The Easy Guide to Solving Problems with Six Sigma DMAIC Method

pop-out-icon

The most commonly used methodology in Six Sigma is the DMAIC process. Many use it to solve problems and identify and fix errors in business and manufacturing processes.

In this post, we will look at how to use the DMAIC process to solve problems. You will also find useful and editable templates that you can use right away when implementing DMAIC problem-solving in your organization.

  • What are 5 the Steps of Six Sigma

DMAIC Process and Problem-Solving

Common mistakes to avoid when using six sigma dmaic methodology, how to use the dmaic methodology for problem solving in project management, what are the 5 steps of six sigma.

DMAIC is one of the core methodologies used within the Six Sigma framework. It is a data-driven method used to systematically improve the process. The approach aims to increase the quality of a product or service by focusing on optimizing the process that produces the output. This way DMAIC seeks to provide permanent solutions when it comes to process improvement.

It provides a structured problem-solving framework to identify, analyze, and improve existing processes. DMAIC guides practitioners through a series of steps to identify the root causes of process issues, implement solutions, and sustain the improvements over time.

DMIC-template- to solve 6 sigma problems

Following we have listed down the 5 phases of the DMAIC process along with the steps you need to take when using it to solve problems. Different tools for each phase is provided with editable templates.

Step 1: Define the Problem

So there’s a problem that affects your customer or your company processes. In this first step of the DMAIC problem solving method , you need to focus on what the problem is and how it has affected you as a company.

There are a few steps you need to follow in this phase.

• Create a problem statement which should include a definition of the problem in quantifiable terms and the severity of the problem.

•  Make sure necessary resources such as a team leader and competent team members, and funds etc. are available at hand.

•  Develop a goal statement based on your problem statement. It should be a measurable and time-bound target to achieve.

•  Create a SIPOC diagram which will provide the team with a high-level overview of the process (along with its inputs, outputs, suppliers, and customers) that is being analyzed. You can also use a value stream map to do the same job.

SPIOC-template- to solve 6 sigma problems

•  Try to understand the process in more in-depth detail by creating a process map that outlines all process steps. Involve the process owners when identifying the process steps and developing the map. You can add swimlanes to represent different departments and actors responsible.

Flowchart template for DMAIC

Step 2: Measure the Problem

In this step, you should measure the extent of the problem. To do so you need to examine the process in its current state to see how it performs. The detailed process map you created in the ‘Define’ phase can help you with this.

The baseline measurements you will need to look into in this phase, are process duration, the number of defects, costs and other relevant metrics.

These baseline measurements will be used as the standards against which the team will measure their success in the ‘Improve’ phase.

Step 3: Analyze the Problem

The analyze phase of the DMAIC process is about identifying the root cause that is causing the problem.

•  Referring to the process maps and value stream maps you have created, further, analyze the process to identify the problem areas.

Flowchart template for DMAIC -

•  Visualize the data you have collected (both in the ‘Measure’ phase and the analyze phase) to identify signs of problems in the processes.

•  Use Pareto charts, histograms, run charts etc. to represent numerical data. Study them with team leaders and process owners to identify patterns.

Pareto Chart Template- To solve problems with 6 Sigma

•  With the results of your process analysis and your data analysis, start brainstorming the root causes of the problem. Use a cause and effect diagram/ fishbone diagram to capture the knowledge of the process participants during the session.

Cause and effect diagram

 •  Using a 5 whys diagram, narrow down your findings to the last few causes of the problem in your process.

5 whys template  for dmaic

Step 4: Improve (Solve the Problem)

In this phase, the focus is on mitigating the root cause identified and brainstorming and implementing solutions. The team will also collect data to measure their improvement against the data collected during the ‘Measure’ phase.

•  You may generate several effective solutions to the root cause, but implementing them all would not be practical. Therefore, you will have to select the most practical solutions.

To do this you can use an impact effort matrix . It will help you determine which solution has the best impact and the least effort/ cost.

Impact-Effort Matrix- For 6 Sigma analysis

 • Based on different solutions, you should develop new maps that will reflect the status of the process once the solution has been applied. This map is known as the to-be map or the future-state map. It will provide guidance for the team as they implement changes.

•  Explore the different solutions using the PDCA cycle and select the best one to implement.  The cycle allows you to systematically study the possible solutions, evaluate the results and select the ones that have a higher chance of success.

PDCA template- to conduct 6-sigma analysis

Step 5: Control (Sustain the Improvements)

In the final phase of the DMAIC method , the focus falls on maintaining the improvements you have gained by implementing the solutions. Here you should continue to measure the success and create a plan to monitor the improvements (a Monitoring plan).

You should also create a Response plan which includes steps to take if there’s a drop in the process performance. With new process maps and other documentation, you should then proceed to document the improved processes.

Hand these documents along with the Monitoring plan and the response plan to the process owners for their reference.

Insufficiently defining the problem can lead to a lack of clarity regarding the problem statement, objectives, and scope. Take the time to clearly define the problem, understand the desired outcomes, and align stakeholders' expectations.

Failing to engage key stakeholders throughout the DMAIC process can result in limited buy-in and resistance to change. Ensure that stakeholders are involved from the beginning, seeking their input, addressing concerns, and keeping them informed about progress and outcomes.

Collecting insufficient or inaccurate data can lead to flawed analysis and incorrect conclusions. Take the time to gather relevant data using appropriate measurement systems, ensure data accuracy and reliability, and apply appropriate statistical analysis techniques to derive meaningful insights.

Getting caught up in analysis paralysis without taking action is a common pitfall. While analysis is crucial, it’s equally important to translate insights into concrete improvement actions. Strive for a balance between analysis and implementation to drive real change.

Failing to test potential solutions before implementation can lead to unintended consequences. Utilize methods such as pilot studies, simulation, or small-scale experiments to validate and refine proposed solutions before full-scale implementation.

Successful process improvement is not just about making initial changes ; it’s about sustaining those improvements over the long term. Develop robust control plans, standard operating procedures, and monitoring mechanisms to ensure the gains achieved are maintained and deviations are identified and corrected.

Applying DMAIC in a one-size-fits-all manner without considering the organization’s unique culture, context, and capabilities can hinder success. Tailor the approach to fit the specific needs, capabilities, and culture of the organization to enhance acceptance and implementation.

In the project management context, the Define phase involves clearly defining the project objectives, scope, deliverables, and success criteria. It entails identifying project stakeholders, understanding their expectations, and establishing a project charter or a similar document that outlines the project’s purpose and key parameters.

The Measure phase focuses on collecting data and metrics to assess the project’s progress, performance, and adherence to schedule and budget. Key project metrics such as schedule variance, cost variance, and resource utilization are tracked and analyzed. This phase provides insights into the project’s current state and helps identify areas that require improvement.

The Analyze phase involves analyzing the project data and identifying root causes of any performance gaps or issues. It aims to understand why certain project aspects are not meeting expectations. Techniques such as root cause analysis, Pareto charts, or fishbone diagrams can be used to identify factors impacting project performance.

In the Improve phase, potential solutions and actions are developed and implemented to address the identified issues. This may involve making adjustments to the project plan, reallocating resources, refining processes, or implementing corrective measures. The goal is to optimize project performance and achieve desired outcomes.

The Control phase focuses on monitoring and controlling project activities to sustain the improvements made. It involves implementing project control mechanisms, establishing performance metrics, and conducting regular reviews to ensure that the project remains on track. Control measures help prevent deviations from the plan and enable timely corrective actions.

What are Your Thoughts on DMAIC Problem Solving Method?

Here we have covered the 5 phases of  Six Sigma DMAIC and the tools that you can use in each stage. You can use them to identify problem areas in your organizational processes, generate practical solutions and implement them effectively.

Have you used DMAIC process to improve processes and solve problems in your organization? Share your experience with the tool with us in the comment section below.

Also, check our post on Process Improvement Methodologies to learn about more Six Sigma and Lean tools to streamline your processes.

Join over thousands of organizations that use Creately to brainstorm, plan, analyze, and execute their projects successfully.

FAQs about Six Sigma and DMAIC Approaches

What is six sigma, what is the difference between dmaic and dmadv.

DMAIC and DMADV are two methodologies used in Six Sigma. DMAIC is employed to enhance existing processes by addressing issues and improving efficiency, while DMADV is utilized for creating new processes or products that meet specific customer needs by following a structured design and verification process.

  • Used for improving existing processes
  • Define, Measure, Analyze, Improve, Control
  • Identifies problem areas and implements solutions
  • Focuses on reducing process variation and enhancing efficiency
  • Used for developing new products, services, or processes
  • Define, Measure, Analyze, Design, Verify
  • Emphasizes meeting customer requirements and creating innovative solutions
  • Involves detailed design and verification through testing

When to Use the DMAIC Methodology?

Problem identification : When a process is not meeting desired outcomes or experiencing defects, DMAIC can be used to identify and address the root causes of the problem.

Process optimization : DMAIC provides a systematic approach to analyze and make improvements to processes by reducing waste, improving cycle time, or enhancing overall efficiency.

Continuous improvement : DMAIC is often used as part of ongoing quality management efforts. It helps organizations maintain a culture of continuous improvement by systematically identifying and addressing process issues, reducing variation, and striving for better performance.

Data-driven decision making : DMAIC relies on data collection, measurement, and analysis. It is suitable when there is sufficient data available to evaluate process performance and identify areas for improvement.

Quality control and defect reduction : DMAIC is particularly useful when the primary objective is to reduce defects, minimize errors, and enhance product or service quality. By analyzing the root causes of defects, improvements can be made to prevent their occurrence.

More Related Articles

Process Mapping Guide: Definition, How-to and Best Practices

Amanda Athuraliya is the communication specialist/content writer at Creately, online diagramming and collaboration tool. She is an avid reader, a budding writer and a passionate researcher who loves to write about all kinds of topics.

  • Consultancy
  • Online Courses
  • Lean , Lean Wiki , Six Sigma

DMAIC Model | The 5 Phase DMAIC Process to Problem-Solving

  • 5 mins to read
  • July 1, 2020
  • By Reagan Pannell

Summary: An Introduction to DMAIC

Dmaic – the dmaic model.

The 6 Sigma DMAIC model remains the core roadmap for almost all Lean Six Sigma problem-solving approaches that drive quality improvement projects. It is used to ensure a robust problem-solving process is followed to give the best chance of the best solution being found.

A note about the structure and the approach used in this article.

Our approach to DMAIC follows Quentin Brook’s book “Lean Six Sigma & Minitab” which for anyone wishing to study Lean Six Sigma is a must for the  Green Belt Course  and the  Black Belt Course .

What is the dmaic model.

DMAIC is short for: Define, Measure, Analyse, Improve and Control. These are the key phases that each project must go through to find the right solution. This flow is the concept behind DMAIC Analysis of an issue and its the DMAIC cycle all projects must go through.

As you can quickly see from the 5 DMAIC phases they follow a logical sequence as we will go through in more detail below. But they also make sure you do not try to jump to implementing a solution before you have properly, defined and measured what you are going to be an improvement.

We all love to jump to solutions, but the DMAIC problem-solving structure helps us have a more rigorous approach so that we do not short cut the process and perhaps miss the best solution or perhaps implement the wrong solution as well. It can help companies better structure their problem-solving approaches and be more robust in their approach. 

DMAIC – The 5 DMAIC Process Phases

The phases throughout the DMAIC model have and can be broken down in many different ways. One of the best approaches we have found is from Opex Resources which shows how to examine the existing processes, and with a project team, and the sigma improvement process, we can solve complex issues.

