stored in long-term memory; it is only by retrieving associated information that we comprehend the import of what we see. The following principles address factors that affect the ease of accessing long-term memory and activating the relevant stored information.

Appropriate knowledge

Meaning can be ascribed to a pattern only if the person has the requisite information already stored in long-term memory; to reach an audience, the presenter must make contact with what the audience members already know ( Osman and Hannafin, 1992 ; Shneiderman, 1992 ; Fleming and Levie, 1993 ; Lund, 1997 ; Schwartz et al., 1998 ). The Principle of Appropriate Knowledge states: communication requires prior knowledge of relevant concepts, jargon, and symbols. If the presenter relies on novel concepts, jargon, or symbols, the audience members will fail to understand. The Principle of Appropriate Knowledge has the following corollaries:

(1) Unfamiliar (for that audience) concepts, conventions, formats, terminology, and symbols may not be understood. Moreover, when they are understood, they will likely require effortful processing (which will be accomplished only if the audience is highly motivated).

(2) If unfamiliar (for that audience) concepts, conventions, formats, terminology, and symbols are absolutely necessary to convey the message, they must be explicitly introduced and explained – and such explanations are more effective if they draw on information that is familiar to the audience.

Compatibility

The meaning of a stimulus will be difficult to extract if the interpretation of its surface properties (such as the size or color) is inconsistent with its symbolic meaning. The Principle of Compatibility states that a message is easiest to understand if its form is compatible with its meaning ( Vessey, 1991 ; Woodson et al., 1992 ; Vekiri, 2002 ; Speier, 2006 ). This principle is perhaps most evident when it is breached, as demonstrated by the classic “Stroop effect” ( MacLeod, 1991 ). In the Stroop effect, people have more difficulty naming the color of the ink used to print words when the words name a different color from the ink (e.g., blue ink used to print the word “red”) than when words name the same color (e.g., blue ink used to print the word “blue”). We register both the surface properties (e.g., the color of the ink) and the meaning. This principle applies across perceptual modalities, and thus comprehension generally is best when audio and visual contents coordinate with text and the overall message that is being conveyed; inappropriate sounds and visuals will interfere with comprehension. The Principle of Compatibility has the following corollaries:

(1) Because hue is a metathetic (values on metathetic dimensions are arranged qualitatively) variable, variations in hue are not seen automatically as signaling different amounts of a quantity; in contrast, because saturation and intensity (or brightness) are prothetic variables (values on prothetic dimensions are arranged quantitatively), variations along these dimensions do line up with variations in quantities ( Stevens, 1975 ).

(2) Animation interferes with comprehension if it does not fit the natural movements of the object (e.g., a picture of a car should not drop down from the top), and sounds and slide backgrounds will interfere if they are not appropriate for the topic (a floral background, or the sounds of birds chirping, are not compatible with a presentation about carbon reservoirs in the ocean).

(3) Viewers most easily interpret icons that depict the typical examples of represented items. For example, a picture of a duck effectively illustrates “water fowl” but not “pet bird,” and vice versa for a picture of a canary ( Rosch et al., 1976 ).

(4) Old-fashioned looking typeface would send a conflicting message if used in a written description of a high-tech device.

(5) Because they make different sorts of information explicit, different sorts of graphics are appropriate for making different points ( Tversky et al., 2002 ). Line graphs (rather than bar or mixed graphs) illustrate trends effectively because the continuous variation in the height of a line in a graph directly indicates the continuous variations of a measurement. Similarly, crossing lines in a graph indicate interactions more effectively than sets of bars. Bar graphs illustrate specific values (not trends) effectively because the discrete heights of the bars directly indicate specific measurements. Maps illustrate complex information about geographic territories or show alternate routes to a destination. Charts effectively illustrate organizational structure, a sequence of steps, or processes over time (“flow charts”).

Finally, the message must be calibrated so that neither too much nor too little information is presented for a specific audience ( Grice, 1975 ). (Note: the Principle of Informative Change states that, given a specific message, the requisite information must be provided – the present point is about providing an appropriate message in the first place.) It is clear that not providing enough information is a problem, but perhaps it is less immediately evident that providing too much information (such as extraneous graphics, text, or audio) is also a problem. Presenting too much information is a problem in part because this forces viewers to search for the relevant information, which requires effort (e.g., Wolfe, 1998 ). The Principle of Relevance states that communication is most effective when neither too much nor too little information is presented ( Smith and Mosier, 1986 ; Woodson et al., 1992 ; Vekiri, 2002 ; Bartsch and Cobern, 2003 ). This principle has the following corollaries:

(1) To decide what is too much or too little, one must know about the nature of the message: depending on what the intended point is, specific information can be necessary or extraneous.

(2) When attempting to understand information, people (largely unconsciously) organize it into a narrative (c.f. Wagoner, 2008 ; Karns et al., 2009 ). Defining the topic and presenting a roadmap at the outset (in an outline or other overview) facilitates this process.

(3) Graphics (photos, drawings, graphs, diagrams), audio, and video can provide detail to illustrate the relevant concepts clearly. However, pictures are often ambiguous ( Wittgenstein, 1953/2001 ), and when they are ambiguous labels can clarify them.

In the following study we use these Cognitive Communication Principles, and the specific rules that grow out of them, to evaluate a wide variety of slideshows and slides. We ask the following questions: first, are violations of the principles common? Given that many corollaries of these principles are not intuitively obvious, we hypothesize that we will find many violations. Second, are the violations equally common in different fields? Because human beings are preparing the slides in all cases, we have no grounds for hypothesizing differences in the frequency of violations in the different fields.

Levasseur and Sawyer (2006) noted that there is remarkably little research on how slides should be designed so that they function effectively. One possible reason for this dearth is that many may feel that “good design” is intuitively clear to most people, and hence there is no reason to study it. Consistent with this conjecture, some have claimed that the sorts of psychological principles just discussed are obvious, and rarely if ever would be violated in a presentation. To evaluate this supposition, we examined a sample of PowerPoint ® slideshows. Specifically, we used a stratified sampling procedure to examine a selection of slideshows in five categories: Research (academic), Education, Government, Business, and Miscellaneous. We formulated 137 ways (each specified in a rule) in which the eight principles just summarized could be violated (see Table 1 ).

www.frontiersin.org

Table 1 . List of rules for each principle and the proportion of presentations violating each rule (according to strict and liberal criteria) for Study 1 .

Materials and Methods

For all searching and coding, Mac OSX and Microsoft Excel were used. We used the Google search engine for the sampling procedure.

We first acquired a random, stratified sample of PowerPoint ® slideshows from the web. Following this, we asked two judges to score each PowerPoint ® slideshow independently, using a checklist (see Table 1 ) to search for violations of specific rules of effective PowerPoint ® communication; these rules were special cases of the eight general principles discussed in the Introduction. As noted below, two additional judges evaluated the slideshows using slightly different criteria.

Search procedure

Before we present the results of our sampling, we need to explain how we produced the sample. To ensure that there was no potential for bias (that is, sampling non-representative slideshows), we randomly selected slideshows within each category. To this end, we implemented a two-step procedure. We first constructed a list of keywords for each of four categories – Research (academic), Education, Government, and Business – by searching an electronic resource (e.g., EbscoHost) for the category name and then noting the keywords of the first few academic articles to appear in the search results. We then randomly paired each keyword with two numbers, which ranged from 1 to 10. The first number designated the page, the second the position of the item within a page. For example, a keyword, page, and position combination could have been “marketing, 6, 4.”

We then performed each search by entering the keyword followed by a space and then “.ppt” (the common abbreviation for PowerPoint ® slideshows). For example, if the keyword and page combination was “marketing, 6, 4,” the search term would have been “marketing.ppt,” which would yield a series of Google hits from which we would select the forth hit on the sixth page. In cases where the specified hit was not a slideshow, the next slideshow down would be selected, and if that entry was not a slideshow, we looked at the subsequent one, repeating this process until we found a slideshow. The minimum required length for slideshows was 15 slides, and the maximum allowed length was 100 slides; if slideshows contained fewer than 15 or more than 100 slides, we again selected the next slideshow in the list until we found a slideshow of suitable length.

In total, we selected 141 slideshows using this method, one of which was excluded because it clearly bridged categories, leaving us with a total of 140. We then classified each of these slideshows into one of five categories (in addition to Research, Education, Government, and Business, we defined a fifth category, Miscellaneous, for slideshows that did not fit clearly into the other four). Because we selected search terms that were targeted for a specific category, we were likely to find slideshows in that category – but our search method did not guarantee this result, and thus we double-checked the appropriate category after each slideshow was retrieved. Our search methods were designed to have a high probability of sampling from the different categories, and we had hoped to sample about the same number of slideshows from each category. However, our criteria were not perfect, and thus the numbers in each category are not precisely the same. Ultimately each category contained between 20 and 40 slideshows, specifically: Research: 27, Education: 38, Government: 20, Business: 32, and Miscellaneous: 23.

We note that we did not search for “.pptx” or “.key” or for other extensions. At the time the study was begun (2008), .pptx had not been available very long – and hence we worried about possible biases of sampling works from “early adopters.” In addition, the vast majority of slideshows are created with PowerPoint ® , and we worried that Keynote ® users might also represent a biased sample. Thus, we can only be confident that our results generalize to PowerPoint ® slideshows per se . In addition, because we sampled from the web, our results can only generalize to other slideshows of the sort that are posted on the web (however, for our purposes, this is sufficient – if anything, these slideshows may be better than those not deemed worthy of being posted).

Scoring and coding

Four judges scored the 140 slideshows for violations of the 137 rules. Two of the judges were authors, and two were college-educated paid research assistants in the laboratory; at the time of coding, none of the judges knew whether or not they would subsequently do enough work on this project to be included as authors, and none were biased to find flaws (let alone flaws of specific types). Each rule was worded as a statement that, if it described a slide or slideshow as a whole, revealed a violation of that rule.

Two of the judges began by independently scoring 10 slideshows, and then comparing their scores. Any disparities were discussed, and in five cases the wording of rules was modified to be more specific. Following this initial training and calibration procedure, each judge independently scored all of the slideshows. The judges then discussed any disparities in classification or scoring, and reached a consensus.

The initial two judges interpreted each rule literally (“strictly”). For example, if the rule stated that no more than two lines should be included in a single bullet point, then a bullet point that had two lines and a single word in a third line would be classified as violating the rule. We adopted this procedure because we wanted to be sure that the rules could be easily interpreted. Nevertheless, we were concerned that we would inflate the number of violations by adhering rigidly to the rules; many of them were intended to be heuristics. For example, the prohibition against more than two lines per bullet point is based on the idea that no more than four concepts should be held in working memory at the same time, and in general two lines of text convey about four concepts.

Thus, following the initial scoring, two additional judges considered each of the violations identified by the first two judges. They decided, independently, whether each violation was important. In this case, “important” was defined as “likely to disrupt the comprehension or memory of the material.” If not, then they rejected that initial classification of a violation. By using both the strict and liberal scoring methods, we thereby defined a range in which we evaluated the slideshows. Table 1 shows the proportion of slideshows that violated each of the 137 rules, sorted by principle, scored separately for the strict and liberal criteria. Finally, two authors independently evaluated the rules and – using the summary provided in the introduction – indicated which principle applied to each rule. When they disagreed (for 15% of the rules), a discussion resolved the classification. In the process of this discussion, it became clear that 12% of the rules were “over-determined”: rather than following primarily from a single principle, they followed from two or more principles. Thus, we created a ninth level for the “principle” variable, which included all the rules for which more than one principle applied.