DMAIC Define Phase

The purpose of the Define phase is ultimately to describe the problems that need to be solved and for the key business decision-makers to be aligned on the goal of the project. Its about creating and agreeing the project charter .

All too often, teams have identified solutions without actually defining what it is they will actually be trying to do or perhaps not do. This can lead to internal confusion and often solutions which completely miss the business requirements and needs.

  • Define the Business Case
  • Understand the Consumer
  • Define The Process
  • Manage the Project
  • Gain Project Approval

DMAIC Measure Phase

In the measure phase, the goal is to collect the relevant information to baseline the current performance of the product or the process. In this stage, we want to identify the level of “defects” or the errors that go wrong and use the baseline to measure our progress throughout the project.

The key goal of this phase is to have a very strong and clear measure/baseline of how things are performing today so that we can always monitor our progress towards our goals. We need to understand our cycle times , process times, quality metrics.

Many projects are delivered without clear benefits being shown because the team never fully baseline the current status before making changes.

The Measure phase can be broken down into 5 key areas:

  • Develop Process Measures
  • Collect Process Data
  • Check the Data Quality
  • Understand Process Behaviour
  • Baseline Process Capability and Potential

100% Free Fundamentals of Lean COURSE

Take our free course.

JOIN FOR FREE

Lean Six Sigma Yellow Belt Certification Course

We can’t solve problems by using the same kind of thinking we used when we created them” Albert Einstein Tweet

DMAIC Analyse Phase

The goal of the DMAIC Analyse phase with the lean six sigma improvement process is to identify which process inputs or parameters have the most critical effect on the outputs. In other words, we want to identify the root cause(s) so that we know what critical elements we need to fix.

During this phase, the teams need to explore all potential root causes using both analytical approaches, statistical approaches or even graphical tools such as VSM’s and Process maps to uncover the most important elements which need to be changed/fixed.

The Analyse phase can be broken down into:

  • Analyse the Process
  • Develop Theories and Ideas
  • Analyse the Data
  • and finally, Verify Root Causes 

DMAIC Improve Phase

The goal of the improvement phase is to identify a wide range of potential solutions before identifying the critical solutions which will give us the maximum return for our investment and directly fix the root cause we identified.

During this phase, the team brainstorm, pilot, test and validate potential improvement ideas before finally implementing the right solutions. With each pilot, the team can validate how well it improves the key measures they identified back in Define and Measure. When the team finally roll out the solution, the results should be seen if the right solution has been found and implemented correctly.

The Improve phase can be broken down into:

  • Generate Potential Solutions
  • Select the Best Solution
  • Assess the Risks
  • Pilot and Implement

DMAIC Control Phase

The final part of the DMAIC Model is the Control phase where we need to ensure that the new changes become business as normal and we do not revert to the same way of working as before.

During this phase, we want to ensure that we close the project off by validating the project savings and ensuring the new process is correctly documented. We also need to make sure that new measures and process KPI’s are in place and, finally that we get the business champion to sign off on both the project and the savings. We may need to redesign the workplace following the 5S principles .

The Control phase can be broken down into:

  • Implement Ongoing Measurements
  • Standardise Solutions
  • Quantify the Improvement
  • Close The Project

The key closing documents of the Control Phase is a Control Plan that documents all the changes and process steps with key risks, standard work instructions and the Project Close-Out document signed by the business owners to accept the change and the validated benefits.

The DMAIC Model vs. A3 Management vs. 8D Problem Solving

The DMAIC model is not the only project management roadmap. Two others which are important is the A3 format which originally comes from Toyota and is very Lean focused and the 8D which draws more of the DMAIC structure but with the 1-page idea of the A3.

Everyone has their own preference but each method is interchangeable. The DMAIC Structure lends its self naturally to a multi-slide Powerpoint presentation. Whereas the A3 is a single-page document which is perfect for internal communication and adding into War Rooms and Control Towers.

What’s important is that every problem-solving approach follows the PDCA (Plan, Do, Check and Act) Scientific Problem Solving format. The reset is just a preference or using the right tool in the right circumstances.

Stay current with our latest insights

  • Lean Six Sigma Yellow Belt Course

Our Training Courses

Fundamentals of lean.

  • Lean Six Sigma White Belt Course
  • Lean Thinking Business Course
  • Lean Six Sigma Green Belt Course
  • Lean Six Sigma Black Belt Course

Yellow Belt Course

View all courses, recent articles, value stream mapping as a strategic tool, latest business book reviews, leanscape announces leadership coaching services, unlock business innovation with the lean business model canvas, 2024 recommended reads for transformative thinking, 10 best books on agile, scrum and design thinking, view all articles, green belt course, other articles, how does vuca impact your business, how long does it take to get lean six sigma black belt, newsletter | investing in yourself to make lasting change, fishbone diagrams for beginners | what is a fishbone diagram, 03 – learn to fail | principles of lean, newsletter | porters five forces and how to stand out, importance of free online courses in business management, 2 proportion test: the basics, how to read a 100% stacked bar chart | lean toolkit, what is the 1 sample t-test, what is the affinity diagram, an overview of the pugh matrix: what is it and how does it work, related articles, what is kanban | kanban explained for beginners, 12 best lean management books, what is jidoka what does jidoka mean | leanscape, a kruskal-wallis test overview, an alternative to corporate training programs, lean six sigma online courses.

FREE COURSE | YELLOW BELT | GREEN BELT | BLACK BELT | MASTERCLASS | WORKSHOPS

Lean Accelerator Progam

A Lean Six Sigma Green Belt Masterclass

Ready to start your journey into the world of Lean with this free course?

FREE COURSE

Lean Thinking

A Lean focused continious improvement certification course

LSS Yellow Belt

Propel your career forward, tackle complex problems and drive change

LSS Green Belt

The ultimate fast-track for future leadership

LSS Black Belt

Become an expert in change management and complex problem-solving.

Subscribe to Newsletter

Keep up to date to the latest insights, courses, training, webinars and more. Join our newsletter today.

Lean Six Sigma

8 minute read

Lean Six Sigma Tools and Techniques You Need to Know

Joseph Mapue

Joseph Mapue

Facebook Twitter LinkedIn WhatsApp Email

Some businesses aspire for transformation, others make it happen. Many of those who succeed at driving change — including most Fortune 100 companies — do so by applying the principles and processes of Lean Six Sigma .

Want to learn more about the Lean Six Sigma methodology?

Check out this ebook that will guide you through the key concepts of LSS.

Developed to sustain customer satisfaction and deliver high-quality output, Lean Six Sigma is a process improvement method that harnesses teamwork to systematically boost operational efficiencies and reduce waste. Lean Six Sigma evolved from the fusion of two related disciplines — lean manufacturing and Six Sigma — that have successfully achieved dramatic improvements in the profitability of organizations across different industries.

So let's go over Lean Six Sigma tools and techniques you need to know.

As a data-driven method, Lean Six Sigma uses precise tools and techniques to identify challenges, solve problems, and attain business goals. For the most part, these tools and techniques relate to specific stages in the improvement cycle denoted as DMAIC (Define, Measure , Analyze, Improve, Control).

Lean-six-sigma-tools-techniques-dmaic

20+ powerful tools and techniques in Lean Six Sigma

Many of the techniques and tools used by Lean Six Sigma practitioners have been around well before the process improvement method was formalized. Many were used in business analysis, relationship visualizations, project management , and other fields. The effectivity of specific tools and techniques depends heavily on their fitness when it comes to an organization’s unique situation, business model, and corporate culture.

Lean-six-sigma-tools-techniques-define

Failure Mode & Effects Analysis ( FMEA ) - A model that helps professionals analyze and prioritize weaknesses and potential defects of a design or process based on factors such as severity and frequency of occurrence.

Process Flow Charts - A commonly used visual aid that shows the steps or stages of a process. This top-level diagram lends clarity to an improvement project and brings everyone on the same page.

Project Charter - A document primarily used in project management that sets the parameters of a process improvement project. While a project charter plays a major role in the Define phase of DMAIC, it also serves as a tool in the Control stage.

RACI Matrix - Acronym for Responsible, Accountable, Consulted, and Informed. This matrix outlines all the roles and responsibilities related to every activity/task in a process or project.

TAKT Time - The rate (expressed in time units) at which a business needs to complete a product to meet customer demand.

  • Value Stream Map - A very detailed type of process flow chart that visualizes all the steps in a process that are required to deliver value from start to finish. It is originally a lean management tool for mapping all the activities needed to create a product and get it into the hands of the end-customer.

Lean-six-sigma-tools-techniques-measure

Histogram - A bar chart that shows frequency distribution or variation in a data set. It is often used to a) identify which factors contribute most to the occurrence of a problem, and b) determine the capability of a process to consistently generate an acceptable output.

  • Pareto Chart - A histogram that shows the relative significance/impact of defects or variances in a system. It helps determine where the bulk of defects occur, effectively clarifying the cause and effect of problems and identifying the specific area that needs improvement the most.

Lean-six-sigma-tools-techniques-analyze

5 Whys Analysis - A straightforward method for determining the root cause of a problem. The method prescribes asking “why” a problem occurs five times in succession to sift through mere symptoms and eventually zero in on the real factor that causes the problem.

Design of Experiments - A systematic technique for testing the relationships between different factors with the purpose of creating the best-case design (i.e., optimal performance of features and functions) for a process or system.

Fishbone Diagram - A visualization technique for mapping all possible causes of a problem based on logical categories, with the aim of identifying root causes. Also called cause-and-effect or Ishikawa diagram, fishbone diagrams are often used during brainstorming sessions.

Regression Analysis - A statistical tool for understanding the relationship between output and input variables, and making predictions based on the relationship.

Lean-six-sigma-tools-techniques-improve

5S - A five-step method for keeping workplaces orderly and for motivating workers to maintain discipline and optimal process/workflow conditions. The term originally referred to five Japanese words whose English equivalents are Sort, Straighten, Shine, Standardize, and Sustain.

A3 Process/Report - A systematic approach to solving problems and driving continuous improvement that is typically documented/simplified/visualized on a sheet of A3-size paper, hence the name.

Kanban - A graphical scheduling system named after the Japanese terms for “visual” (kan) and “card” or “board” (ban). The system is designed to optimize the production process by reducing idle time and inventory.

Kaizen - A mindset of continuous improvement. It holds that everything can undergo incremental improvements over time. Kaizen advocates for proactive teamwork and the elimination of waste.

  • Poka Yoke (Error-Proofing) - A mistake prevention approach that aims to eliminate product defects by preventing, correcting, and signaling the occurrence of human errors as they happen. Named after the Japanese terms for “error” and “machine operator,” poka-yoke refers to any mechanism in a process that reduces the frequency of mistakes, with the ultimate goal of enabling people and processes to get things right the first time.

Single-Minute Exchange of Die (SMED) - A method associated with lean manufacturing that reduces the time it takes to run the current product to run the next. It is used to accelerate cycle time, reduce costs, and enhance the adaptability of processes. Also called Quick Changeover.

Total Productive Maintenance (TPM) - a methodology for maintaining and improving the quality of systems, processes, and machines. TPM specifically aims to reduce loses that are incurred when unplanned downtime occurs.

Lean-six-sigma-tools-techniques-control

Control Charts - A time-based visualization that is used to monitor and improve quality. Control charts are major tools used in statistical process control. Also called the process behavior chart.

Standardized Work - A baseline concept in kaizen or continuous improvement that is used as a tool for keeping productivity and quality at optimum levels. Standardized work documents the current best practice. When a new and improved system is adopted, it becomes the new standardized work.