The dependent variable was whether or not a slideshow violated a principle. We took a “bad-apple-spoils-the-barrel” approach: if even a single slide contained material that violated a rule, the slideshow was scored as having violated the rule. And if a slideshow violated one or more rules within a specific principle, the score for that principle would be “1;” if none of the rules were violated for a principle, the score for it would be “0.” We present first the results from the strict, initial scoring, and after this the results from the more liberal scoring.

Strict scoring

We began by assessing inter-rater reliability. The overall inter-rater agreement was 0.88, which indicates the proportion of times that the raters either both coded “1,” indicating a violation, or both coded “0,” indicating no violation. We then sought to answer three questions about the data.

First, we asked whether the violations of the principles differed for the different categories (see Table 2 ). To answer this question, we conducted a repeated-measures ANOVA, with the nine levels of the Principles (the eight principles plus an “over-determined” class) as a within-participants variable and Category as a between-participants variable. The results showed that, in general, there were no overall differences in violations for the different categories, F (4, 135) = 2.24, p > 0.05, η p 2 = 0 . 06 .

www.frontiersin.org

Table 2 . Proportion of violations for each principle in each category for Study 1 .

Second, we asked whether some principles were violated more frequently than others. As illustrated in Figure 1 , in the same two-way ANOVA just noted, we found that some principles were violated more often than others, F (8, 1080) = 87.94, p < 0.01, η p 2 = 0 . 39 . A Bonferroni-corrected post hoc test with an alpha of 0.05 revealed that out of the 36 possible comparisons, only the following eight were not significant: the difference between Appropriate Knowledge and Salience, Compatibility and Over-determined, Compatibility and Perceptual Organization, Discriminability and Limited Capacity, Informative Change and Relevance, Informative Change and Salience, Over-determined and Perceptual Organization, and Relevance and Salience. All other comparisons were significant.

www.frontiersin.org

Figure 1. The percentage of presentations that had violations, scored according to strict (dark bars) and liberal (light bars) criteria, in Study 1 . A, appropriate knowledge; C, compatibility; D, discriminability; I, informative change; L, limited capacity; P, perceptual organization; R, relevance; S, salience; O, over-determined. Error bars illustrate the standard error of the mean.

In addition, the results of this analysis showed there was an interaction between Principles and Category, F (32, 1080) = 1.91, p < 0.05, η p 2 = 0 . 054 . Specifically, a Bonferroni-corrected post hoc procedure documented that the difference in violations between the principle of Appropriate Knowledge and the principle of Compatibility was significantly different between the categories of Research and Government, F (1, 45) = 10.19, p < 0.01, η p 2 = 0 . 19 .

In general, the following aspects of these results are worth noting: the principles of Discriminability and Limited Capacity were violated in every single slideshow, and the principle of Informative Change was violated in 93% of the slideshows. In contrast, the principle of Compatibility was violated in only 31% of the slideshows.

Third, we examined which rules were violated most often. In particular, we found that the following five rules were violated most often: (1) Bulleted items are not presented individually, growing the list from the top to the bottom (96% of the slideshows); (2) More than two lines are used per bulleted sentence (91%); (3) More than four bulleted items appear in a single list (91%); (4) Hierarchical organization of lists is not used, with no more than four items at each level (86%); (5) All uppercase, all italics, or all bold typefaces are used (81%). To examine this result more carefully, we examined whether the five worst rules were violated equally often for the different categories of slideshows. The results showed no interaction between Category and the violation of the five worst rules, F (16, 540) = 1.51, p > 0.05, η p 2 = 0 . 04 . See Table 3 for a more detailed breakdown of the worst rules per category.

www.frontiersin.org

Table 3 . Most frequently violated rules per category (strict scoring) for Study 1 .

Liberal scoring

We again assessed inter-rater reliability, now based on the judgments with the more liberal criteria. The proportion agreement between the two raters for all principles and scales combined was 0.98. The shift from strict to liberal criteria did not change the pattern of the results. Using the new criteria resulted in our eliminating only 4% of the violations that were identified using the strict scoring procedure.

Considering again our three questions about the data: first, as with the strict coding, we conducted a repeated-measures ANOVA, with the nine levels of the Principles, as a within-participant variable, and Category as a between-participant variable. The results showed that, in general, there were no differences in violations between the categories, F (4, 135) = 1.93, p > 0.1, η p 2 = 0 . 05 .

Second, we again asked whether some principles were violated more often than others. As illustrated in Figure 1 , we found that some principles were violated more often than others, F (8, 1080) = 79.52, p < 0.05, η p 2 = 0 . 37 . A Bonferroni-corrected post hoc test with an alpha of 0.05 showed that out of the 36 possible comparisons, only the following eight were not significant: the difference between Appropriate Knowledge and Salience, Compatibility and Over-determined, Compatibility and Perceptual Organization, Discriminability and Limited Capacity, Informative Change and Relevance, Informative Change and Salience, Over-determined and Perceptual Organization, and between Relevance and Salience. All other comparisons were significant.

As before, the principles of Discriminability (98%), Limited Capacity (100%), and Informative Change (86%) each were violated in the vast majority of slideshows. Also as before, the principle of Compatibility was violated least-frequently, in “only” about a quarter of the slideshows (27%) in this case. The results of the analysis also showed that there was no interaction between Category and Principle, F (32, 1080) = 1.44, p > 0.05, η p 2 = 0 . 04 .

Third, we again examined which rules were violated most often. In this analysis, we found that the following five rules were violated most often: (1) Bulleted items are not presented individually, growing the list from the top to the bottom (94% of the slideshows); (2) More than four bulleted items appear in a single list (88%); (3) More than two lines are used per bulleted sentence (87%); (4) Hierarchical organization of lists is not used, with no more than four items at each level (84%); (5) Words are not large enough (i.e., greater than 20 point) to be easily seen (65%). The first four rules are the same as the first four identified in the previous analysis, but now the rule “All uppercase, all italics, or all bold typefaces are used” was replaced by another rule that also stemmed from the principle of Discriminability, namely the rule regarding size. To examine this result more carefully, we examined whether there was an interaction between the five worst rules and categories, and found such an interaction, F (16, 540) = 2.35, p < 0.05, η p 2 = 0 . 07 . Specifically, a Bonferroni-corrected post hoc procedure showed that the difference in violations between the rule “Words are not large enough (i.e., greater than 20 point) to be easily seen” and the rule “More than two lines are used per bulleted sentence” was significantly different between the categories of Business and Government, F (1, 50) = 10.99, p < 0.01, η p 2 = 0 . 18 .

Table 2 provides a summary of the violations per category per principle, using both the liberal and the strict scoring method.

As is clear, by either the strict or liberal scoring criteria, many slideshows are flawed. Indeed, not a single slideshow was scored – according to either set of criteria – as having no flaws. Using the strict criteria, each slideshow violated on average 6.23 of the nine classes of principles, which shrank slightly to 5.88 using the liberal criteria. Considering just the eight individual principles, excluding the “over-determined” group of rules, the overall violation was 6.17 for the strict coding and 5.86 for the liberal coding. The three most-violated principles were Discriminability (because material was too similar to be easily distinguished), Limited Capacity (because too much information was presented), and Informative Change (because changes in how information was presented did not actually reflect changes in the information being conveyed). Even the least-frequently violated principle, Compatibility, was still violated in at least a quarter of the slideshows.

In addition, the fact that violations were comparable across the different categories is of interest. We examined the different categories partly in an effort to consider the possible influence of different topics. Although slideshows of different topics (or areas) may differ in their average complexity, the results do not suggest that violations of specific principles generally vary for different topics. That said, we did find that some specific rules were violated more frequently in some categories than others, which could reflect differences in the complexities of the topics.

In sum, the present results suggest that the psychological principles either are not obvious or are obvious but often ignored.

The analysis of PowerPoint ® slideshows in Study 1 revealed that slideshows themselves typically are flawed in multiple ways. We wanted to know whether viewers are sensitive to presentation flaws more generally, and thus we conducted a survey asking participants to report approximately how many electronic slideshow presentations they had seen in the past year, and then to rate various aspects of those presentations in terms of their quality.

Participants

We recruited 265 participants via ads on Craigslist and by word-of-mouth. In order to participate in the study, participants had to be at least 18 years old, speak fluent English, and “regularly” attend presentations that involved PowerPoint ® , Keynote ® , or other electronic slideshows. (In order to receive compensation – either a $5 gift certificate to Amazon.com or a free book – they had to be US citizens or permanent residents and not employed by Harvard University.) All participants provided their informed consent and were tested in accordance with the ethical guidelines of the American Psychological Association; this research was approved by the Harvard University Committee on the Use of Human Subjects.

Forty-six of the participants did not meet the eligibility criteria of viewing at least one presentation per month during the previous year, and 14 skipped more than 20% of the questions. Therefore, analyses were conducted on data from the 205 eligible participants who completed at least 80% of the survey, including 112 females (mean age 32.5 ± 8.9) and 83 males (mean age 30.9 ± 8.9) and 10 who did not report their sex or age. According to self-report, about 7% of the participants were engineers, 10% were in finance, 13% were business managers or executives, and 14% were students; the remaining participants were distributed across a variety of different occupations.

The study was administered over the internet via a secured link (SSL) on Surveymonkey.com . The opening page of the survey consisted of a statement about the eligibility requirements and a description of the study content. Participants were assured that their data would be collected anonymously, and that they would be sent to another unrelated survey in order to provide the personal information (email address and physical address) we needed in order to send the gift certificate.

The survey began by asking approximately how many electronic slideshow presentations the participant viewed each year (up to “5 or more per week”). The main portion of the survey consisted of a series of questions about electronic slideshow presentations viewed in the last year. We asked two sorts of questions. First, we asked about the presence of specific problems; for example, we asked “Did any of the presentations fail to convey a meaningful message because there was no main point?” and “Were any of the presentations hard to follow because the slides contained too much material to absorb before the next slide was presented?” Participants were asked to indicate the proportion of presentations – if any – that had such problems, using the following scale: “None (of the presentations); Some; Half; Many; Virtually all.” Second, we asked questions about annoyance, querying the degree to which the problem, if present, bothered them; these responses used a four-point scale, labeled as follows: “Not at all; Somewhat; A fair amount; It was extremely annoying to have my time wasted in this fashion.” It could be argued that by focusing on problems, rather than framing the questions in a neutral fashion, we were biasing the participants to make negative responses – and this is a possible limitation of the survey. However, it is easier, grammatically and logistically, to ask people to notice problems than to notice things that were flawless. If a presentation is excellent the audience will be focused on the presenter’s message, not on the technicalities of the presentation.

The questions covered typical violations of seven of the eight principles. Because we were asking for overall impressions across all presentations recalled from the past year, rather than analyses of specific slides, we did not ask any questions about Perceptual Organization, fearing that participants would not be able to recall these types of details accurately. We included 12 questions about Relevance; 8 about Appropriate Knowledge; 4 about Salience; 5 about Discriminability; 3 about Compatibility; 2 about Informative Change; 7 about Limited Capacity; and one that did not clearly fit into any of these categories, “Were any of the speakers unprepared in that they didn’t know how to use their technology (software, computer, projector, etc.)?” We also included “free response” questions, asking participants to report any other common problems and any techniques that they thought contributed to especially effective presentations. The final portion of the survey asked for basic demographic information, including age, sex, and occupation (which they could provide explicitly or select from a checklist, or both).