Statistical Process Control ( SPC ) - A methodology that uses statistical tools to monitor, control, and improve the quality of processes.

Lean-six-sigma-tools-techniques

Lean Six Sigma is an evolving field whose tools and techniques continue to reap tremendous benefits for business organizations (process improvements and uplift in profitability) as well as certified practitioners (professional credentials, career advancement, and salary raises). 

Our Lean Six Sigma Overview and Glossary will help accelerate your understanding of the different concepts and processes in the field. If you want to learn more about the tools mentioned in this article and how best to use them, you can check out our library of Lean Six Sigma courses and certification programs.

Remember, Lean Six Sigma is not just a highly organized and effective collection of tools and methodologies. It is also a habit that sets excellence and continuous improvement as your default mode.

Prepare to get certified in Lean Six Sigma

Start learning today with GoSkills courses

Loved this? Subscribe, and join 461,368 others.

Get our latest content before everyone else. Unsubscribe whenever.

Joseph Mapue

Joseph creates content on business, innovation, and elearning. He clocks in more than a decade of professional editing and technical writing experience, having worked with companies such as GoSkills, SNL Financial, Accenture, and DXC Technology. When not watching silly videos, he does scale modeling, plays the guitar, and serves as daddy to two cats and a pair of hoomans. Find him on LinkedIn here.

How Online Learning Can Help You Grow Professionally (and Personally)

Recommended

How Online Learning Can Help You Grow Professionally (and Personally)

To grow professionally doesn’t just mean climbing the corporate ladder. Explore four ways online learning fosters professional, and even personal, growth.

Process Improvement Skills Boil Down to These 3 Elements

Process Improvement Skills Boil Down to These 3 Elements

How can you tell someone has process improvement skills? It really comes down to a combination of three important factors.

The Basics of Gage R&R

The Basics of Gage R&R

Gage Repeatability and Reproducibility studies (Gage R&R) are a type of Measurement Systems Analysis (MSA). This tutorial walks you through the basics.

© 2024 GoSkills Ltd. Skills for career advancement

🍪 This website uses cookies to improve your experience.

Learn more about our cookies Accept cookies

Process AI

DMAIC: The Complete Guide to Lean Six Sigma in 5 Key Steps

six sigma problem solving methods

One of the core techniques behind any process improvement, particularly in Six Sigma, is DMAIC.

This handy approach, pronounced duh-may-ik, is the key to employing Six Sigma and beginning your journey to being a process hero. We’re going to cover each step in the process and detail how to effectively enact every section.

This guide will lead you through from start to finish and get you ready to start employing lean Six Sigma within your business!

What is DMAIC?

DMAIC stands for:

DMAIC is a data driven improvement cycle designed to be applied to business processes to find flaws or inefficiencies – particularly resulting in output defects – and to combat them. The goal of employing DMAIC is to improve, optimize, or stabilize existing processes.

The development of the DMAIC methodology is credited to Motorola , but is largely a further expansion of systems developed by Toyota. You can read more about how Toyota has employed their process improvement techniques in our article  How Toyota Saved Children’s Lives with Process Implementation .

What we’re going to do is look at each stage of the process and consider what needs to be explored and what kinds of tools and methodologies you might use throughout.

Before you dive in, consider reading this DMAIC Case Study to give yourself an overview of the process from start to finish with handy graphs. This case study should help you be able to visualize each step we undertake throughout the article within a broader context.

When do we use DMAIC?

dmaic-overview

Though we’re not formally recognizing that step within this article, it would be remiss to not appreciate the importance of this addition.

DMAIC cannot be used in all situations. It pertains to specific opportunities for process improvement.

So what are these specific conditions?

There are three main things worth considering when assessing a situation for whether DMAIC would fit:

  • There is an obvious problem of some form with an existing process or set of processes.
  • The potential is there to reduce variables like lead times or defects while improving variables like cost savings or productivity.
  • The situation is quantifiable; the process itself involves measurable data and the results can be appropriately understood through quantifiable means.

Once you’ve recognized whether or not your process is a good fit for DMAIC, you can get started!

Define: Map the project and understand your aims

The Define stage is essentially the planning part of the exercise.

It consists of 7 key sections:

Define Customers and Requirements

How you carry out this stage depends on who your customers are. There are two subsections of customers, either internal customers or external customers .

Internal customers are levels of management within your organization or other departments who are reliant on the output of the particular process you are attempting to improve.

External customers would be the end users of your product or services. These would normally be your business clients but could also be the company’s shareholders.

We tend to divide the expectations of these customers into two related categories: needs and requirements. Needs refer to the end goals of a product: someone buys an air-conditioning unit because they want to keep a room cold. Requirements refer to features or aspects of a product: an air-conditioning unit needs to have a thermostat of some description in order to deliver the cold room the customer needs.

When judging the output of a process, we analyze who the customers are, what their needs are, and what the requirements are to fulfill these needs.

Develop Problem Statement, Goals and Benefits

The next step is to bring that customer information into actionable steps.

We want to develop a clear Problem Statement in order to communicate the purpose of the process and to help us understand how our actions will relate directly to the end results. This should not look to define the solution, but instead focus on the following aspects :

  • What is the pain point?
  • Where is it hurting?
  • When has it been hurting? Is it long term or short?
  • What is the extent of the pain?

The Six Sigma Institute provide the following example problem statement:

“In the last 3 months (when), 12% of our customers are late, by over 45 days in paying their bills (what) . This represents 20% (magnitude) of our outstanding receivables & negatively affects our operating cash flow (consequence) .”

In doing so, we should clearly define what our ultimate goals will be from the process improvement work we undertake. This might be identifying something simple like a need to increase output per hour from 100 units to 200 units. Or it might be improving clearly measurable rates of customer satisfaction or other similar quantifiable variables. In a pure Six Sigma approach, your goal would be to improve your Sigma baseline and reduce whatever your defined defects are – but we’ll come to all that later.

The goal statement should be SMART: Specific, Measurable, Attainable, Relevant and Time Bound.

The Six Sigma Institute example:

To reduce the percentage of late payments to 15% in next 3 months, and give tangible savings of 500K USD/ year.

Identify Champion, Process Owner and Team

dmaic team

In order for us to implement this process improvement, we need to determine the roles of different employees in bringing the project to completion. Different companies will put differing emphasis on roles, so take the following as an example as much as a definition.

If you’re familiar with lean methodologies like Scrum, this will quickly make sense to you.

The Process Owner is the person who is responsible for the process improvement project. This is the hands on position where the person involves themselves with each team involved in the process, analyzes and tracks data and output, and looks to manage the process from above from the first step to the last. The Process Owner’s primary function is to provide the planning and overview to allow everyone else to flourish.

The Process Champion is an individual within the organization who has the power to make key decisions and facilitate the work of the Process Owner. This would likely be an executive who can help allocate resources to serve the needs of the Process Owner. The Champion aims to remove barriers which the Process Owner is facing and help facilitate the process improvement project from another step above.

The team in this context are the employees who will be putting the desired changes into action and helping monitor the effects of these changes. The main person in this team is the Black Belt; the project manager for the team. The other employees who focus on the Six Sigma process might be referred to as Green Belts (at this point it starts to feel a little like a karate kid cosplay).

Define Resources

In order to undertake this process improvement project, we need to know what resources are available for the Process Owner to utilize.

This might include a budget for contracting external services, purchasing additional tools, or travel expenditures. It might also refer to how many staff will be needed in order to make this change effectively; do staff need to be brought in from other departments, or will new staff need to be hired?

The amount of resources required will be defined by the problem and goal statements. You don’t want to spend $1 million to save the company half a million. We need to understand what resources are needed to tackle the project and what resources are reasonably available.

Evaluate Key Organizational Support

Now you know what resources you need to begin the project, you need to know what support you can gather from other actors within your organization.

The Process Champion will be in charge of attempting to mobilize this support from other areas of the company. In order to do this, the Process Champion will likely try to create a Business Case.

The purpose of a Business Case is to demonstrate the importance of this process to the broader operations of the company. The Six Sigma Institute give us an example of 7 questions which a Business Case should answer:

  • Why is the project worth doing? Justify the resources necessary to engage in the project.
  • Why is it important to customers?
  • Why is it important to the business?
  • Why is it important to employees?
  • Why is it important to do it now?
  • What are the consequences of not doing the project now?
  • How does it fit with the operational initiatives and targets?

The Institute also provides us with an example Business Case:

By reducing the average transaction length, the queue would be able to enhance the Speed of Resolution and assist the end-users in fastest possible manner. This will not only help in achieving client targets but also increase end-user satisfaction score by offering lesser turn-around time.

… although a full Business Case should include more detail and more clearly address each of the above questions.

Develop Project Plan and Milestones

We should now be in a position where we understand the different requirements, the available resources, and role allocation.

At this point, we can begin to develop a detailed project plan with attainable and realistic milestones.

The first step of our project planning is to develop our project scope. In doing so, it is useful to use both longitudinal and lateral scoping. Longitudinal scoping relates to the length of the process, whereas lateral scoping refers to the breadth.

For example, if I was to analyze the process I use to write articles, the longitudinal scope would stretch from having the idea for the article to the moment the article goes live. That’s the scope of the process I would be investigating; with a clear start and end date.

The lateral scope would be the scope of my investigation. Am I going to analyze only the process of writing this article? Am I going to analyze the process repeatedly over a period of 6 weeks? Am I going to analyze my process and the same longitudinal process of my colleagues over that period too?

Think of it as the scope of the process vs the scope of the investigation.

Once we have this in place, we can look to lay out milestones for when different key moments in the DMAIC process will be achieved. What date will we begin the first step of the Measure stage? What date will we commence the Improve stage? When will we complete the DMAIC process?

It is recommended to set aggressive milestones as efficiency savings benefit from being brought in sooner rather than later, naturally. However, setting milestones which are too aggressive can result in what’s called “band-aid” solutions; where quality is sacrificed in order to reach arbitrary targets.

Develop High Level Process Map

dmaic high level process map

This will serve to demonstrate to each individual player where they fit within the process and how their role relates to the next.

You can use tools like LucidChart to help you create process maps and diagrams simply and effectively.

If you want to read more about process mapping and other in-depth process overview techniques you can read this article of ours:  BPMN Tutorial: Quick-Start Guide to Business Process Model and Notation

Measure: Gather the data to understand performance

In the next few subsections we’re going to look at some key Six Sigma terms to understand what we’re measuring, then we’ll develop a research methodology and put it into practice.

This step is all about gathering our data!

Define Defect, Opportunity, Unit and Metrics

At the beginning of the Measure stage, we need to first define what we should be measuring.

To do this, we’ll need to understand a couple of key terms :

  • Unit in the Six Sigma context refers to a single item of the product. This is our smallest indivisible point of reference.
  • Defect refers to a problem with the product which has arisen from an issue in the process.
  • Opportunity refers to the potential points within a process where the possibility for a defect occurring is present.

Once we understand these terms, we can see how they start to fit together to help us make decisions:

  • Defects per unit (DPU) : number of defects / total number of units
  • Defects per opportunity (DPO) : number of defects / (number of units x number of defect opportunities per unit)
  • Proportion defective (p) : number of defective units / total number of units

Work out all the possible opportunities for problems and then begin to filter that list to remove extremely rare events, or to group problems with related causes together. This should give you a workable estimation for your Opportunity.

Develop Data Collection Plan

dmaic data collection

In order for us to make the necessary calculations, we need to gather our data about the process.

To do so we will create a data collection plan which will outline our approach and help us clarify our methods.

This analysis will focus on the minutiae of what exactly we want to measure, how the data will be collected, and the methodology by which we want to handle the data, including:

  • How many observations are needed
  • What time interval should be part of the study
  • Whether past, present, and future data will be collected

If this process improvement project is geared toward internal processes then your  customer – another department, for example – might also be gathering this data. This is useful to check because it gives you a control against which you can verify your data once it has been collected, provided any variables are taken into consideration.

The difficulty of this data collection could lie in translating the outcomes into numerical values. For a manufacturing process it is fairly straightforward to understand the process and its outcomes in numerical terms, but less grounded processes can prove trickier. This is why it is important to plan carefully at this stage.

It’s also important to note that while historical data can be used in this analysis, it will likely not have been collected via the same structures and methodologies as you’re creating in this step. This presents a problem as it de-standardizes the data; use historical data with caution.

Having a standardized data collection process gives better data and ultimately better results.

Research 101.

Validate the Measurement System

Well done, you have a research methodology!

But don’t get too excited – we’re not quite ready yet.

Like any piece of research, it is vital to test the methodology – or measurement system – before releasing it into the wild. As a researcher might conduct a pilot study, so too must we test our research methods and review them on a couple of key areas.

There are 4 specific things we want to test before we launch our data gathering project in full:

  • Repeatability : If the same operator reaches pretty much the same outcome multiple times on the same item with the same equipment, we can see an adequate level of repeatability.
  • Reproducibility : This becomes reproducible if multiple operators measuring the same items with the same equipment end up with the same outcomes.
  • Accuracy : It’s a little trickier to be certain on accuracy, but we can broadly say that this can be seen in the difference between an observed average measurement and the associated known standard value.
  • Stability : The level of stability is, in a sense, a further extension of repeatability and reproducibility. Stability can be seen by what extent the same operator gets the same outcomes from measuring the same item with the same equipment over a longer period of time. One of the things this stability check is looking for is whether there are external variables which can impact reproducibility over time.

The best way to test your measurement system is to undertake a Gage Repeatability and Reproducibility Study (GR&R), which you can read more about here in this mini library of GR&R materials from iSixSigma .

Once we’re sure that our methodology is clearly defined and we’ve validated our measurement system, we can begin to collect our data!

Collect the Data

Not too much needs to be written about the actual data collection as all the previous steps have been building up to this point.

The key thing to remember is simply to stick to your plan as you defined it and to adhere stringently to the research practices and methods which you validated.

The Black Belt should be the primary point of command in this data collection process, making sure that all procedures are adhered to. The Black Belt needs to take responsibility for all the Green Belts understanding the necessary steps, definitions, and goals.

dmaic football club

Begin Developing Y=f(x) Relationship

This is where things will start to sound a little technical. But don’t worry, we’ll walk through it.

Think of Y as representing the output of a process. It doesn’t technically refer to Yield at this point, but we’ll come to that later on.

So, Y is the output of a process and X is the input. The f represents the function of the variable X.

Y is the output we care about and X can be multiple different variables which impact on Y. Here’s an example from iSixSigma :

For example, if you call your major department store to ask a question, the ability to have your question answered (Y) is a function (f) of the wait time, the number of people answering the phones, the time it takes to talk with the representative, the representative’s knowledge, etc. All of these X’s can be defined, measured and improved.

At this point, you don’t need to work out the Y=f(x) relationship in full, but you can start bearing it in mind. It is considered best practice to keep work oriented around the Y=f(x) formula.

Estimate the Sigma Baseline

Again, we can prepare ourselves for the future stages by running a quick calculation.

To work out your Sigma, you can calculate your Defects per Million Opportunities (DPMO) and run it through a handy conversion chart.

You calculate your DPMO by simply multiplying your DPO by a million.

To make it all easier, just use this straightforward Sigma Calculator .

dmaic sigma calculator

Analyze: Understand where the problems in your process lie

The analysis step is where we have to dig in deep into the existing processes and work out the root causes of the problems.

Finding these causes should allow us to tackle them in our Improve stage. It’s all about finding the pertinent Xs for the Y=f(x) formula we mentioned above.

Define Performance Objectives

Having measured the process in the previous steps, we should be in a position where we roughly know what it is we want to improve.

Before we begin analyzing in depth, we should lay out what our objectives are so that these goals can guide us. Think through the process and the data you have to calculate what the key performance objectives would be.

These objectives can prove slightly flexible as your analysis moves forward but it is always better to start with clear goals.

Develop a Detailed Business Process Map

We’ve already mentioned in this article how you can use strategies like BPMN to map business processes, but it isn’t the only approach. A very similar approach might be to use an As Is Process Map, which can incorporate BPMN elements but is not defined by it.

This business process map can help show us the granular make up of the company process we are analyzing and reveal factors like which process steps are value added and which are non-value added. Identifying non-value added steps at this stage opens up the potential for us to eliminate waste in our process improvements.

This process map should be analyzed for potential areas of variation. These variations, or potentials for variation, will likely lead us to the root causes behind our Opportunities (for defects).

dmaic as is process map

Determine Root Cause(s)

There are many different techniques you can utilize in order to attempt to dig down into what the root causes of a variation are, and we’re going to look at three specific examples of methods you can use:

The 5 Whys Analysis

The Fishbone Diagram

  • The Pareto Chart

This is a fairly simple technique to start you off. The idea is that you ask “why?” five times to dig deep into the root of a problem. The logic behind it is that in the first few questions you will find one of the causes of the problem, and by the 5th question you will see the process failure behind that problem. This example from Wikipedia does an excellent job of conveying it:

The vehicle will not start. (the problem) Why?  – The battery is dead. (First why) Why?  – The alternator is not functioning. (Second why) Why?  – The alternator belt has broken. (Third why) Why?  – The alternator belt was well beyond its useful service life and not replaced. (Fourth why) Why?  – The vehicle was not maintained according to the recommended service schedule. (Fifth why, a root cause)

This approach takes 6 different variable categories and feeds the information together to help you visualize what factors within the business operations are contributing collectively to the same problem. One of the advantages of this method is that it forces us to view the problem holistically, rather than the potentially blinkered approach of the 5 Whys.

According to the Six Sigma Institute , the 6 key variables are:

Machine : This category groups root causes related to tools used to execute the process. Material : This category groups root causes related to information and forms needed to execute the process. Nature : This category groups root causes related to our work environment, market conditions, and regulatory issues. Measure : This category groups root causes related to the process measurement. Method : This category groups root causes related to procedures, hand-offs, input-output issues. People : This category groups root causes related people and organizations.

dmaic fishbone diagram

You might already be familiar with the Pareto Chart. The purpose of the Pareto approach for us is to understand which variations have the highest impact on our output; it helps us determine the Vital Few.

If the other techniques assist in finding variations and identifying potential root causes, the Pareto Chart allows us to prioritize which root causes to target first to have the greatest impact on improvement in relation to our stated objectives.

dmaic pareto chart

Determine the Y=f(x) Relationship

Once we’ve identified the Vital Few, we’re able to return to our Y=f(x) formula.

Remember, Y is simply a variable which is defined by the relationship between our Xs and their functions. So, if we want to improve Y then we should identify which X has the biggest impact on the Y value and improve that X.

Our ultimate aim is to better understand the relationship represented by this formula and to round out errors from it. For example, there may be an X which has a major impact on Y but is not due to a process problem but simply a natural or unchangeable element of the manufacturing process. In which case, we need to identify that this particular X, while important, is not one we can tackle as part of our process improvement.

Our job isn’t just to find the Xs which contribute to Y, but to find the right Xs.

Improve: Work out how defects could be reduced

The improve section of the DMAIC process is where we take advantage of all the preparatory work we’ve done so far.

Our goal here is to highlight our Xs and look to maximize the performance of those inputs. The key element of the Six Sigma approach is the importance of doing this through mathematical and scientific means.

Perform Design of Experiments

Our Design of Experiments (DOE) is probably the key step to getting this right and achieving the improvements we want to make.

This DOE approach highlights the relationships between different Xs and the output (Y). Factorial experiments are one of the crucial methods to show how different Xs can relate to each other.

dmaic baking

Controllable input factors .

These are your Xs. These are variables within the process which we can experiment with and change. In baking a cake this might include the number of eggs or the amount of flour.

Uncontrollable input factors .

These are variables which may have arisen earlier in the investigation but we can’t act upon. In a baking scenario it might refer to the resting temperature of the kitchen. Or, to make an infrastructural analogy, the capacity of the oven – a factory might produce more goods if it was bigger, but increasing its size might be prohibitively expensive, for example.

Responses .

This is the extent to which the output services the customer needs and wants. In baking this could refer to a simple taste test. This factor, like the others, would need to be quantified. “Good or bad” is not enough; a score out of 10 from the customer averaged out as a final percentage figure from all testing would be a more effective approach.

Hypothesis testing .

In a hypothesis test there are two potential outcomes: null and alternative. A hypothesis test focuses the accuracy of a hypothesis with each test. The null hypothesis is valid if the status quo is true. The alternative hypothesis is true if the status quo is not valid. We get our results by analyzing significance which means results are based on probabilities – so get your p-values at the ready!

In baking, we might have a brand name cake mix which declares that it takes on average 30 minutes to bake. You might classify this as your hypothesis. The null hypothesis would be that the average amount of time it takes to bake this particular cake is in fact 30 minutes. But you can’t have a null hypothesis without an alternative hypothesis. You should select your alternative hypothesis in advance in order to construct the experiment properly. We have 3 choices of alternative hypotheses to choose from:

  • The average time to bake the cake is not 30 minutes (not equal)
  • The average time to bake the cake is more than 30 minutes (greater than)
  • The average time to bake the cake is less than 30 minutes (less than)

The formula for checking whether the average baking time is 30 minutes or not would be:

Ho:μ=30  versus  Ha:μ≠30

Blocking and Replication .

Blocking and replication are fortunately much simpler concepts. Blocking is just about making sure the conditions for each experiment are the same; use the same stirrer and tray to bake the cakes with. And replication is simply the principle of running the experiment multiple times to gain more accurate results – a great excuse to bake extra cakes.

Interaction .

This refers to a situation where an experiment has three or more variables and the simultaneous influence of two of the variables on the third is not additive. Sadly, my knowledge of baking has let the analogy down on this one. My bad.

Two-Level Factorial Design

This experiment will be constructed to look at 3 variables where each can be tested at a low or high level. This kind of structure gives us the ability to investigate deeper into a process yet is still simple enough for us to see how the experiment works.

Consider our process to be baking a cake. Our three variables are the Vital Few we identified in our Analysis stage. They are:

  • Brand of flour
  • The temperature of baking
  • The baking time

dmaic two level factoral items

Taste-testing will be a score out of 10 with the average multiplied by 10 to give a percentage result. The crust-formation will be measured by weight with lighter crusts being the goal.

dmaic two level factoral responses

The simplest overview of ANOVA tables can be found here , and it gives us this handy summary:

It doesn’t look at the differences between pairs of group means; instead, it looks at how the entire collection of group means is spread out and compares that to how much you might expect those means to spread out if all the groups were sampled from the same population (that is, if there were no true differences between the groups).

Which means roughly that our ANOVA table on taste testing will look at how all the results impact on taste to see how each group should impact on taste and then tells us how each group performs relative to that expected impact; higher or lower impact.

All this is conveyed through the F Ratio which tells us about the levels of variance between the groups relative to the variance within the groups.

If the null hypothesis is true, then F should be close to 1. The further F is from 1 the more it suggests the alternative hypothesis to be true. In the case of our experiments, the higher F is the more important an input factor is on output.

dmaic anova taste

Develop Potential Solutions

With a strong working knowledge of your business processes and systems, you’re now able to develop solutions which can tackle the key issues hindering output within the business.