The Appendix presents a table with all of the questions, the average ratings, and the percent responses in each category of the rating scale, for both prevalence and annoyance. The five items with the highest ratings (bold and underlined) and the five with the lowest (italics) for Prevalence and Annoyance are highlighted in gray. Note that one of the most prevalent violations (lack of a pointer) was one of the least annoying.

We coded the data in two ways. First, we converted the five “prevalence of violation” and four “annoyance” ratings into numerical values (0–4, and 0–3, respectively), and then for each participant we calculated the average rating for prevalence of violations and for associated annoyance level for each principle. Because the most common answers were “none” and “some,” we also coded the data using a binary coding system, coding any degree of violation [“some (presentations),” “half,” “many,” “virtually all”] as “1,” and “none” as “0,” and any degree of annoyance (“somewhat,” “a fair amount,” “it was extremely annoying to have my time wasted in this fashion”) as “1,” and “not at all” as “0,” and then again for each participant calculated an average score for both prevalence and annoyance for each of the principles. (The fact that these were the most common answers suggests that participants were not biased by our questions.)

As in Study 1, we asked whether some principles were violated more often than others, calculating one-way repeated-measures ANOVAs. For all ANOVAs Mauchly’s test indicated that the assumption of sphericity had been violated (chi-square > 163, p < 0.0005, epsilon > 0.75), therefore degrees of freedom were corrected using Huynh–Feldt estimates of sphericity. The results were similar regardless of the coding used (full scale or binary), revealing that some of the principles were violated more often than others, F (4.5, 927) = 10.80, p < 0.0005, η p 2 = 0 . 05 for the full scale, and F (4.9, 999) = 8.00, p < 0.0005, η p 2 = 0 . 04 for the binary scale. Overall, respondents reported that all seven principles were violated at least some of the time (see Table 4 ). These reports ranged from a low of 63% of respondents reporting at least some presentations with violations of Compatibility to a high of 74% reporting at least some with violations of Salience.

www.frontiersin.org

Table 4 . Percentage of respondents reporting “at least some” prevalence of violations and associated annoyance, by principle, in Study 2 .

We also asked whether violations of some principles were more annoying than violations of other principles. (Data from 197 participants, rather than 205, were used in these analyses, because some of those who reported no violations skipped the “annoyance” questions.) One-way repeated-measures ANOVAs revealed that violations of some principles were more annoying than others F (4.9, 968) = 5.15, p < 0.0005, η p 2 = 0 . 03 (full scale), and F (4.7, 928) = 3.05, p < 0.05, η p 2 = 0 . 02 (binary); these results are also presented in Table 4 . The range was similar to the previous measure, but different principles anchored it: nearly 59% of respondents reported at least some annoyance with violations of Informative Change, whereas over 65% reported at least some annoyance with violations of Appropriate Knowledge.

Although we did document a significant difference in reported prevalence and annoyance for the violations of different principles, it was relatively small and the most interesting results may be in the responses to individual questions. The three most prevalent problems were also among the five most annoying: “Speakers read word-for-word from notes or from the slides themselves” (Salience), “The slides contained too much material to absorb before the next slide was presented” (Limited Capacity), and (most prevalent and most annoying), “The main point was obscured by lots of irrelevant detail” (Relevance).

Because different numbers of questions were asked for different principles, we conducted correlation analyses to discover whether the mean ratings were related to the number of questions per principle. No significant correlations were found between prevalence or annoyance ratings and the number of questions per principle, nor were prevalence and annoyance significantly correlated with each other.

We also invited the participants to make free responses about presentation problems that were not covered in the survey, and to indicate key aspects of especially good presentations. These free responses, in general, tended to reiterate topics covered in the survey, for instance, “When explaining complicated information, it’s important to use as many slides as necessary. Do not try and cram it all together.” Or, “a little humor goes a long way.” However, many respondents complained that speakers should be better prepared, by “rehearsing their lectures so they don’t look like it’s the first time they’re seeing these slides too,” and by “hav(ing) everything ready and working properly before (the audience) show(s) up” and coordinating carefully with any assistants who operate the equipment so that technical problems do not derail the entire talk. (About 61% of the respondents reported that at least some of the presentations were flawed because the presenter did not know how to use his/her equipment, and more than 50% of the respondents indicated that this was at least somewhat annoying.) In short, “Don’t waste my time! If you aren’t going to properly prepare just send me a memo with information instead!”

These results converge with those from the Study 1, namely that all seven principles we asked about (out of eight considered in the first study) are violated on a regular basis. Such violations bother audience members to some extent. And as with Study 1, violations of the Principle of Compatibility were least common, whereas one of the most annoying and prevalent violations fell under the principle of Limited Capacity (slides contained too much material to absorb before the next slide was presented). These results show that presentations not only have much room for improvement, as shown in Study 1, but also that audience members are sensitive to the general sorts of problems that plague presentations.

The findings from Study 1 and Study 2 thus raise an interesting question: why do at least some people feel that the psychological principles are so obvious that nobody would violate them? Is it possible that although people recognize overall problems – such as that a presentation is boring or unclear – they fail to recognize the precise problems with specific slides that produce such easily noticed flaws? We investigate this possibility in the following study.

The present study was designed to answer two questions: first, we wanted to know whether people can identify graphical displays in individual slides in which the different principles have been violated. Second, if they can identify such defective displays, we wanted to know whether participants are aware of why a display is defective.

The previous two studies were surveys. Such studies have the advantage of tapping into phenomena that occur in the “real world,” but the disadvantage of not having rigorous control over the relevant variables. Study 3 relies on an experiment. We selected a subset of the visual display design rules from Study 1, and prepared two illustrations for each one: one illustration included a violation of the rule and one did not (many of these pairs were taken directly from the “Do/Don’t” illustrations shown in Kosslyn, 2007 ). Prior to presenting each pair of slides, we presented a question that guided participants to focus on a specific aspect of the slide. For example, for one slide pair we asked, “Which slide does a better job showing how closely two variables are related?” Participants were asked to indicate which slide was better, according to that specific criterion, and then to explain why they made their choice.

A total of 53 participants took part in Study 3; however, five of these participants did not follow the instructions, so their data were not included in the analyses. The analyzed data came from 21 males with a mean age of 29.3 (SD = 11.1) and 27 females with a mean age of 23.6 (SD = 5.3). Participants were recruited through a Harvard University study pool, which was open to Harvard affiliates and members of the Cambridge/Boston community. None of the participants had prior knowledge of the presented material. All participants provided their informed consent and were tested in accordance with the ethical guidelines of the American Psychological Association; this research was approved by the Harvard University Committee on the Use of Human Subjects.

Forty-one “Do/Don’t” pairs of illustrations from Kosslyn (2007) formed the core of our stimulus pairs; we removed the “Do/Don’t” labels from these illustrations. We created 23 additional pairs of illustrations (some from Kosslyn, 2006 ), to ensure that we had adequate examples for each of the eight principles. Four pairs were eventually eliminated because of problems with the quality of the illustrations, leaving us with six pairs of illustrations for Appropriate Knowledge, seven each for Perceptual Grouping and Salience, and eight for each of the other principles. We randomized the presentation order across principles, with the constraint that two stimuli in a row could not probe the same principle. We then randomly put the version with the violation on the left for half of the slides, and on the right for the other half. No more than five slides in a row had the violation on the same side of the pair. We next created another set of stimuli by reversing the left and right panels for each pair (and thus, for each pair the violation appeared on the left in one version, and on the right in the other). Finally, we created two orders, forward and reverse, for each of the two stimulus sets, which resulted in a set of four stimulus sequences.

In addition, we prepared a question for each pair of illustrations. Each question asked participants to choose a panel (left or right) of the pair according to a particular criterion, such as: “Which slide does a better job of using textures?”

We tested groups of 3–10 participants together. Participants met in a computer lab, and each was seated at his or her own computer (Apple iMacs, with 20″ screens). We administered each of the four sets of stimuli equally often, and thus counterbalanced for presentation order (left/right and forward/reverse).

On each trial, participants first viewed the question and then the accompanying pair of illustrations. Participants indicated each choice by typing their answer (“l” or “r”) in a column in a spreadsheet. After choosing, the participants typed a brief explanation of their choice. The participants viewed the questions and pairs of stimuli at their own pace. We include examples of participant responses below, in addition to Figure 2 , which illustrates a stimulus pair.

www.frontiersin.org

Figure 2. Example of a slide pair viewed by participants in Study 3 (illustrating the principle of Compatibility) . Prior to seeing this pair, they received the question, “Which slide does a better job of using a background pattern?” The correct answer for slide choice is the panel on the right. An example of a correct explanation is, “the topic of the chart is global warming, which is better represented with a sun than with clouds;” an example of an incorrect explanation is, “the right has more of an apocalyptic feel.”

For instance, we asked the question, “which slide does a better job using the key (the labeled squares at the top)?” The same bar graph was used in both slides. The better slide ordered the patches (squares) in the key to correspond with the order of the bars on the graph (which had the darkest bar in the middle); the flawed slide ordered the patches from lightest to darkest. A correct explanation for selecting the correct slide (matching order) was, “the key is laid out in the same sequence as the bars on the graph.” An incorrect explanation for selecting the correct slide (matching order) was, “the patterns in the key are arranged more dynamically with better contrast.” A completely incorrect response was to choose the non-matching order “because the key feels more orderly, the lightest shade on top and the darkest shade on the bottom.”

On another trial we asked, “Which slide uses the background pattern more effectively?” The two slides contained identical captioned and labeled line graphs with home prices over time; both had a photo of a house in the background. In the flawed slide, the background photo was inappropriately pronounced, making the graph difficult to read. The better slide used the same photo, but as a de-saturated watermark; it was visually interesting without in any way obscuring the graph. A correct explanation for selecting the correct slide (graph more salient than background) was, “[the background] is subtle but nice and doesn’t overshadow the graph.” An incorrect explanation for the correct slide (graph more salient) was, “it is more explanatory.” A completely incorrect response was to choose the slide with the too-salient background because, “you can see all of the beautiful scenery behind the home as well as the attractiveness of its surroundings.”

Because we asked the participants not only to choose one member from each pair, but also to explain their choice, we computed two types of scores: the error rate for slide choice and for explanation . Two judges (one of whom is an author of this article, and the other of whom was a paid research assistant in the lab) independently scored the explanations participants provided for each of their choices. These judges determined whether the participant had in fact identified the key feature that distinguished the versions of the illustration. We used “liberal” criteria, giving the participants the benefit of the doubt if there were any questions about their accuracy. Inter-rater agreement for the two judges was substantial, at 0.90 (ranging from a low of 0.87 for the principle of Perceptual Grouping to a high of 0.93 for the principle of Relevance). When the judges disagreed in their initial scoring, they discussed the item in question and came to a consensus agreement. Table 5 and Figure 3 present the results for slide choice and explanation organized according to principle.

www.frontiersin.org

Table 5 . Percentage of incorrect slide choices and incorrect explanations of correct choices, by principle, in Study 3 .

www.frontiersin.org

Figure 3. The percentage of trials on which participants made errors in choosing the correct slide (dark bars), and explaining their choice (light bars) given that they chose the correct slide, in Study 3 . A, appropriate knowledge; C, compatibility; D, discriminability; I, informative change; L, limited capacity; P, perceptual organization; R, relevance; S, salience. Error bars illustrate the standard error of the mean.