The results of the DOE tests can also assist in that optimization process as the visual graph above shows. This data gathered from varying iterations of your key potential Xs, provides a series of potential avenues to explore.

When constructing the different options for solutions make sure to propose enough to test and evaluate.

These solutions should be rooted in the deep analysis you’ve undertaken.

Assess Failure Modes of Potential Solutions

Failure Modes and Effects Analysis is a method which can identify risk ahead of time. This quasi-predictive process analysis tool can help you evaluate the details of your proposed business process solutions.

You can read more about FMEA in a previous article of mine:  FMEA: The Analysis Method to Prevent the £100m British Airways Catastrophe .

Validate Potential Improvement by Pilot Studies

Lastly, to complete the Improve section of our DMAIC process, it’s important to test out the solutions which have made it to this point.

The few solutions you’re left with can be part-deployed live in controlled conditions as part of a pilot study to gage their relative effectiveness.

The Process Owner can map out the design for these pilots and the Black Belt can manage the pilots in practice.

The performance of the proposed solutions should leave you with an overall best performing process improvement solution based on output. To measure these proposed solutions effectively, try to calculate the Sigma Baseline as before.

Control: Plan out how you will implement your solutions

The Control section is all about putting processes and procedures in place to make sure the implementation of the new solution runs smoothly and can be tracked and optimized over time.

Ultimately, the rest of the DMAIC process prior to this stage was dedicated to the Xs whereas the Control stage is devoted to the Y; the output.

Standardize and Document Processes

This is the most obvious step and echoes what we always discuss in our articles on Process Street .

To implement a new process, you need to make sure each step is documented thoroughly and it is mapped out in a way which is actionable and provides space for measurement.

These processes should be consistent at all times and this can be achieved through simply standardizing approaches across teams.

Prepare Implementation Plan

This task may be planned by the Process Owner and implemented by the Black Belt, though different companies might look to do it in different ways.

The important factors here concern how the new process can be effectively integrated into the company workflow .

  • What teams within the company need to adapt to suite the new process?
  • Does this change need to be simultaneous or can it be rolled out iteratively?
  • Do we require multiple Six Sigma advocates to embed into each team for implementation?
  • What budget or resources does the Champion need to secure to ensure effective rollout?
  • When does implementation begin?
  • What is the target date for complete implementation of the new process?

All of these questions should be answered in the drafting of a report so that the company can act upon our DMAIC work.

Additionally, it is important to create a Response Plan which tackles the what ifs of managing the process. This would come under the realm of risk management as it looks at putting processes and procedures in place for if problems occur within the process or are seen in the output.

Implement Statistical Process Control

Once your process is standardized and documented, implementation must undergo monitoring. One industry standard approach to process monitoring is Statistical Process Control.

Statistical Process Control (SPC) was originally developed in 1924 by Walter Shewhart. It is used to monitor and control the output parameters of a process.

A short definition is given to us by InfinityQS :

Quality data in the form of Product or Process measurements are obtained in real-time during manufacturing. This data is then plotted on a graph with pre-determined control limits. Control limits are determined by the capability of the process, whereas specification limits are determined by the client’s needs.

This basically means that we gather quantifiable data about the process and look at the size of the output vs the quality of the output.

On the graph you make, you’ll set control limits. These define an acceptable range which your process should operate within. When data points start appearing outside of this range, this acts as a red flag to show us that variations are occurring.

If done properly, these red flags should catch variations before variations result in defects; allowing us to tackle process problems before they result in output or product problems.

dmaic success

Use DMAIC to help you reach your Six Sigma goals

Once you’ve successfully undertaken your DMAIC project, you might think your job is done.

A crucial part of any lean Six Sigma process is to keep the principle of continuous improvement in mind. Within lean philosophies we might refer to this as Kaizen. In Japanese this translates to “change for better”, but within the world of process improvement it has come to reflect a continuous iterative model for gradual change.

Once one Six Sigma project is done, it is likely time to move onto the next.

If you can reach your goal of Six Sigma then your processes will be functioning at the highest industry standards and your business will be in the best position it can be.

It’s up to you to make sure the rest of the business runs as effectively as your best processes!

Are you a Six Sigma enthusiast? Have you employed DMAIC in your business before? Let me know in the comments your experiences, tips, and tricks!

Get our posts & product updates earlier by simply subscribing

six sigma problem solving methods

Adam Henshall

I manage the content for Process Street and dabble in other projects inc language exchange app Idyoma on the side. Living in Sevilla in the south of Spain, my current hobby is learning Spanish! @adam_h_h on Twitter. Subscribe to my email newsletter here on Substack: Trust The Process . Or come join the conversation on Reddit at r/ProcessManagement .

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Take control of your workflows today

  • Search Search Please fill out this field.

What Is Six Sigma?

Understanding six sigma, the 5 steps of six sigma.

  • Lean Six Sigma
  • Certification and Belt Rankings

The Bottom Line

  • Corporate Finance

What Is Six Sigma? Concept, Steps, Examples, and Certification

Adam Hayes, Ph.D., CFA, is a financial writer with 15+ years Wall Street experience as a derivatives trader. Besides his extensive derivative trading expertise, Adam is an expert in economics and behavioral finance. Adam received his master's in economics from The New School for Social Research and his Ph.D. from the University of Wisconsin-Madison in sociology. He is a CFA charterholder as well as holding FINRA Series 7, 55 & 63 licenses. He currently researches and teaches economic sociology and the social studies of finance at the Hebrew University in Jerusalem.

six sigma problem solving methods

Investopedia / Zoe Hansen

Six Sigma is a set of techniques and tools used to improve business processes. It was introduced in 1986 by engineer Bill Smith while working at Motorola. Six Sigma practitioners use statistics, financial analysis, and project management to identify and reduce defects and errors, minimize variation, and increase quality and efficiency.

The five phases of the Six Sigma method, known as DMAIC, are defining, measuring, analyzing, improving, and controlling.

Key Takeaways

  • Six Sigma is a quality-control methodology that businesses use to significantly reduce defects and improve processes.
  • The model was developed by a scientist at Motorola in the 1980s.
  • Companies often use the Six Sigma model to increase efficiency and boost profits.
  • Six Sigma practitioners can earn certifications modeled on the color belts used in martial arts.

Six Sigma is based on the idea that all business processes can be measured and optimized.

The term Six Sigma originated in manufacturing as a means of quality control. Six Sigma quality is achieved when long-term defect levels are below 3.4 defects per million opportunities (DPMO). 

Six Sigma has since evolved into a more general business concept, focusing on meeting customer requirements, improving customer retention, and improving and sustaining business products and services. Among its best-known proponents was the longtime General Electric CEO Jack Welch .

Six Sigma certification programs confer belt rankings similar to those in the martial arts, ranging from white belt to black belt.

The Six Sigma method uses a step-by-step approach called DMAIC, an acronym that stands for Define, Measure, Analyze, Improve, and Control. According to Six Sigma adherents, a business may solve any seemingly unsolvable problem by following these five steps.

A team of people, led by a Six Sigma expert, chooses a process to focus on and defines the problem it wishes to solve.

The team measures the initial performance of the process, creating a benchmark, and pinpoints a list of inputs that may be hindering performance.

Next the team analyzes the process by isolating each input, or potential reason for any failures, and testing it as the possible root of the problem.

The team works from there to implement changes that will improve system performance.

The group adds controls to the process to ensure it does not regress and become ineffective once again.

What Is Lean Six Sigma?

Lean Six Sigma is a team-focused managerial approach that seeks to improve performance by eliminating waste and defects while boosting the standardization of work. It combines Six Sigma methods and tools and the lean manufacturing/ lean enterprise  philosophy, striving to reduce the waste of physical resources, time, effort, and talent while assuring quality in production and organizational processes. Any use of resources that does not create  value  for the end customer is considered a waste and should be eliminated.

Six Sigma Certification and Belt Rankings

Individuals can obtain Six Sigma certification to attest to their understanding of the process and their skills in implementing it. These certifications are awarded through a belt system similar to karate training. The belt levels are:

  • White belt : Individuals with a white belt have received some instruction in the basics of Six Sigma, but have not yet gone through any formal training or certification program. This gives them enough knowledge to become team members.
  • Yellow belt : This level can be attained after several training sessions, and equips participants with the knowledge to lead small projects and assist managers who hold more advanced belts.
  • Green belt : To achieve this level, individuals take a more comprehensive course that prepares them to become project leaders.
  • Black belt : After reaching the green belt level, participants can move on to black belt certification, preparing them for leadership roles in larger and more complex projects.

People with black belts can become masters and champions. Someone with a master black belt is considered an expert and strong leader with excellent problem-solving skills. A champion is a lean Six Sigma leader trained in maximizing profits through the elimination of waste and defects.

These certifications, and the courses required to obtain them, are offered by a variety of companies and educational institutions and can differ from one to another.

Real-World Examples of Six Sigma

Six Sigma is used by many companies, local governments, and other institutions. Here are two examples of how Six Sigma improved operational efficiency, saved money, and increased customer satisfaction.

Microsoft (MSFT) is one of the largest software producers in the world. It used Six Sigma to help eradicate defects in its systems and data centers and systematically reduce IT infrastructure failures.

The company first established standards for all of its hardware and software to create a baseline measurement for detecting defects. It then used root-cause analysis, including collecting data from past high-priority incidents, server failures, and recommendations from product group members and customers, to pinpoint potential problem areas.

Large amounts of data were collected on a daily and weekly basis from various servers. The incidents were prioritized based on how severely the defects affected the business and the company's underlying services. Data analysis and reporting identified the specific defects, after which remediation steps for each defect were established.

As a result of Six Sigma, Microsoft says it improved the availability of its servers, boosted productivity, and increased customer satisfaction.

Ventura County, California, Government

Ventura County, California, credited the use of Lean Six Sigma for a savings of $33 million. The county government began to use the program in 2008 and has trained more than 5,000 employees in the methodology. The county says the savings are due in part to the introduction of more efficient new systems and the elimination of unnecessary, but time-consuming, steps from its prior processes.

For example, the VC Star newspaper reported in 2019 that the county saved "$51,000 with an appointments system that reduced labor costs and rates for maintenance of county vehicles [and] almost $400,000 annually by implementing a new system to track employee leaves of absence."

How Can You Get Six Sigma Certification?

You can receive Six Sigma certification through private companies, associations, and some colleges. Keep in mind, though, that there is no single governing body that standardizes the curriculum. This means that courses can vary based on where you take them.

Can You Get Six Sigma Certification Online?

Yes, many of the universities and organizations that offer Six Sigma certification have both classroom and online offerings.

What Is the Basic Difference Between Six Sigma and Lean Six Sigma?

Lean Six Sigma uses the Six Sigma methodology (define, measure, analyze, improve, control) with the specific goal of eliminating waste in a company's, or other organization's, processes or use or materials—that is, making it "leaner." It derives in part from the principles of lean manufacturing.

Six Sigma has become a widely used quality-improvement methodology in both the private and public sectors. Anyone who wishes to learn it can take courses that lead to various levels of certification.

ASQ. " What Is Six Sigma? "

Purdue University. ' Six Sigma Belt Level Rankings ."

Microsoft. " Microsoft Announces Accelerator for Six Sigma ."