The mean error rate for slide choice was 20.5% (with chance performance at 50% errors). A repeated-measures ANOVA revealed that the error rates for slide choice varied for the different principles, F (7, 329) = 22.60, p < 0.0005, η p 2 = 0 . 325 . As is evident in Table 5 and Figure 3 , the participants were most accurate for the principle of Appropriate Knowledge and least accurate for the principles of Compatibility and Salience. Why did these participants have such a problem with Compatibility, when this principle is the least violated in the other studies? A close look at the results indicated that the present finding is driven by rules for very specific types of displays that may not be used frequently (and thus may not have been encountered in the presentations sampled in Study 1 or queried in Study 2).

The five stimulus pairs that induced the most errors in slide choice illustrated the following rules: explode a max of 25% of wedges in a pie (Salience); use a line graph to display interactions over two entities on the X axis (Compatibility); use different colors only for emphasis or to specify different classes of information (Informative Change); use a scatterplot to convey an overall impression of the relationship between two variables (Compatibility); use one color for titles and another, less salient one for text (Salience).

Although the participants chose the correct alternative on about 80% of the trials, on fully one sixth of these trials, they could not articulate why they made these choices; that is, 16.8% of the explanations for correct choices were incorrect. Thus, for only about two thirds of the total trials did they choose correctly on the basis of knowledge. A repeated-measures ANOVA showed that the participants made more errors for some principles than others when explaining their choices, F (7, 279) = 3.47, p = 0.003, η p 2 = 0 . 069 . (Mauchly’s test indicated that the assumption of sphericity had been violated: chi-square = 59, p < 0.0005, epsilon = 0.847, therefore degrees of freedom were corrected using Huynh–Feldt estimates of sphericity.) The participants made relatively more errors when explaining violations of the principles of Discriminability and Informative Change, and were relatively accurate when explaining their choices for the principle of Appropriate Knowledge. Participants had the most difficulty explaining their (correct) choices for displays that illustrated the following rules: avoid using red and blue in adjacent regions (Discriminability); use hierarchical labeling (Limited Capacity); ensure that shapes of meaningful regions are easily identifiable (Discriminability); use one color for titles and another, less salient one for text (Salience); graph different types of data in a single display only if they are highly related and must be compared (Relevance).

Finally, Table 6 presents the percentage of participants who made at least one error in slide choice per principle, and (given they made the correct slide choice) at least one error in explanation per principle; note that there are no principles for which there are no errors.

www.frontiersin.org

Table 6 . Percentage of participants who made at least one erro r in slide choice per principle, and percentage of participants who (given they made the correct slide choice) made at least one error in explanation per principle, in Study 3 .

In short, even when guided to pay attention to specific features of slides, observers do not always understand when the psychological principles have been violated, and even when they do realize that there is a problem, they often are not aware of the nature of this problem. Given the way information processing works in the brain, however, one could argue that even if viewers do not notice a violation, they could still be affected by it. Indeed, we would predict this to be the case, and it is well worth investigating this hypothesis in future research.

In the three studies reported here, we analyzed how well PowerPoint ® slideshows, slides, and presentations respect principles of human perception, memory, and comprehension. Specifically, we hypothesized and found that the psychological principles are often violated in PowerPoint ® slideshows across different fields (Study 1), that some types of presentation flaws are noticeable and annoying to audience members (Study 2), and that observers have difficulty identifying many violations in graphical displays in individual slides (Study 3). These studies converge in painting the following picture: PowerPoint ® presentations are commonly flawed; some types of flaws are more common than others; flaws are not isolated to one domain or context; and, although some types of flaws annoy the audience, flaws at the level of slide design are not always obvious to an untrained observer (but, we would argue, such flaws may negatively impact information processing). Specifically, in Study 1 we found that PowerPoint ® slideshows on average violate approximately six of the eight principles we considered. Moreover, this is true for slideshows produced in different fields. The principles of Discriminability, Limited Capacity, and Informative Change were most frequently violated. In Study 2 we found that respondents commonly reported having noticed and been annoyed by problems in presentations in general, and these problems arose from violations of most of the principles we considered. Finally, in Study 3 we showed that observers often did not recognize when a specific rule was violated in a given slide, and that even when they did select the slide without the violation, they often could not explain their choice.

But can we be confident that violations of our principles really constitute “flaws” in a presentation? As noted in the Introduction, our principles grow out of a straightforward task analysis, which in turn led us to consider basic findings in the scientific literature on human perception, memory, and comprehension. Because of this connection, the principles have face validity: if a presentation violates a principle, it taxes human information processing. And because the presentation taxes information processing, the audience members will have difficulty perceiving, remembering, or comprehending it – and hence, it can reasonably be said to be flawed.

Nevertheless, future studies should explicitly examine the effects of violating specific principles on comprehension and subsequent memory. Such studies should also assess the degree to which audience members enjoy presentations with specific flaws, and their ability to think critically about such presentations (both while they are underway and subsequently). In addition, future studies should address whether specific types of violations have the same effects for slideshows that are presented versus for slideshows that are posted or distributed (and hence meant to be understood independently of a presenter).

By the same token, one could ask whether the rules “measure what they are supposed to measure.” To be clear: the rules do not “measure” anything; we are not presenting a new psychometric instrument. The rules are guidelines that should be obeyed to avoid including characteristics that will impair information processing. In the current research, we devised rules to capture key characteristics that would make presentations difficult to perceive, remember, or comprehend. As such, the “psychometric properties” associated with such a checklist are inherently different from a formal psychological test. For example, the fact that a specific rule is violated by every single presentation is, in the current study, very informative – whereas this is not true for an item in a conventional psychological test.

It is worth noting that respecting the principles and rules we have described will not produce “optimal” presentations. Instead, respecting the principles and rules will ensure that presentations are not flawed in these specific ways. Simply avoiding the glitches that we document will not ensure that the presentation is good, but including such glitches will make a presentation bad (or at least not as good as it could be). Given that the principles and rules are rooted in the empirical literature, avoiding violating them will improve a presentation. (However, we also must note that this claim is based on face validity, and must be explicitly tested in subsequent work).

We also must point out that in two of the three studies reported here, we treated the slides independently of the presenter. One could argue that at least some of the potential “flaws” may not be as severe when the slides are discussed by a skilled presenter. For instance, a talented presenter may be able to compensate for a particular flaw (e.g., by reading aloud text that is so small as to be all-but-invisible for the audience members). However, all else being equal, there is no advantage – and considerable disadvantage – to showing flawed slides. Although some flaws may be compensated for by talented presenters, it would be better if they did not have to compensate in the first place.

In short, we have documented that there is plenty of room for improvement in the design of electronic slideshow presentations. The psychological principles apparently are not entirely obvious, nor do people always respect them instinctively. Perhaps the best way to avoid such flaws is to prepare a slideshow draft, review each slide according to the psychological principles and rules we describe here, and then correct flaws as they are detected. Presenters may also want to review the Appendix in order to avoid common presentation mistakes, particularly those that the audience reports as highly annoying. It is worth noting that presentation techniques designed to compensate for poorly designed slides (such as reading aloud slides with miniscule text), may sometimes backfire – causing the audience to lose interest and tune out. Making your audience do unnecessary work is not a recipe for a successful presentation.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors thank William Thompson, Katie Lewis, Pooja Patnaik, and Roland Fuoco for technical assistance, and Sam Moulton for helpful comments. We also thank Ellen Winner, whose comment on a review on the Amazon website for Kosslyn (2007) provided the inspiration for Study 3. This research was supported, in part, by NSF Grant REC0411725 (the opinions and viewpoints expressed in this article are those of the authors, and do not necessarily reflect the opinions and viewpoints of the National Science Foundation).

Allen, R. C., and Rubin, M. L. (1981). Chromostereopsis. Surv. Ophthalmol. 26, 22–27.

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Alvarez, G., and Franconeri, S. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. J. Vis. 7, 1–10.

CrossRef Full Text

Apperson, J. M., Laws, E. L., and Scepansky, J. A. (2006). The impact of presentation graphics on students’ experience in the classroom. Comput. Educ. 47, 116–126.

Apperson, J. M., Laws, E. L., and Scepansky, J. A. (2008). An assessment of student preferences for PowerPoint presentation structure in undergraduate courses. Comput. Educ. 50, 148–153.

Aspillaga, M. (1996). Perceptual foundations in the design of visual displays. Comput. Human Behav. 12, 587–600.

Baddeley, A. D. (2007). Working Memory, Thought and Action . Oxford: Oxford University Press.

Bartsch, R. A., and Cobern, K. M. (2003). Effectiveness of PowerPoint presentations in lectures. Comput. Educ. 41, 77–86.

Beets, S. D., and Lobingier, P. G. (2001). Pedagogical techniques: student performance and preferences. J. Educ. Bus. 76, 231–235.

Buchel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., and Friston, K. J. (1998). The functional anatomy of attention to visual motion – a functional MRI study. Brain 121, 1281–1294.

Campbell, F. A., Goldman, B. D., Boccia, M. L., and Skinner, M. (2004). The effect of format modifications and reading comprehension on recall of informed consent information by low-income parents: a comparison of print, video, and computer-based presentations. Patient Educ. Couns. 53, 205–216.

Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114.

De Valois, R. L., and De Valois, K. K. (1990). Spatial Vision . New York: Oxford University Press.

Farkas, D. K. (2006). Toward a better understanding of PowerPoint deck design. Inform. Des. J. 14, 162–171.

Fleming, M., and Levie, W. H. (1993). Instructional Message Design: Principles from the Behavioral and Cognitive Sciences , 2nd Edn. Englewood Cliffs, NJ: Educational Technology Publications.

Glimcher, P. W., and Sparks, D. L. (1992). Movement selection in advance of action in the superior colliculus. Nature 355, 542–545.

Grice, H. P. (1975). “Logic and conversation,” in Syntax and Semantics , Vol. 3, eds P. Cole and J. Morgan (New York: Academic Press), 41–58.

Gropper, G. L. (1991). Text Displays Analysis and Systematic Design . Englewood Cliffs, NJ: Educational Technology Publications.

Gunel, M., Hand, B., and Gunduz, S. (2006). Comparing student understanding of quantum physics when embedding multimodal representations into two different writing formats: presentation format versus summary report format. Sci. Educ. 90, 1093–1112.

Helander, M., Landauer, T., and Prabhu, P. (eds). (1997). Handbook of Human-Computer Interaction . New York: Elsevier Sciences.

Held, R. (1980). “The rediscovery of adaptability in the visual system: effects of extrinsic and intrinsic chromatic dispersion,” in Visual Coding and Adaptability , ed. C. S. Harris (Hillsdale, NJ: Erlbaum), 69–94.

Hu, A., Wilson, T., Ladak, H., Haase, P., and Fung, K. (2009). Three-dimensional educational computer model of the larynx: voicing a new direction. Arch. Otolaryngol. Head Neck Surg. 135, 677–681.

Intriligator, J., and Cavanagh, P. (2001). The spatial resolution of visual attention. Cogn. Psychol. 43, 171–216.

Karns, T. E., Irvin, S. J., Suranic, S. L., and Rivardo, M. G. (2009). Collaborative recall reduces the effect of a misleading post event narrative. N. Am. J. Psychol. 11, 17–28.

Kosslyn, S. M. (2006). Graph Design for the Eye and Mind . New York: Oxford University Press.