VC Star . " Efficiency Program Rooted in Car Business Drives $33 Million in Government Savings ."

six sigma problem solving methods

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

six sigma problem solving methods

Six Sigma Basics: DMAIC Like Normal Problem Solving

Published: February 26, 2010 by Chew Jian Chieh

six sigma problem solving methods

What is the usual way most people go about solving problems? Most people and organizations consciously or unconsciously use this method, as illustrated in Table 1 below.

Normal Method of Problem Solving

S

1. Understand what is to be
improved and set a goal
I am too fat.
I want to reduce my weight.
2. Measure their current state I am currently 90 kg. Ideally,
I should be about 70kg.
3. Apply conventional wisdom
or gut theory
If I exercise more and eat less,
I should lose weight.
4. Take action Exercise more and eat less.
5. Measure to verify improvement
has taken place
I lost 5kg.

This is not a bad method, provided what one thinks is causing the problem is really causing the problem. In this case, if a person is fat simply because they do not exercise enough and eat too much, then by exercising and eating less, they should weigh less. And if they do lose weight after taking such action, then the theory is validated. People solve a fair number of problems in this manner – using conventional wisdom and gut theories that also happen to be correct. In those cases, there is little need for Six Sigma – it is just a waste of time. Just do the above.

How Six Sigma Problem Solving Is Different

How is the Six Sigma problem-solving methodology different? Actually it is really not so different from how people normally go about solving day-to-day problems, except in Six Sigma, nobody knows what is really causing the problem at the beginning of the project. And because all attempts to solve the problem in the past have failed, largely because conventional wisdom and gut theories were wrong about the cause of that problem, people conclude that the problem cannot be solved.

These types of problems are really the best candidates for Six Sigma. The Six Sigma DMAIC methodology differs from conventional problem solving in one significant way. There is a requirement for proof of cause and effect before improvement action is taken. Proof is required because resources for improvement actions are limited in most organizations. Those limits preclude being able to implement improvement actions based on 100 hunches hoping that one hits the mark. Thus, discovering root causes is at the core of the methodology.

Here are the steps in the DMAIC process:

  • Define phase: Understand what process is to be improved and set a goal.
  • Measure phase: Measure the current state.
  • Analyze phase: a) Develop cause-and-effect theories of what may be causing the problem; b) Search for the real causes of the problem and scientifically prove the cause-and-effect linkage
  • Improve phase: Take action.
  • Control phase: a) Measure to verify improvement has taken place; b) Take actions to sustain the gains.

Using a More Mathematical Language

The above steps can be phrase in another way – using more mathematical language (Table 2). (This kind of mathematical language should not put anyone off. If it is a concern initially, a person just needs to remember than whenever a Y shows up in any sentence, just replace it with word “effect,” or the phrase “outcome performance measure.” And whenever an X shows up , just replace it with the word “cause.”)

DMAIC in Mathematical Terms

1. Understand what process is to be improved and set a goal.

Define

What is the Y or the outcome measure?
2. Measure the current state.

Measure

What is Y’s current performance?
3. Develop cause-and-effect theories of what may be causing the problem.

Analyze

What are the potential Xs or causes?
What may be causing the problem?

What are the real Xs or causes?
What is really causing the problem?
5. Take action.

Improve

How can the understanding of the real causes of the problem be exploited to eliminate or reduce the size of the problem?
How can this understanding be exploited?
6. Measure to verify improvement has taken place.

Control

Did Y really improve?

How can the Xs be controlled so the gains in Y remain?

The key assumption in Six Sigma is this: If the true causes of any problem can discovered, then by controlling or removing the causes, the problem can be reduced or removed. Now is that not just common sense?

A Series of Common Sense Questions

In summary, Six Sigma DMAIC methodology is really just a series of common sense questions that one asks in order to solve any problem and eventually sustain the gains that come from solving the problem.

  • Define: What is the Y that is not doing well?
  • Measure: What is Y’s current performance?
  • Analyze: What are the potential Xs? What are the real Xs?
  • Improve: How can the real Xs be controlled or eliminated?
  • Control: How can the Xs continue to be controlled to sustain the gains in Y?

Six Sigma’s DMAIC methodology is nothing but a search for the real causes of problems. With this understanding, what remains for those learning Six Sigma are the various tools and techniques used to answer these questions.

About the Author

' src=

Chew Jian Chieh

Strategic Management Insight

Six Sigma: The Definitive Guide

Six sigma

What is Six Sigma

Six Sigma (6σ, 6 sigma) is a data-driven and customer-focused approach to improving the quality and efficiency of business processes. It aims to reduce variation and defects in products or services and to achieve near-perfection in meeting customer expectations.

Six Sigma was developed by Motorola in the 1980s and popularized by General Electric in the 1990s. Since then, it has been adopted by many organizations across various sectors and domains.

The overarching premise of Six Sigma is that variation in a process leads to opportunities for error which then leads to risks for product defects. Product defects, whether in a tangible process or a service, lead to poor customer satisfaction. By working to reduce variation and opportunities for error, the Six Sigma method aims to reduce process costs and increase customer satisfaction.

When applied to business processes, Six Sigma allows companies to drastically improve their bottom line by designing and monitoring everyday business activities in ways that minimize waste and resources while increasing customer satisfaction.

Six Sigma and Statistics

At the most basic definition, Six Sigma is a statistical representation of what many experts call a “perfect” process. [1]

Technically, in a Six Sigma process, there are only 3.4 defects per million opportunities. In percentage terms, it implies that 99.99966 percent of the products from a Six Sigma process are without defects.

Six Sigma is both a methodology for process improvement and a statistical concept

that seeks to define the variation inherent in any process.

Importance of Six Sigma

According to the ATO Fact Book, the US Federal Aviation Administration’s air traffic management system handled a total of 15,416,640 flights in FY2022. [2] The table below shows the defect occurrence per million for various σ levels:

Sigma levels

Based on a 5σ air traffic control process, errors of some type would have occurred in the process of handling approximately 3,592 flights in FY2022. With a 6σ process, that risk drops to 52.42 errors!

While most people accept a 99.9 percent (5σ) accuracy rate in even the most critical services on a daily basis, the above examples highlight how wide the gap between Six Sigma and Five Sigma really is.

For organizations, it’s not just about the error rate, it’s also about the costs associated with each error.

Consider the example of Amazon which shipped an estimated 7.7 billion packages globally in 2021 amounting to about $470 billion in sales. [3] If each erroneous order costs the company an average of $20 (a very conservative number), the cost of error for Amazon at various Sigma levels is as below:

26,180$ 20$ 523,600
1,794,100$ 20$ 36 million
47,740,000$ 20$ 955 million
514,360,000$ 20$ 10 billion
2,371,600,000$ 20$ 47 billion
5,313,000,000$ 20$ 106 billion

The cost difference between a 5σ (99.99% accuracy) and a 6σ would mean over $35 million in annual savings for Amazon. From the above table, it is also evident how a drop in sigma level exponentially increases the cost a company incurs.

Origin of Six Sigma

The roots of statistical process control (SPC), which provide a backbone for Six Sigma methods, began with the development of the normal curve by Carl Friedrich Gauss [4] in the 19th century.

In the early part of the 20th century, SPC received another big boost due to several contributions from Walter Shewhart [5] , an engineer and scholar. Among his numerous contributions, two specifically stand out when speaking of Six Sigma:

First, Shewhart closely related sigma level and quality and showed that three sigma from the mean is the point where a process requires correction. Second, he introduced Control charts, which are a critical component of SPC that lets organizations maintain improved performance after a Six Sigma initiative.

During the same time, W. Edwards Deming [6] introduced the Plan-Do-Check-Act Cycle (PDCA) that stressed the importance of continuous improvement – a core tenet of Six Sigma.

Following World War II, Deming worked as a consultant to Japanese manufacturing companies and planted the ideas and concepts that would soon become the Toyota Production System or Lean Six Sigma.

In the 1980s, Bill Smith [7] moved to Motorola as the company was intensifying its quality initiatives to catch up with Japanese competitors. Bill had been brought in to share Japanese quality methods that he had learned while in the country with Motorola.

It was there that Bill Smith along with Mikel Harry [8] invented the Six Sigma improvement methodology, sharing the concept and theory with the CEO and going on to develop it thereafter.

Key people behind the development of Six Sigma

Motorola registered Six Sigma as a service mark [9] in 1991, and as a trademark in 1993. [10] Six Sigma helped the company realize powerful bottom-line results. Motorola claims to have achieved more than $16 Billion in savings because of its Six Sigma efforts. [11]

Since then, companies as diverse as Allied Signal (now Honeywell), General Electric, Sony, Honda, Maytag, Raytheon, Texas Instruments, Bombardier, Canon, Hitachi, Lockheed Martin, and Polaroid have all adopted Six Sigma.

America’s greatest business leaders such as Larry Bossidy of Allied Signal, and Jack Welch of General Electric Company have praised Six Sigma. General Electric’s implementation of Six Sigma which took five years, reportedly resulted in $12 billion savings. [12]

Common Six Sigma principles

Organizations can impact their Sigma level by integrating the core principles of Six Sigma into leadership styles, process management, and improvement endeavors. These core principles are: [13]

Customer Focused improvement

Companies launching Six Sigma are often shocked to find out how little they understand about their customers. In Six Sigma, customer focus becomes the top priority. The measures of Six Sigma performance begin with the customer with improvements defined by their impact on customer satisfaction and value.

Process-Focused approach

Six Sigma positions the process as the key vehicle of success. From designing products and services to measuring performance to improving efficiency and customer satisfaction, Six Sigma advocates that mastering processes is the way to build a competitive advantage in delivering value to customers.

Data and fact-driven management

Six Sigma promotes the “management by fact” approach. It begins by clarifying what measures are key to gauging business performance and then gathers data and analyzes key variables. Thus, problems can be effectively defined, analyzed, and permanently resolved.

At a more down-to-earth level, Six Sigma helps managers answer two essential questions to support data-driven decisions and solutions.

  • What data/information do we really need?
  • How do we use that data/information to maximum benefit?

Proactive management

Six Sigma encompasses tools and practices that replace reactive habits with a dynamic, responsive, and proactive style of management. By defining ambitious goals that are reviewed frequently, priorities become clear and the focus shifts to problem prevention rather than firefighting and questioning. This often becomes a starting point for creativity and effective change.

Boundaryless collaboration

Six Sigma promotes boundarylessness collaboration that breaks down across organizational lines to improve teamwork. This unlocks opportunities through improved collaboration among companies, vendors, and customers. Billions of dollars are lost every day because of disconnects and outright competition between groups that should be working for a common cause: providing value to customers.

Drive for perfection and tolerate failure

A company that makes Six Sigma its goal will have to keep pushing to be ever more perfect while being willing to accept and manage occasional setbacks. Six Sigma techniques that improve performance also include risk management tools that limit the downside of setbacks or failures. No company will get even close to Six Sigma without launching new ideas and approaches that always involve some risk.

The Six Sigma problem-solving process: DMAIC and DMADV

Six Sigma projects that are meant to improve an existing process follow a roadmap for success known as the DMAIC process (pronounced duh-MAY-ick).

DMAIC is broken into five phases: Define, Measure, Analyze, Improve, and Control. The main activities of a DMAIC project include identifying the critical inputs or causes that are creating the problem, verifying those causes, brainstorming and selecting solutions, implementing solutions, and creating a control plan to ensure the improved state is maintained.

In some cases, teams realize that fixing an existing process may not achieve sustained improvement, instead, a process might need to be completely redesigned. In such cases, teams employ the DMADV method.

DMADV stands for Define, Measure, Analyze, Design, and Verify. The principles governing the method are similar to DMAIC, but the last two phases are geared toward rolling out and testing a completely new process.