Kosslyn, S. M. (2007). Clear and to the Point: Eight Psychological Principles for Compelling PowerPoint ® Presentations . New York: Oxford University Press.

Kosslyn, S. M. (2010). Better PowerPoint ® . New York: Oxford University Press.

Krauzlis, R. J., Liston, D., and Carello, C. D. (2004). Target selection and the superior colliculus: goals, choices and hypotheses. Vision Res. 44, 1445–1451.

Larkin, J. H., and Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cogn. Sci. 11, 65–99.

Levasseur, D. G., and Sawyer, D. K. (2006). Pedagogy meets PowerPoint: a research review of the effects of computer-generated slides in the classroom. Rev. Commun. 6, 101–123.

Lund, A. M. (1997). Expert ratings of usability maxims. Ergon. Des. 5, 15–20.

MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychol. Rev. 109, 163–203.

Macmillan, N. A., and Ornstein, A. S. (1998). The mean-integral representation of rectangles. Percept. Psychophys. 60, 250–262.

Mahar, S., Yaylacicegi, U., and Janicki, T. (2009). The dark side of custom animation. Int. J. Innovat. Learn. 6, 581–592.

Mejdal, S., McCauley, M. E., and Beringer, D. B. (2001). Human Factors Design Guidelines for Multifunction Displays . Springfield, VA: National Technical Information Service.

Osman, M. E., and Hannafin, M. J. (1992). Metacognition research and theory: Analysis and implications for instructional design. Educ. Technol. Res. Dev. 40, 83–99.

Palmer, S. E. (1992). “Modern theories of Gestalt perception,” in Understanding Vision , ed. G. W. Humphreys (Oxford: Blackwell), 39–70.

Parker, I. (2001). Absolute PowerPoint: can a software package edit our thoughts? New Yorker 76, 76–87.

Posner, M. I. (1980). Orienting of attention. Q. J. Exp. Psychol. 32, 3–25.

Potter, M. C. (1966). “On perceptual recognition,” in Studies in Cognitive Growth , eds J. S. Bruner, R. A. Olver, and P. M. Greenfield (New York: Wiley), 103–134.

Reisberg, D. (2006). Cognition: Exploring the Science of the Mind, Third Edition . New York: W.W. Norton.

Rosch, E., Simpson, C., and Miller, R. S. (1976). Structural bases of typicality effects. J. Exp. Psychol. Hum. Percept. Perform. 2, 491–502.

Savoy, A., Proctor, R. W., and Salvendy, G. (2009). Information retention from PowerPoint™ and traditional lectures. Comput. Educ. 52, 858–867.

Schmidt, S. R. (1991). Can we have a distinctive theory of memory? Mem. Cognit. 19, 523–542.

Schwartz, N. H., Ellsworth, L. S., Graham, L., and Knight, B. (1998). Accessing prior knowledge to remember text: a comparison of advance organizers and maps. Contemp. Educ. Psychol. 23, 65–89.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423; 623–656.

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective Human-Computer Interaction , 2nd Edn. Reading, MA: Addison-Wesley.

Smith, E. E., and Kosslyn, S. M. (2006). Cognitive Psychology: Mind and Brain . New York, NY: Prentice Hall.

Smith, S., and Mosier, J. (1986). Guidelines for Designing Interface Software . Springfield, VA: National Technical Information Services.

Speier, C. (2006). The influence of information presentation formats on complex task decision-making performance. Int. J. Hum. Comput. Stud. 64, 1115–1131.

Stanney, K., Samman, S., Reeves, L., Hale, K., Buff, W., Bowers, C., Goldiez, B., Nicholson, D., and Lackey, S. (2004). A paradigm shift in interactive computing: deriving multimodal design principles from behavioral and neurological foundations. Int. J. Hum. Comput. Interact. 17, 229–257.

Stevens, S. S. (1975). Psychophysics . New York: Wiley.

Stoner, M. R. (2007). PowerPoint in a new key. Commun. Educ. 56, 354–381.

Stromeyer, C. F. III, and Klein, S. (1974). Spatial frequency channels in human vision as asymmetric (edge) mechanisms. Vision Res. 14, 1409–1420.

Suchoff, I. B. (2006). Editorial: the power & abuse of Microsoft PowerPoint. J. Behav. Optom. 17, 30, 46.

Susskind, J. E. (2005). PowerPoint’s power in the classroom: enhancing students’ self-efficacy and attitudes. Comput. Educ. 45, 203–215.

Susskind, J. E. (2008). Limits of PowerPoint’s power: enhancing students’ self-efficacy and attitudes but not their behavior. Comput. Educ. 50, 1228–1239.

Sweller, J. (1999). Instructional Design in Technical Areas . Camberwell, VIC: Australian Council for Educational Research.

Sweller, J., van Merrienboer, J. J. G., and Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educ. Psychol. Rev. 10, 251–296.

Szabo, A., and Hastings, N. (2000). Using IT in the undergraduate classroom: should we replace the blackboard with PowerPoint? Comput. Educ. 35, 175–187.

Taylor, J. S., Dube, C. E., Pipas, C. F., Fuller, B. K., Lavallee, L. K., and Rosen, R. (2004). Teaching the testicular exam: a model curriculum from “A” to “Zack”. Fam. Med. 36, 209–213.

Pubmed Abstract | Pubmed Full Text

Thomas, J. P., and Gille, J. (1979). Bandwidths of orientation channels in human vision. J. Opt. Soc. Am. 69, 652–660.

Travis, D. (1991). Effective Color Displays: Theory and Practice . New York: Academic Press.

Tversky, B., Morrsion, J. B., and Betrancourt, M. (2002). Animation: can it facilitate? Int. J. Hum. Comput. Stud. 57, 247–262.

Ungerleider, L. G., and Mishkin, M. (1982). “Two cortical visual systems,” in Analysis of Visual Behavior , eds D. J. Ingle, M. A. Goodale, and R. J. Mansfield (Cambridge, MA: The MIT Press), 549–586.

Vekiri, I. (2002). What is the value of graphical displays in learning? Educ. Psychol. Rev. 14, 261–312.

Vessey, I. (1991). Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decis. Sci. 22, 219–240.

Wagoner, B. (2008). Narrative form and content in remembering. Integr. Psychol. Behav. Sci. 42, 315–323.

Watzman, S. (2003). “Visual design principles for usable interfaces,” in The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications , eds J. A. Jacko and A. Sears (Mahwah, NJ: Lawrence Erlbaum Associates), 263–285.

Wittgenstein, L. (1953/2001). Philosophical Investigations . Oxford: Blackwell Publishing.

Wolfe, J. M. (1998). “Visual search,” in Attention , ed. H. Pashler (East Sussex: Psychology Press), 13–56.

Wong, M. S., Lemaire, E. D., Leung, A. K. L., and Chan, M. F. (2004). Enhancement of prosthetics and orthotics learning and teaching through e-Learning technology and methodology. Prosthet. Orthot. Int. 28, 55–59.

Woodson, W., Tillman, B., and Tillman, P. (1992). Human Factors Design Handbook . New York: McGraw-Hill.

Study 2 survey questions, average ratings, and percent responses in each ratings category for Prevalence (“What proportion of presentations?” Ratings categories: 0 = “none”; 1 = “some”; 2 = “half”; 3 = “many”; 4 = “virtually all”) and Annoyance (“Did this bother you?” Ratings categories: 0 = “not at all”; 1 = “somewhat”; 2 = “a fair amount”; 3 = “it was extremely annoying…”).

The five items with the highest ratings (bold and underlined) and the five with the lowest (italics) for Prevalence and Annoyance are highlighted in gray.

www.frontiersin.org

Keywords: PowerPoint ® , electronic slide show, presentation graphics, visual display design, clear communication, educational media, conveying information

Citation: Kosslyn SM, Kievit RA, Russell AG and Shephard JM (2012) PowerPoint ® presentation flaws and failures: a psychological analysis. Front. Psychology 3 :230. doi: 10.3389/fpsyg.2012.00230

Received: 19 January 2012; Paper pending published: 15 February 2012; Accepted: 19 June 2012; Published online: 17 July 2012.

Reviewed by:

Copyright: © 2012 Kosslyn, Kievit, Russell and Shephard. This is an open-access article distributed under the terms of the Creative Commons Attribution License , which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

*Correspondence: Stephen M. Kosslyn, Center for Advanced Study in the Behavioral Sciences, Stanford University, 75 Alta Road, Stanford, CA 94305, USA. e-mail: skosslyn@stanford.edu

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Patterns of PowerPoint Use in Higher Education: a Comparison between the Natural, Medical, and Social Sciences

  • Published: 28 November 2019
  • Volume 45 , pages 65–80, ( 2020 )

Cite this article

  • David Chávez Herting 1 ,
  • Ramón Cladellas Pros 1 &
  • Antoni Castelló Tarrida 1  

1329 Accesses

5 Citations

2 Altmetric

Explore all metrics

PowerPoint is one of the most widely used technological tools in educational contexts, but little is known about the differences in usage patterns by faculty members from various disciplines. For the study we report in this article we used a survey specially designed to explore this question, and it was completed by 106 faculty members from different disciplines. The results suggest the existence of different patterns in the use of PowerPoint. In addition, the importance of habit in its use is highlighted. Those professors who reported greater dependence on PowerPoint tended to use PowerPoint primarily as study material for their students. We discuss the practical relevance of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA) Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

scholarly articles on powerpoint presentations

Similar content being viewed by others

How do academic disciplines use powerpoint.

Nathan Garrett

scholarly articles on powerpoint presentations

Comprehensive evaluation of the use of technology in education – validation with a cohort of global open online learners

Jennifer W. M. Lai, John De Nobile, … Yvonne Breyer

scholarly articles on powerpoint presentations

Usability research in educational technology: a state-of-the-art systematic review

Jie Lu, Matthew Schmidt, … Rui Huang

Baker, J. P., Goodboy, A. K., Bowman, N. D., & Wright, A. A. (2018). Does teaching with PowerPoint increase students’ learning? A meta-analysis. Computers & Education, 126 , 376–387. https://doi.org/10.1016/j.compedu.2018.08.003

Article   Google Scholar  

Bartsch, R. A., & Cobern, K. M. (2003). Effectiveness of PowerPoint presentations in lectures. Computers & Education, 41 , 77–86. https://doi.org/10.1016/S0360-1315(03)00027-7

Blokzijl, W., & Andeweg, B. (2005). The effects of text slide format and presentational quality on learning in college lectures. Proceedings of the International Professional Communication Conference, 2005 , 288–299. https://doi.org/10.1109/IPCC.2005.1494188

Cladellas, R., & Castelló, A. (2017). Percepción del aprendizaje, procedimientos de evaluación y uso de la tecnología PowerPoint en la formación universitaria de medicina [Perception of learning, evaluation procedures, and use of PowerPoint in university medical training]. Intangible Capital, 13 , 302–318. https://doi.org/10.3926/ic.814

Cosgun Ögeyik, M. (2017). The effectiveness of PowerPoint presentation and conventional lecture on pedagogical content knowledge attainment. Innovations in Education and Teaching International, 54 , 503–510. https://doi.org/10.1080/14703297.2016.1250663

Craig, R. J., & Amernic, J. H. (2006). PowerPoint presentation technology and the dynamics of teaching. Innovative Higher Education, 31 , 147–160. https://doi.org/10.1007/s10755-006-9017-5

Cullen, A. E., Williams, J. L., & McCarley, N. G. (2018). Conscientiousness and learning via feedback to identify relevant information on PowerPoint slides. North American Journal of Psychology, 20 , 425–444.

Google Scholar  

Garrett, N. (2016). How do academic disciplines use PowerPoint? Innovative Higher Education, 41 , 365–380. https://doi.org/10.1007/s10755-016-9381-8

Grech, V. (2018). The application of the Mayer multimedia learning theory to medical PowerPoint slide show presentations. Journal of Visual Communication in Medicine, 41 , 36–41. https://doi.org/10.1080/17453054.2017.1408400

Hallewell, M. J., & Lackovic, N. (2017). Do pictures “tell” a thousand words in lectures? How lecturers vocalise photographs in their presentations. Higher Education Research & Development, 36 , 1166–1180. https://doi.org/10.1080/07294360.2017.1303454

Hertz, B., van Woerkum, C., & Kerkhof, P. (2015). Why do scholars use PowerPoint the way they do? Business and Professional Communication Quarterly, 78 , 273–291. https://doi.org/10.1177/2329490615589171

Huxham, M. (2010). The medium makes the message: Effects of cues on students’ lecture notes. Active Learning in Higher Education, 11 , 179–188. https://doi.org/10.1177/1469787410379681

James, K. E., Burke, L. A., & Hutchins, H. M. (2006). Powerful or pointless? Faculty versus student perceptions of PowerPoint use in business education. Business Communication Quarterly, 69 , 374–396. https://doi.org/10.1177/1080569906294634

Johnson, D. A., & Christensen, J. (2011). A comparison of simplified-visually rich and traditional presentation styles. Teaching of Psychology, 38 , 293–297. https://doi.org/10.1177/0098628311421333

Kahraman, S., Çevik, C., & Kodan, H. (2011). Investigation of university students’ attitude toward the use of PowerPoint according to some variables. Procedia Computer Science, 3 , 1341–1347. https://doi.org/10.1016/j.procs.2011.01.013

Kim, H. (2018). Impact of slide-based lectures on undergraduate students’ learning: Mixed effects of accessibility to slides, differences in note-taking, and memory term. Computers & Education, 123 , 13–25. https://doi.org/10.1016/j.compedu.2018.04.004

Ledbetter, A. M., & Finn, A. N. (2018). Perceived teacher credibility and students’ affect as a function of instructors’ use of PowerPoint and email. Communication Education, 67 , 31–51. https://doi.org/10.1080/03634523.2017.1385821

Levasseur, D. G., & Sawyer, J. K. (2006). Pedagogy meets PowerPoint: A research review of the effects of computer-generated slides in the classroom. Review of Communication, 6 , 101–123. https://doi.org/10.1080/15358590600763383

MacKiewicz, J. (2008). Comparing Powerpoint experts’ and university students’ opinions about PowerPoint presentations. Journal of Technical Writing and Communication, 38 , 149–165. https://doi.org/10.2190/TW.38.2.d

Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38 , 43–52. https://doi.org/10.1207/S15326985EP3801_6

Moulton, S. T., Türkay, S., & Kosslyn, S. M. (2017). Does a presentation’s medium affect its message? PowerPoint, Prezi, and oral presentations. PLoS One, 12 (7), e0178774. https://doi.org/10.1371/journal.pone.0178774

Otter, R., Gardner, G., & Smith-Peavler, E. (2019). PowerPoint use in the undergraduate biology classroom: Perceptions and impacts on student learning. Journal of College Science Teaching, 48 (3), 74–83. https://doi.org/10.2505/4/jcst19_048_03_74

Paivio, A. (1990). Mental representations: A dual coding approach . New York, NY: Oxford University Press.

Pate, A., & Posey, S. (2016). Effects of applying multimedia design principles in PowerPoint lecture redesign. Currents in Pharmacy Teaching and Learning, 8 , 235–239. https://doi.org/10.1016/j.cptl.2015.12.014

Roberts, D. (2018a). The engagement agenda, multimedia learning and the use of images in higher education lecturing: Or, how to end death by PowerPoint. Journal of Further and Higher Education, 42 , 969–985. https://doi.org/10.1080/0309877X.2017.1332356

Roberts, D. (2018b). “The message is the medium”: Evaluating the use of visual images to provoke engagement and active learning in politics and international relations lectures. Politics, 38 , 232–249. https://doi.org/10.1177/0263395717717229

Sharp, J. G., Hemmings, B., Kay, R., Murphy, B., & Elliott, S. (2017). Academic boredom among students in higher education: A mixed-methods exploration of characteristics, contributors and consequences. Journal of Further and Higher Education, 41 , 657–677. https://doi.org/10.1080/0309877X.2016.1159292

Shigli, K., Agrawal, N., Nair, C., Sajjan, S., Kakodkar, P., & Hebbal, M. (2016). Use of PowerPoint presentation as a teaching tool for undergraduate students in the subject of gerodontology. The Journal of Indian Prosthodontic Society, 16 , 187–192. https://doi.org/10.4103/0972-4052.167940

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36 , 157–178.

Williams, J. L., McCarley, N. G., Sharpe, J. L., & Johnson, C. E. (2017). The ability to discern relevant from irrelevant information on PowerPoint slides: A key ingredient to the efficacy of performance feedback. North American Journal of Psychology, 19 , 219–236.

Wisniewski, C. S. (2018). Development and impact of a simplified approach to didactic PowerPoint presentations performed in a drug information course. Currents in Pharmacy Teaching and Learning, 10 , 291–297. https://doi.org/10.1016/j.cptl.2017.11.004

Worthington, D. L., & Levasseur, D. G. (2015). To provide or not to provide course PowerPoint slides? The impact of instructor-provided slides upon student attendance and performance. Computers & Education, 85 , 14–22. https://doi.org/10.1016/j.compedu.2015.02.002

Yilmazel-Sahin, Y. (2009). A comparison of graduate and undergraduate teacher education students’ perceptions of their instructors’ use of Microsoft PowerPoint. Technology, Pedagogy and Education, 18 , 361–380. https://doi.org/10.1080/14759390903335866

Zdaniuk, A., Gruman, J. A., & Cassidy, S. A. (2017). PowerPoint slide provision and student performance: The moderating roles of self-efficacy and gender. Journal of Further and Higher Education, 43 , 467–481. https://doi.org/10.1080/0309877X.2017.1367369

Download references

Acknowledgments

This work was supported by the CONICYT PFCHA/DOCTORADO BECAS CHILE/2015 – 72160199.

Author information

Authors and affiliations.

Universitat Autonoma de Barcelona, Barcelona, Spain

David Chávez Herting, Ramón Cladellas Pros & Antoni Castelló Tarrida

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to David Chávez Herting .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Chávez Herting, D., Cladellas Pros, R. & Castelló Tarrida, A. Patterns of PowerPoint Use in Higher Education: a Comparison between the Natural, Medical, and Social Sciences. Innov High Educ 45 , 65–80 (2020). https://doi.org/10.1007/s10755-019-09488-4

Download citation

Published : 28 November 2019

Issue Date : February 2020

DOI : https://doi.org/10.1007/s10755-019-09488-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Higher education
  • Educational technology
  • Slide presentations
  • Find a journal
  • Publish with us
  • Track your research

Elsevier QRcode Wechat

  • Publication Recognition

How to Make a PowerPoint Presentation of Your Research Paper

  • 4 minute read
  • 118.2K views

Table of Contents

A research paper presentation is often used at conferences and in other settings where you have an opportunity to share your research, and get feedback from your colleagues. Although it may seem as simple as summarizing your research and sharing your knowledge, successful research paper PowerPoint presentation examples show us that there’s a little bit more than that involved.

In this article, we’ll highlight how to make a PowerPoint presentation from a research paper, and what to include (as well as what NOT to include). We’ll also touch on how to present a research paper at a conference.

Purpose of a Research Paper Presentation

The purpose of presenting your paper at a conference or forum is different from the purpose of conducting your research and writing up your paper. In this setting, you want to highlight your work instead of including every detail of your research. Likewise, a presentation is an excellent opportunity to get direct feedback from your colleagues in the field. But, perhaps the main reason for presenting your research is to spark interest in your work, and entice the audience to read your research paper.

So, yes, your presentation should summarize your work, but it needs to do so in a way that encourages your audience to seek out your work, and share their interest in your work with others. It’s not enough just to present your research dryly, to get information out there. More important is to encourage engagement with you, your research, and your work.

Tips for Creating Your Research Paper Presentation

In addition to basic PowerPoint presentation recommendations, which we’ll cover later in this article, think about the following when you’re putting together your research paper presentation:

  • Know your audience : First and foremost, who are you presenting to? Students? Experts in your field? Potential funders? Non-experts? The truth is that your audience will probably have a bit of a mix of all of the above. So, make sure you keep that in mind as you prepare your presentation.

Know more about: Discover the Target Audience .

  • Your audience is human : In other words, they may be tired, they might be wondering why they’re there, and they will, at some point, be tuning out. So, take steps to help them stay interested in your presentation. You can do that by utilizing effective visuals, summarize your conclusions early, and keep your research easy to understand.
  • Running outline : It’s not IF your audience will drift off, or get lost…it’s WHEN. Keep a running outline, either within the presentation or via a handout. Use visual and verbal clues to highlight where you are in the presentation.
  • Where does your research fit in? You should know of work related to your research, but you don’t have to cite every example. In addition, keep references in your presentation to the end, or in the handout. Your audience is there to hear about your work.
  • Plan B : Anticipate possible questions for your presentation, and prepare slides that answer those specific questions in more detail, but have them at the END of your presentation. You can then jump to them, IF needed.

What Makes a PowerPoint Presentation Effective?

You’ve probably attended a presentation where the presenter reads off of their PowerPoint outline, word for word. Or where the presentation is busy, disorganized, or includes too much information. Here are some simple tips for creating an effective PowerPoint Presentation.

  • Less is more: You want to give enough information to make your audience want to read your paper. So include details, but not too many, and avoid too many formulas and technical jargon.
  • Clean and professional : Avoid excessive colors, distracting backgrounds, font changes, animations, and too many words. Instead of whole paragraphs, bullet points with just a few words to summarize and highlight are best.
  • Know your real-estate : Each slide has a limited amount of space. Use it wisely. Typically one, no more than two points per slide. Balance each slide visually. Utilize illustrations when needed; not extraneously.
  • Keep things visual : Remember, a PowerPoint presentation is a powerful tool to present things visually. Use visual graphs over tables and scientific illustrations over long text. Keep your visuals clean and professional, just like any text you include in your presentation.

Know more about our Scientific Illustrations Services .

Another key to an effective presentation is to practice, practice, and then practice some more. When you’re done with your PowerPoint, go through it with friends and colleagues to see if you need to add (or delete excessive) information. Double and triple check for typos and errors. Know the presentation inside and out, so when you’re in front of your audience, you’ll feel confident and comfortable.

How to Present a Research Paper

If your PowerPoint presentation is solid, and you’ve practiced your presentation, that’s half the battle. Follow the basic advice to keep your audience engaged and interested by making eye contact, encouraging questions, and presenting your information with enthusiasm.

We encourage you to read our articles on how to present a scientific journal article and tips on giving good scientific presentations .

Language Editing Plus

Improve the flow and writing of your research paper with Language Editing Plus. This service includes unlimited editing, manuscript formatting for the journal of your choice, reference check and even a customized cover letter. Learn more here , and get started today!