The DMAIC / DMADV process in Six Sigma

In DMAIC define phase, the project requirements are identified, and goals for success are set. Requirements and goal setting might relate to a variety of factors and are dependent on guidance from the leadership and expected budgets.

In a DMADV project, the define phase is more rigid. The teams must also define customer requirements to create a measuring stick to which the process development can be compared.

In both DMAIC and DMADV, teams create a project charter and a basic work plan. A charter is a synopsis of the project and provides common information and a summary of what the team hopes to accomplish. The charter also features a list of team members, names of those responsible for outcomes, a problem statement, a goal, and some basic definitions of scope and metrics for success.

Tools like the SIPOC diagram and Stakeholder Analysis(discussed later) can be used to understand processes and key stakeholders.

The bulk of the measure phase in DMAIC is occupied with gathering data and formatting it in a way that can be analyzed. Teams build tools to capture data, create queries for digital data, sift through enormous amounts of data to find relevant information or capture data by hand in some manual process.

The Measure stage validates assumptions from the Define stage with actual data. It might be required to revisit problem statements, goals, and other process-related definitions. The define stage creates a “rough draft” while the measure converts that into a final one.

In DMADV, the approach is similar, but activities are typically more targeted. Teams collect data and measurements that help define performance requirements for the new process.

Deciding what to measure can be challenging and requires strong observation skills, an understanding of the reasons behind the measure, knowledge of data types such as discrete and continuous, tools for measurement assessment, and a strong background in statistical analysis.

In the Analyze phase of DMAIC, hypotheses are developed about causal relationships between inputs and outputs. Causations are narrowed down to the vital few using methods such as the Pareto analysis (discussed later). Using statistical analysis and data, hypotheses and assumptions are validated.

In a DMAIC project, Analyze phase tends to flow into the Improve phase. Hypothesis testing, assumption validation and possible solutions might begin in Analyze and continue into the Improve phase.

Likewise, in a DMADV project, teams also identify cause-and-effect relationships, but they are more concerned with identifying best practices and benchmarks by which to measure and design the new process.

Teams begin the process design work by identifying value-added and non-value-added activities, locating areas where bottlenecks or errors are likely, and refining requirements to meet the needs and goals of the project.

The lines between Measure and Analyze are often blurrier than the lines between Define and Measure. In some cases, a team must measure, analyze, and then measure some more, particularly if metrics aren’t already in place for a process.

During the Analyze phase, teams use a variety of tools like Pareto Charts, Run Charts, Histograms, Cause-And-Effect Diagrams, Scatter Diagrams, Process Maps, and Value Analysis (all of which are discussed later).

Improve or Design

Six Sigma teams start developing the ideas that began in the Analyze phase during the Improve phase of a project by using statistics and real-world observation to test hypotheses and solutions.

Solutions are standardized in preparation for rolling improved processes to daily production and non-team employees. Teams also start measuring results and laying the foundation for controls that will be built in the last phase.

In the Improve phase, the DMADV project begins to diverge substantially. New processes are designed, which does involve some solutions testing (as in DMAIC), but also mapping workflow principles and actively building new infrastructures.

This might mean putting new equipment in place, hiring and training new employees, or developing new software tools.

As solutions are narrowed down, more than one might appear compelling and it can get challenging to determine which of the solutions improve a process. In such cases, changes are implemented one at a time and verified before moving on to the next.

Tools like the Solutions Selection Matrix (discussed later) can be used to evaluate and choose the best solutions.

Control or Verify

Control/Verify phase is where loose ends are tied and the project is transitioned to a daily work environment. Controls and standards are established so that improvements can be maintained and the responsibility for those improvements is transitioned to the process owner.

In DMAIC, teams usually handle four tasks:

  • creating the foundation for process discipline
  • finalizing documents related to the improvement
  • establishing ongoing metrics to evaluate the process
  • and building a process management plan that lets the team transition the improvement to the process owner.

Tools during the Control phase include documentation checklists, control charts, response plans, process maps, and process dashboards.

Verify phase of DMADV is like the Control phase, but with the exception that teams might perform further critical-to-quality (CTQ) analysis (discussed later) at the end of a project to identify new CTQ factors.

This is essential as the process/product could be different from when the team started working. At the end of the Verify phase, the final product or a process that meets the needs first identified in the Define stage is delivered.

When to use DMAIC and DMADV?

A business wants to create a smartphone app to help customers make and manage appointments. The business wants to create a product that doesn’t yet exist.
A doctor’s office has had numerous complaints from patients because it is too hard to get appointments, appointment communications are confusing, or patients show up for appointments and are told they don’t have an appointment. Since there is an existing process that needs improvement, begin with a DMAIC approach. If the team realizes the need for a new process, they may switch to DMADV.
A company that manufactures pizza boxes isn’t happy with the profit margins in the small-size boxes. The problem hasn’t yet been defined, but the organization knows that goals and expectations are not being met.

Why are the DMAIC and DMADV models effective?

The DMAIC/DMADV model provides seven key advantages:

  • Measuring the problem: In DMAIC, teams just don’t assume that they understand the problem, they are required to prove (validate) it with facts.
  • Focus on the customer: The process always considers the external customer’s interests which is important, especially when an organization is trying to cut costs in a process.
  • Verifying root cause: Teams agreeing on a cause is not proof enough. Teams must prove their cause with facts and data.
  • Breaking old habits: DMAIC/DMADV projects have proven to go beyond minor changes in crusty old processes and drive real change and results through creative new solutions.
  • Managing risks: Testing and perfecting solutions is embedded within the process which mitigates risks.
  • Measuring results: Solutions and their impact are verified through facts with goals and metrics clearly defined.
  • Sustaining change: Even the best of new “best practices” developed by a DMAIC team can die quickly if not nurtured and supported. Making change is the final key and part of this problem-solving approach.

The Six Sigma toolkit

Any technique that helps better understand, manage, and improve a business or a process can qualify as a Six Sigma tool, but some of them are key to planning and executing Six Sigma projects.

Understanding these tools gives a clearer perspective on how Six Sigma works. These tools are bunched into four categories:

Tools for generating ideas and organizing information

Tools for data gathering, tools for process and data analysis, tools for statistical analysis.

The goal of this article is to provide a quick overview of each of these tools. More details and how-to information can be found in a variety of other books and websites.

1. Brainstorming

Many Six Sigma methods have brainstorming, or idea generation, as a starting point. Brainstorming is an idea-creation method for generating many creative ideas in a short period. Brainstorming can be used when:

  • A broad range of options is to be generated
  • Creative, original ideas are required
  • Group participation is desired

During a brainstorming session, all ideas are to be treated as valid and worthy of consideration. At this stage, ideas are not criticized or evaluated. They are to be recorded as-is without discussion. Even combining, modifying, and expanding on others’ ideas is encouraged.

Methods like the “Sticky Storm Technique” [14] that combines individual and group brainstorming can be used.

2. Affinity Diagramming

The Affinity Diagram [15] (also known as Affinity Chart, Affinity Mapping, K-J Method, or Thematic Analysis) groups ideas according to their natural relationships. It usually follows the brainstorming stage to help organize the output.

It can be used to organize and consolidate information related to a product, process, complex issue, or problem. Ideas are grouped according to their affinity or similarity.

Teams creating affinity diagrams record each idea on a note or a card. They then look for relationships between individual ideas and have team members simultaneously sort the ideas into five to ten related groupings. The process is repeated until all ideas are grouped.

It is okay to have “loners” that don’t seem to fit a group. It is also okay to move a note someone else has already moved. If a note seems to belong to two groups, a second note can be made.

It is important to avoid talking during this process. The focus should be on looking for and grouping related ideas without attaching any priority or importance to them.

3. Multivoting

Multivoting [16] narrows a large list of possibilities to a smaller list of top priorities. Each participant gets a certain number of votes (unlike a single vote in straight voting). This allows an item that is favored by all, but not the top choice of any, to rise to the top.

Multivoting can be used:

  • After brainstorming generates a long list of possibilities
  • When a list must be narrowed down
  • When a decision must be made by group judgment

4. Structure Tree (Tree Diagram)

A Structure Tree [17] (also known as Systematic Diagram, Tree Analysis, Analytical Tree, or Hierarchy Diagram) is used to depict the hierarchy of tasks and subtasks needed to complete an objective.

The tree diagram starts with one item that branches into two or more, each of which branches into two or more, and so on. The finished diagram bears a resemblance to a tree, with a trunk and multiple branches.

Structure tree

As seen from the figure above, a tree diagram breaks down broad categories into finer levels of detail. Developing the tree diagram helps teams to think step by step from generalities to specifics.

A tree diagram can be used when:

  • An issue, that is known in broad generalities must move to specific details
  • Developing actions to carry out a solution or a plan
  • Analyzing processes in detail
  • Probing for the root cause of a problem
  • Evaluating implementation issues for several potential solutions
  • After an affinity diagram or interrelationship diagram has uncovered key issues
  • As a communication tool, to explain details to others

5. High-level process map (SIPOC diagram)

SIPOC [19] (pronounced “sye-pahk”) is an acronym for Supplier, Input, Process, Output, Customer. SIPOC is used in the Define phase of DMAIC and is often a preferred method for diagramming major business processes and identifying possible measures.

SIPOC shows the major activities or sub-processes in a business in a systematic framework represented by the Suppliers, Inputs, Processes, Outputs, and Customers. This helps identify the boundaries and critical elements of a process without losing sight of the big picture.

SIPOC example

In a SIPOC diagram, suppliers are the sources for the process, inputs are the resources needed for the process to function, the process constitutes the high-level steps that the system/organization undertakes, outputs are the results of those processes and customers are the people who receive outputs or benefit from the process.

Creating a SIPOC diagram helps answer the following questions:

  • How can a process be made easier?
  • Is a quality product delivered to the customers?
  • Can supplier management be improved?
  • Are suppliers delivering as per need?
  • Are the customer persona and the demographics they fall into known?
  • Are there any inefficiencies that can improve when creating the product?

Sometimes, a variation of the SPCIF diagram called SIPOC+CM [21] is used that also maps the Constraints (C) and the Measures (M).

6. Flowchart

A Flowchart [22] is used to show details of a process, including tasks and procedures, alternative paths, decision points, and rework loops. While simple flowcharts can be constructed with a bunch of stickies on a wall, complex ones are developed using advanced software [23] that offers extensive capabilities.

A flowchart is a visual representation of distinct steps of a process in sequential order. Elements that may be included in a flowchart are a sequence of actions, materials or services entering or leaving the process (inputs and outputs), decisions that must be made, people who become involved, time involved at each step, and/or process measurements.

Flowchart

Flowcharts can be used:

  • To develop an understanding of how a process is done
  • To study a process for improvement
  • To communicate to others how a process is done
  • For better communication among people involved with the same process
  • To document a process
  • When planning a project

7. Fishbone diagram

A Fishbone diagram [25] (also known as Cause-And-Effect Diagram, Ishikawa Diagram) is used to brainstorm possible causes of a problem (or effect) and puts the possible causes into groups or affinities. Causes that lead to other causes are linked similarly to a structure tree.

The fishbone diagram helps gather collective ideas from the team on where a problem might arise and enables the team members to think of all possible causes by clarifying major categories.

Fishbone diagram

While a fishbone diagram does not reveal the right cause, it helps develop educated guesses, or hypotheses, about where to focus measurement and further root cause analysis.