Know How to Structure Your PhD Thesis

  • Manuscript Preparation

Know How to Structure Your PhD Thesis

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

You may also like.

What is a good H-index

What is a Good H-index?

What is a corresponding author?

What is a Corresponding Author?

How to submit a paper

How to Submit a Paper for Publication in a Journal

Input your search keywords and press Enter.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Indian Prosthodont Soc
  • v.16(2); Apr-Jun 2016

Use of PowerPoint presentation as a teaching tool for undergraduate students in the subject of gerodontology

Kamal shigli.

Department of Prosthodontics, Bharati Vidyapeeth Deemed University Dental College and Hospital, Sangli, Maharashtra, India

Neha Agrawal

1 Department of Periodontics and Community Dentistry, Dr. Z A Dental College, AMU, Aligarh, Uttar Pradesh, India

Chandrasekharan Nair

2 Department of Prosthodontics, AECS Maaruti College of Dental Sciences and Research Center, Bengaluru, Karnataka, India

Suresh Sajjan

3 Department of Prosthodontics, Vishnu Dental College, Bhimavaram, Andhra Pradesh, India

Pradnya Kakodkar

4 Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Pimpri, Pune, Maharashtra, India

Mamata Hebbal

5 Department of Preventive and Community Dentistry, K.L.E.V.K. Institute of Dental Sciences, Belgaum, Karnataka, India

Though different teaching learning media have been employed in the instruction of geriatric dentistry, their efficacy has not been adequately evaluated. This study was conducted with the aim to determine the efficacy of a PowerPoint presentation in teaching gerodontology.

Materials and Methods:

This is a prospective follow-up study using a pre- and post-intervention assessment. A pilot study was conducted on the final year students to check the feasibility of the study. A convenience sampling procedure was used. All interns ( n = 80) of the Modern Dental College and Research Centre, Indore, India were invited to participate. Interns completed a 24-item questionnaire documenting their current knowledge on gerodontology. One week after a 30 min PowerPoint presentation on gerodontology, the same interns completed the same questionnaire again, providing an indication of the efficacy of the learning tool. Paired t -test and McNemar test were employed for statistical analysis.

A statistically significant difference was observed in pre- and post-intervention scores ( P < 0.05).

Conclusion:

The results of this study indicated that PowerPoint presentation can be used as an effective tool for improving the knowledge regarding gerodontology.

INTRODUCTION

The population of senior citizens (60 and above) in India is increasing. India harbors 77 million senior citizens, comprising 7.7% of its total population.[ 1 ] Growth rate of elderly is higher than that of the general population.[ 2 ] The gray population which accounted for 6.7% of total population in 1991 is expected to increase its share to more than 10% by the year 2021.[ 3 ] This improved life expectancy is as a result of greater health awareness, accessibility, affordability, and acceptability of improved medical care.[ 4 ] The alteration of the age pyramid poses significant new challenges for health care professionals in the 21 st century to provide oral health care facilities to the geriatric population.[ 5 , 6 ] Poor oral health can have a significant impact on the quality of life and that might lead to deterioration of general health.[ 7 , 8 , 9 , 10 , 11 , 12 , 13 ] The importance of the subject of gerodontology does not reflect in the undergraduate curriculum of dentistry.[ 11 , 14 , 15 ] Normally all the universities in India follow the curriculum designed by the Dental Council of India. There is lack of training and the basic aspects of geriatric dentistry are not included in the curriculum.[ 16 ] The provision to learn about geriatric patient is mentioned only as a part of complete denture prosthodontics in diagnosis and treatment planning chapter.[ 17 ] The graduates after completion are likely to have less knowledge about the problems of geriatric patients. Dentists need to understand the socioeconomic, physical, and psychological problems, and the complexity in treating the elderly patients.[ 16 ] With often more than one chronic disease affecting individuals and polypharmacy, there is a need to increase overall knowledge of geriatric pharmacy and geriatric medicine to enhance the quality of life of the elderly which is a social responsibility.[ 6 , 18 , 19 , 20 , 21 ]

Among the teaching and learning methods employed in dental education, audio visual media are the most popular. These media provide a multisensory experience.[ 5 ] The different senses tend to play a key role in improving the memory of the student who can easily remember the content that is presented.[ 22 ] Efficacy of different media in the teaching and learning process of a specific subject of dentistry is not well-documented. Therefore, this study was undertaken to determine the efficacy of a PowerPoint presentation in teaching gerodontology to the dental interns.

MATERIALS AND METHODS

This is a prospective follow-up study using a pre- and post-intervention assessment. Ethical clearance was obtained from the institute to conduct the study. The duration of the study was from July 2012 to October 2012. A pilot study was conducted among 15 final year BDS students to find out the feasibility of the study and the questionnaire used was modified accordingly. A convenience sampling procedure was used. The study center was the Modern Dental College and Research Centre, Indore, India. All dental interns ( n = 80) of 2012 batch were invited to participate in the study. Inclusion allowed for both genders, and all ages of interns. There was no exclusion criterion, besides unwillingness to participate. Written consent to participate in the study was taken.

The study instrument used was a 24-item structured self-administered closed-ended questionnaire (options comprised of combination of multiple-choice true/false questions and single best answer questions) that was based on four domains measuring familiarity with geriatric dentistry and prior experience with “learning or teaching tools” (6 items); knowledge of characteristics of older people (7 items); knowledge of care provision (8 items); and barriers to and neglect of care provision (3 items). The questionnaire was adopted from Teasdale and Shaikh.[ 23 ] and modified to suit the Indian context.

All the interns were assembled in a classroom and were briefed about the study. They were asked to complete a preintervention questionnaire which took approximately 10 min. Afterward single investigator gave a 30 min PowerPoint presentation (Microsoft Office 2007) on gerodontology. The PowerPoint presentation comprised of information on educational tools, an introduction to ageing, effects of ageing on oral and systemic health, effects of systemic conditions on oral health of elderly population, oral side effects of medications, care provision, and challenges and barriers of geriatric oral health care. One week after the PowerPoint presentation, the same interns were recalled and requested to complete the same questionnaire again. Questionnaires were coded allowing paired analysis of alteration in the scores. Each “correct” answer to a question was awarded one point while an “incorrect” response was given zero. Questions that were not answered were given zero points. Questionnaires with overwriting were disqualified for analysis. The Statistical Package for the Social Sciences version 17.0 (SPSS Inc., Chicago, Illinois, USA) was used for all data analysis. Paired t -test was employed to find out the difference in overall scores that occurred before and after the lecture. McNemar test was used to find the improvement in correct answers for individual questions.

Out of the 80 interns, 61 (76%) completed the preintervention assessment form and 56 interns (92% of those who answered the pretest) completed the postintervention assessment form, more female than male respondents.

In the questions on general characteristics comprising of the geriatric age and the number of people in the 60-plus age group in India in 2013 the percentage of correct answers increased 1 week after the presentation. Regarding the question related to efficient learning or teaching tool there was no change [ Table 1a ].

Comparison between pre- and post-PowerPoint presentation results regarding domain 1 (“general characteristics of older people”)

An external file that holds a picture, illustration, etc.
Object name is JIPS-16-187-g001.jpg

In the question on rating oneself in terms of familiarity with gerodontology a substantial increase of those who considered “it had increased a lot” was found. Three quarters of the respondents agreed “a lot” to include gerodontology in the dental school curriculum after the PowerPoint presentation compared to only one-third before the test. No great changes were seen regarding the extent of training/experience including older patients after the test [ Table 1b ].

An external file that holds a picture, illustration, etc.
Object name is JIPS-16-187-g002.jpg

In the seven statements, 7–13, the posttest correct values improved for five questions [ Table 2 ]. Among questions 14–21, the posttest correct values enhanced significantly in seven of the questions [ Table 3 ].

Comparison between pre- and post-PowerPoint presentation results regarding domain 2 (“knowledge of characteristics of older people”)

An external file that holds a picture, illustration, etc.
Object name is JIPS-16-187-g003.jpg

Comparison between pre- and post-PowerPoint presentation results regarding domain 3 (“knowledge of care provision”)

An external file that holds a picture, illustration, etc.
Object name is JIPS-16-187-g004.jpg

In the seven statements 22–24 the posttest correct values improved significantly in three of them, whereas no significant change occurred for the other statements [ Table 4 ].

Comparison between pre- and post-PowerPoint presentation results regarding domain 4 (“barriers to and neglect of care provision”)

An external file that holds a picture, illustration, etc.
Object name is JIPS-16-187-g005.jpg

The overall mean scores before the lecture were 18.5 ± 2.7, whereas the mean score posttest increased to 24.9 ± 1.9 showing a mean increase in score by 6.4 ± 2.8. This difference was found to be statistically highly significant [ Table 5 ].

Overall comparison between pre- and post-PowerPoint presentation results

An external file that holds a picture, illustration, etc.
Object name is JIPS-16-187-g006.jpg

The percentage of correct answers before and after the lecture for “knowledge of characteristics of older people” was 68.6% and 87.5%; for “knowledge of care provision” the percentage improved from 60.2% to 87.9% and for “barriers to and neglect of care provision” the percentage increased from 82.4% to 92.1%. In all the domains, there was an increase in percentage of correct answers after the lecture.

The knowledge of the teacher alone is not sufficient to make the students understand the subject. The presentation of the lecture also plays an important role. In addition to the traditional “chalk and talk” method, use of PowerPoint presentation (PP) is increasing.[ 24 ]

The increase in the population of aged individuals makes it relevant to include gerodontology in the dental curriculum. During the undergraduate dental education programme gerodontology is not given much importance although the student is expected to treat the elderly. Therefore, this study was undertaken to determine the efficiency of PowerPoint presentation in teaching gerodontology.

When the first domain related to “general characteristics of older people” was considered 1 week after the presentation, all the graduates answered that the geriatric population includes 60 years and older individuals. 85.7% of graduates correctly answered that the number of people in the 60-plus age group in India is expected to increase to 100 million in 2013. 94.6% of the graduates rated audio visual aids as effective before the presentation. Graduates found themselves more familiar with gerodontology 1 week after the presentation. There was an appreciable increase in the number of graduates who felt that gerodontology should be a part of the dental school curriculum. The results of our study are in agreement with Shah;[ 11 , 18 ] Kalk et al .[ 14 ] and Talwar and Chawla.[ 15 ] A slight decrease in percentage was observed for extent of experience in treating older patients which could be due to the realization of their insufficient knowledge and experience after the presentation. These findings are similar to those reported by Shah[ 2 ] that there is little emphasis on practical training of elderly in undergraduate dental curriculum in India.

When the second domain “knowledge of characteristics of older people” was assessed 58.9% of the graduates knew that tooth loss is not an inevitable part of ageing. Awareness that elderly experience more injuries in the home improved among 85.7% of the graduates. Knowledge that the poverty rate of older people is higher improved in 83.9% of the graduates. The percentage of correct answers increased among 96.4% of the graduates when the responses were assessed for parents having problems adjusting to their “empty nest.” One week after the presentation, 76.8% of the graduates knew that the edentulous older people when compared to dentate older people have a higher mortality rate. 85.7% of the graduates had prior knowledge that older persons who reduce their activities are not happier than those who remain active. This prior knowledge could be attributed to observation among grandparents or relatives.

On assessing the third domain “knowledge of care provision” all graduates could answer regarding the aids used for oral health assessment of an older patient. 75% of correct answers were obtained for dental infections impact on the treatment of medical conditions. 96.4% correct scores were obtained for means to relieve denture problems. 94.6% scores were acquired for including use of fluoride gel and fluoride dentifrice in dentate older patients. Oral candidiasis secondary to use of corticosteroids and hyposalivation secondary to antihistamine therapy also showed 98.2% and 96.4% correct answers posttest. The PowerPoint presentation helped 78.6% of the graduates to understand that the prognosis of implant-supported restorations is as good in older as in young adults. 89.3% and 96.4% of the graduates were aware that it is important for an oral health care provider to know about the medications an older patient is taking and gingival hyperplasia secondary to dilantin therapy before the presentation. This awareness could be attributed to the similar finding among young adults.

When the last domain “barriers to and neglect of care provision” was assessed it was found that all the interns (100%) knew the various barriers to oral health care provision and the predisposing factors related to opportunistic infection of Candida albicans . 96.4% graduates knew the consequences of neglect of oral health. All graduates knew that periodontal disease may be caused by neglect of oral health. This awareness may be as these sequelae are commonly observed.

There was an overall increase in the posttest scores 1 week after the presentation. The results of our study are in agreement with Teasdale and Shaikh.[ 23 ] who also reported significant improvement in test scores after use of a compact disc based educational tool. According to a study conducted by Parolia et al .[ 25 ] the use of diagrams and symbolic devices such as graphs, flow charts, and arrows help students to understand the topic better.

An overall comparison of all the domains revealed an improvement in knowledge in each of them which could be attributed to the use of audio visual aids. The results support Mayer's cognitive theory of multimedia learning[ 26 ] according to which when learning we place relevant words into auditory working memory and relevant images into visual working memory. This information is then integrated as one along with the prior knowledge.

The least preintervention scores were obtained for the domain “knowledge of care provision” which may be due to gerodontology not being given sufficient importance in the undergraduate curriculum. This finding is similar to that reported by Shah[ 11 ] that there is no orientation of dental graduates toward the special needs of the geriatric.

Limitations of the study were small sample size; limited time gap between pre- and post-test and between the lecture and the posttest (where a longer gap would help assess longer-term retention of knowledge). The same questions were given in the pre- and post-tests, so students might have had the opportunity to look up answers from another source other than the PowerPoint before the posttest. If so the PowerPoint presentation had an additional advantage of stimulating the interest of the students. Therefore, the results may be biased toward finding a greater effectiveness of PowerPoint than there actually is.

In this study, PowerPoint presentation proved to be an effective tool for teaching. In other instances alternative techniques may be effective, so it is best to test these before implementation.

We can employ different teaching techniques and modify them regularly to break monotony and to incorporate best out of each.[ 27 ]

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Acknowledgments

The authors would like to acknowledge Dr. Gunnar Carlsson and Dr. Cees de Baat for inputs in preparing the questionnaire; Dr. Saran Shantikumar and Dr. Gouri Anehosur for inputs in the manuscript and Dr. Vikneshan M, Department of Public Health Dentistry for conducting the statistical analysis.

IMAGES

  1. 20+ Best Research PowerPoint Templates (For Research Presentations

    scholarly articles on powerpoint presentations

  2. Best Powerpoint Templates For Academic Presentations

    scholarly articles on powerpoint presentations

  3. PPT

    scholarly articles on powerpoint presentations

  4. PPT

    scholarly articles on powerpoint presentations

  5. Free Powerpoint Scientific Research Poster Templates for Printing

    scholarly articles on powerpoint presentations

  6. Academic Research Proposal Powerpoint Presentation Slides

    scholarly articles on powerpoint presentations

VIDEO

  1. This is a great feature to start your next PowerPoint Presentation || S. J. INSTITUTION

  2. Identity in the Pre Modern Middle East

  3. Managing Large PowerPoints By Sectioning Slides

  4. The Fall of Empires

  5. Window Transition Effect in PowerPoint

  6. Designing an Effective Poster Using PowerPoint

COMMENTS

  1. Does a presentation's medium affect its message? PowerPoint ...

    Despite the prevalence of PowerPoint in professional and educational presentations, surprisingly little is known about how effective such presentations are. All else being equal, are PowerPoint presentations better than purely oral presentations or those that use alternative software tools? To address this question we recreated a real-world business scenario in which individuals presented to a ...

  2. Death to weak PowerPoint: strategies to create effective visual

    There is nothing more frustrating than sitting through a presentation bombarded by slide after slide of small text, difficult to read graphs, irrelevant clip art images, and poorly designed templates. Often to blame is the use and abuse of PowerPoint 1 (e.g., Tufte, 2003; Bumiller, 2010 ). Academics typically only endure weak PowerPoint ...

  3. Ten simple rules for effective presentation slides

    Rule 2: Spend only 1 minute per slide. When you present your slide in the talk, it should take 1 minute or less to discuss. This rule is really helpful for planning purposes—a 20-minute presentation should have somewhere around 20 slides. Also, frequently giving your audience new information to feast on helps keep them engaged.

  4. Ten simple rules for effective presentation slides

    The "presentation slide" is the building block of all academic presentations, whether they are journal clubs, thesis committee meetings, short conference talks, or hour-long seminars. A slide is a single page projected on a screen, usually built on the premise of a title, body, and figures or tables and includes both what is shown and what ...

  5. Impact of the provision of PowerPoint slides on learning

    Further, an article published by Baker et al. (2018) examined evidence of the impact on academic performance of using PowerPoint presentations in the classroom. Improvements were identified following the use of PowerPoint slides when compared with traditional teaching in K-12 students, although no differences were found in college students.

  6. Power Point as an innovative tool for teaching and learning in modern

    Abstract. Nowadays, PowerPoint is an educational tool for teaching and delivering materials in classes. It was basically developed for presentation and not essentially for teaching and learning in a classroom. Its applications in teaching and learning settings should provide better means of communicating information to the students.

  7. Evidence-Based Human Factors Guidelines for PowerPoint Presentations

    Like any technology, the effective use of PowerPoint requires that it be integrated effectively into the human-technical system. A variety of HF/E principles with a long history can be used to improve the PowerPoint presentation, just as such principles can improve any display used by humans to accomplish a task.

  8. Presenting With Confidence

    The tools provided in this article can help you develop a presentation that will be meaningful and impactful to your audience. It is a great feeling when audience members come to you after your presentation to share with you how much they enjoyed and learned from your talk. ... Wax D. 10 tips for more effective PowerPoint presentations. 2017 ...

  9. PowerPoint Presentation Technology and the Dynamics of Teaching

    In the main, the results reported in scholarly journal articles indicate that students like to be taught using PowerPoint (perhaps because of its novelty and the availability of printed handouts of PowerPoint slides) and think that PowerPoint presentations are entertaining, enhance clarity, and aid recall of subject matter.

  10. Why Do Scholars Use PowerPoint the Way They Do?

    Beyond bullet points: Using Microsoft PowerPoint to create presentations that inform, motivate, and inspire. Redmond, WA: Microsoft Press. Google Scholar. ... Professional presentations with PowerPoint]. Den Haag, Netherlands: Academic Service. Google Scholar. Cyphert D. (2004). The problem of PowerPoint: Visual aid or visual rhetoric? ...

  11. College-based case studies in using PowerPoint effectively

    2. Review of the literature. Recent PowerPoint studies have mainly examined the linkage between PowerPoint and students' levels of engagement or explored the efficacy of this widely used presentation software (Brock & Joglekar, Citation 2011).Swati, Suresh, and Sachin (Citation 2014) found that when students in a microbiology course were learning simple material, chalkboard-based lectures ...

  12. Impact of the provision of PowerPoint slides on learning

    Baker et al. (2018) recently conducted a meta-analysis with the aim of assessing evidence about the impact on students' cognitive learning of PowerPoint use in classes. Findings revealed that some studies showed effects in favour of PowerPoint use (29.17%), whilst other studies showed negative (22.92%) or no effects of PowerPoint use (47.92%).

  13. Full article: The use and abuse of PowerPoint in Teaching and Learning

    Abstract. The use of PowerPoint for teaching presentations has considerable potential for encouraging more professional presentations. This paper reviews the advantages and disadvantages associated with its use in a teaching and learning context and suggests some guidelines and pedagogical strategies that need to be considered where it is to be used.

  14. Frontiers

    In this article, we use psychological principles to develop objective guidelines for slideshow design, slide preparation, and presentation execution, and use these guidelines to assess flaws in PowerPoint ® slides and presentations. In the three studies reported here, we empirically extend ideas presented in Kosslyn (2007, 2010) and analyze ...

  15. Patterns of PowerPoint Use in Higher Education: a Comparison ...

    PowerPoint is one of the most widely used technological tools in educational contexts, but little is known about the differences in usage patterns by faculty members from various disciplines. For the study we report in this article we used a survey specially designed to explore this question, and it was completed by 106 faculty members from different disciplines. The results suggest the ...

  16. (PDF) The effectiveness of PowerPoint presentation and conventional

    Advantage of using Power Point presentations in EFL classroom. International Journal of . English Language and Translation Studies, 1, 3-16. ... academic language use, professional development ...

  17. The Impact of Supplementing PowerPoint with Detailed Notes and

    Introduction. PowerPoint is a widely used teaching tool in higher education for many years now. One of the benefits of this technology is its potential to enhance students' engagement and empower effective learning [1-3].Moreover, this technology helps students to organise their notes if they use it as a starting point to expand their knowledge from assigned textbooks.

  18. Audience Engagement Techniques in Oral Presentations

    First, the speaker must allow enough time. The TPSS can easily range from 5 minutes up to an hour, depending on the speech goal and the timing of each sequence. In a workshop context, the facilitator might want a long TPSS sequence. On the other hand, the speaker might use a 2-minute sequence in a short speech context.

  19. The Impact of Using PowerPoint Presentations on ...

    2. Literature Review Microsoft Power-Point is a presentation program developed by Microsoft. It is a part of the Microsoft Office system which is widely used by business people, educators, students, and trainers. As a part of the Microsoft Office suite, Power-Point has become the world's most widely used presentation program.

  20. Scientific Presenting: Using Evidence-Based Classroom Practices to

    While active-learning strategies are not mutually exclusive with the use of PowerPoint presentations in the dissemination of information, they do require thoughtful design, time for reflection, and interaction to achieve deeper levels of learning (Chi and Wylie, 2014). This may be as simple as allowing 30-60 seconds for prediction or ...

  21. How to Make a PowerPoint Presentation of Your Research Paper

    Here are some simple tips for creating an effective PowerPoint Presentation. Less is more: You want to give enough information to make your audience want to read your paper. So include details, but not too many, and avoid too many formulas and technical jargon. Clean and professional: Avoid excessive colors, distracting backgrounds, font ...

  22. Seven tips for giving an engaging and memorable presentation

    Tip 2: Tell a story. Stories connect people. A story that is personal to the speaker can evoke memories that are relatable and add concrete meaning to the presentation. 3 Consider starting your presentation with a story that shows why the topic is important to you. In addition, stories focus the audience on the speaker, rather than a slideshow.

  23. Use of PowerPoint presentation as a teaching tool for undergraduate

    The PowerPoint presentation helped 78.6% of the graduates to understand that the prognosis of implant-supported restorations is as good in older as in young adults. 89.3% and 96.4% of the graduates were aware that it is important for an oral health care provider to know about the medications an older patient is taking and gingival hyperplasia ...