A fishbone diagram can be used:

  • When identifying possible causes for a problem
  • When a team’s thinking tends to diverge

8. Critical to Quality (CTQ) tree

A CTQ tree [27] is a visual tool to identify and prioritize the critical quality characteristics (CTQs) that are most important to customers. It helps map the relationship between customer requirements and specific product or process characteristics for improvement focus.

A CTQ tree starts by identifying the customer needs and then branches into drivers and requirements. Building a CTQ tree requires identifying:

  • The Need: This is the actual product or service that a customer wants.
  • The Drivers: These are quality drivers that must be present to fulfil customer needs.
  • The Requirements: These are the list of the requirements for each driver. In other words, recording measurable performance metrics for each driver.

In Six Sigma, once an organization has completed the Voice of Customer (VOC) process, it is useful to build a CTQ tree to:

  • Bring more clarity in understanding customer needs
  • Identifying current issues and improving the product or service
  • Help design or develop a product or service during the early stages of the process
  • Stand out from competitors

Example CTQ Tree

1. Sampling

Sampling [28] is the selection of a set of elements from a target population or product lot. Sampling is used frequently as gathering data on every member of a target population or every product is often impossible, impractical, or too costly.

Sampling helps draw conclusions or make inferences about the population or product lot from which the sample is drawn.

Example of Sampling

When used in conjunction with randomization [29] (randomly selecting factors, measurements, or variables to eliminate the effects of bias or chance), samples provide virtually identical characteristics relative to those of the population or product grouping from which the sample was drawn.

Teams must be careful to avoid sampling errors which are primarily of three kinds:

  • Bias (lack of accuracy)
  • Dispersion (lack of precision)
  • Non-reproducibility (lack of consistency)

2. Operational Definitions

An Operational Definition [30] is a clearly defined description of some characteristic. It should be specific and describe not only what is being measured but how. An operational definition needs to be agreed upon by all parties, whether that is a customer or an internal function of the organization.

For example, an Amazon search for “blue shirt” will yield the following result:

Amazon search blue shirts

This is the key purpose of an operational definition. Everyone must define, measure, and interpret things the same way.

3. Voice Of The Customer (VOC) Methods

Voice Of the Customer (VOC) [31] is the direct input and expression of the wants, needs, and expectations that the customer has for the organization with which the customer conducts business.

In Six Sigma, VOC is the structured process of directly soliciting and gathering the specifically stated needs, wants, expectations and performance experiences of the customer about the products and/or services that an organization provides.

There are several ways an organization can capture the VOC, such as:

  • Direct observations
  • Focus groups
  • Complaint data
  • Customer service reps
  • Existing company data
  • Industry data

Unintended miscommunication between an organization and its customers is a common reason why organizations lose customers and their business. It is critical for an organization to understand the VOC and customer requirements.

4. Checksheets

A Checksheet [33] (also called a defect concentration diagram) is a structured, prepared form for collecting and analyzing data. It is a generic data collection and analysis tool that can be adapted for a wide variety of purposes and is considered one of the seven basic quality tools.

example checksheet

A checksheet can be used when:

  • Data can be observed and collected repeatedly by the same person or at the same location.
  • Collecting data on the frequency or patterns of events, problems, defects, defect location, defect causes, or similar issues.
  • Collecting data from a production process.

Checklists have two key objectives:

  • Ensure that the right data is captured, with all necessary facts included, such as when it happened, how many, and what customer. These facts are called stratification factors. [32]
  • To make data gathering as easy as possible for the collectors.

Checksheets can vary from simple tables and surveys to diagrams used to indicate where errors or damage occurred. Spreadsheets are the place where checksheet data is collected and organized. A well-designed spreadsheet makes it much easier to use the data.

5. Measurement Systems Analysis (MSA)

A measurement systems analysis (MSA) [34] is an umbrella term covering various methods used to ensure that measures are accurate and reliable. MSA evaluates the test method, measuring instruments, and the entire process of obtaining measurements to ensure the integrity of data used for analysis and to understand the implications of measurement error for decisions made about a product or process.

An MSA considers the following:

  • Selecting the correct measurement and approach
  • Assessing the measuring device
  • Assessing procedures and operators
  • Assessing any measurement interactions
  • Calculating the measurement uncertainty of individual measurement devices and/or measurement systems

Common tools and techniques of measurement systems analysis include calibration studies, fixed effect ANOVA [35] , components of variance, attribute gage study, gage R&R, ANOVA gage R&R [36] , and destructive testing analysis.

Classification of measurement variations

The goals of MSA are:

  • Quantification of measurement uncertainty, including the accuracy, precision, repeatability, reproducibility, and discrimination
  • Quantifying the stability and linearity of these quantities over time and across the intended range of use of the measurement process.
  • Development of improvement plans, when needed.
  • Deciding if a measurement process is adequate for a specific engineering or manufacturing application.

Checking on people performing the measurements is also a part of MSA.

1. Process-Flow Analysis

A process flow analysis uses the process map or a flowchart as input to scrutinize the process for redundancies, unclear hand-offs, unnecessary decision points, and so on. Process data can reveal problems such as delays, bottlenecks, defects, and rework.

A process flow analysis can be one of the quickest ways to find clues about the root causes of problems.

2. Value and Non-Value-Added Analysis

Activities usually fall under three kinds:

  • Value-added activities
  • Non-value-added activities
  • Business value-added activities

Value-added activities are those activities for which the customer is willing to pay for and non-value-added activities are those for which the customer is not willing to pay.

Business value-added activities are those for which the customer is not willing to pay but are necessary for the running of processes and the business. These could include work performed for audits, controls, risk management, regulatory requirements, etc.

In Six Sigma, both non-value-added and business value-added activities are considered “wastes” but are segregated and treated differently.

Wastes can be identified using the following questions:

  • Does the activity transform the form, feature, feeling and function that the customer is willing to pay for?
  • Is it being done right the first time?
  • Is this something the customer expects to pay for?

A positive answer or a “yes” to all of them indicates that it is a value-added activity. Even a single “No” indicates that it is either a non-value-added activity or a business value-added activity.

It’s never possible to eliminate all non-value-adding activities, especially Business value-added activities, But this approach helps in reducing the non-essential aspects of a process that are a drain on resources.

3. Charts and Graphs:

The first and best way to analyze measures of a process is to create a picture of the data and charts and graphs help accomplish just that. Visual representation of data becomes a lot more meaningful and convenient to read than a table of numbers.

Charts and graphs help make discoveries that the numbers themselves would hide. Charts and graphs are of various types, each offering a bit different picture of the data.

Following are some of the most used types of charts and graphs:

Pareto Chart

A Pareto is a specialized bar chart that breaks down a group by categories and compares them from largest to smallest. It’s used to look for the biggest pieces of a problem or contributors to a cause. Learn more about Pareto analysis .

Example of a Pareto chart

Histogram (Frequency Plot)

A histogram is a type of bar chart that shows the distribution or variation of data over a range: size, age, cost, length of time, weight, and so on. (A Pareto chart, by contrast, slices data by category)

A Histogram showing the distribution of Cherry trees

In analyzing histograms, teams can look for the shape of the bars or the curve, the width of the spread, or range, from top to bottom, or the number of “humps” in the bars. When customer requirements are plotted on a histogram, it reveals how much what’s being done meets or does not meet customers’ needs.

Run (Trend) Chart

Pareto charts and histograms don’t reveal the time dimension, i.e. how things change over time. A run chart accomplishes just that.

Consider the below example of a chemical process that is sensitive to ambient temperature. It can be visually inferred that the temperatures during the months of April through July have a negative bearing on the process leading to defects.

Run Chart for recorded defects in a chemical process

Control Chart

A control chart is also used to study how a process changes over time. Data are plotted in time order. But unlike a Run Chart, a Control Chart always has a central line for the average, an upper line for the Upper Control Limit (UCL), and a lower line for the Lower Control Limit (LCL). These lines are determined from historical data.

Control chart

Any data point falling between the UCL and the LCL is considered as safe. The data points falling outside the LCL and the UCL are called ‘Outliers’. All outliers are candidates for Root Cause Analysis.

Control charts are used for:

  • Controlling ongoing processes by finding and correcting problems as they occur
  • Predicting the expected range of outcomes from a process
  • Determining whether a process is stable (in statistical control)
  • Analyzing patterns of process variation from special causes (non-routine events) or common causes (built into the process)
  • Determining whether a quality improvement project should aim to prevent specific problems or to make fundamental changes to the process

Scatter Plot (Correlation) Diagram

A Scatter plot looks for direct relationships between two factors in a process, usually to see whether they are correlated, meaning that a change in one is linked to a change in the other.

When an increase in one factor matches an increase in the other, it’s a “positive correlation” and likewise the reverse is a “negative correlation”. If two measures show a relationship, one may be causing the other.

Scatter plot

However, a correlation does not necessarily mean causation. The underlying connection may be hidden. For example, there is a statistical correlation between eating ice cream and drowning incidents, but ice cream consumption does not cause drowning. They are connected by a third common cause which is warm summer weather.

A scatter plot helps a DMAIC team visualize the relationship between process output (Y) and suspected cause/input factors (X). As a practice, X is plotted on the horizontal axis (independent variable), while Y is plotted on the vertical axis (dependent variable).

In some cases, collected data is not accurate enough. Analysis of such data requires a level of proof beyond what visual tools can offer. Six Sigma teams apply more sophisticated statistical analysis tools in such cases.

The statistical part of the toolkit contains many different tools and formulas. Some of the broad families of statistical methods are:

Tests of statistical significance

These tools look for differences in groups of data to see whether they are meaningful. These tests include Chi-square, t-tests, and analysis of variance. [39]

Correlation and regression

These tools are similar to a scatter plot but can get a lot more complex, including regression coefficients, simple linear regression, multiple regression, surface response tests, and so on. These tools test for the presence, strength, and nature of the links among variables in a process or a product, such as how tire pressure, temperature, and speed would affect gas mileage. [40]

Design Of Experiments (DOE)

DOE deals with planning, conducting, analyzing, and interpreting controlled tests to evaluate the factors that control the value of a parameter or group of parameters. DOE is a powerful data collection and analysis tool that can be used in a variety of experimental situations.

It allows for multiple input factors to be manipulated, determining their effect on a desired output (response). DOE can identify important interactions that may be missed when experimenting with one factor at a time.[ 41]

Tools for implementation and process management

1. project management methods.

Six Sigma companies recognize early on the importance of strong project management skills: planning, budgeting, scheduling, communication, and people management. Technical project management tools such as Gantt chart scheduling can be used for implementation and process management.

2. Potential Problem Analysis (PPA) and Failure Mode and Effects Analysis (FMEA)

PPA is a systematic method for determining what could go wrong in a plan under development. The problem causes are rated according to their likelihood of occurrence and the severity of their consequences. Preventive actions are taken, and contingency plans are developed. The process helps to create a smooth, streamlined implementation process. [42]

Similarly, FMEA is a step-by-step approach for identifying all possible failures in a design, a manufacturing or assembly process, or a product or service. It is a common process analysis tool. FMEA begins during the earliest conceptual stages of design and continues throughout the life of the product or service. [43]

3. Stakeholder Analysis

Complex change can affect a lot of people. Six Sigma teams recognize that for change to be successful, it is important to consider the needs and perspectives of various parties involved, i.e. the stakeholders.

The Stakeholder Analysis [44] process is used to determine who the stakeholders are, what are their wants, goals, and concerns and how best to understand mutual interests.

Stakeholders are grouped based on their interest in the project outcome and the power they hold in influencing the change. They usually fall under four categories, each of which needs a different approach to drive successful change:

Four categories of stakeholders and the approach to managing them

4. Force Field Diagram

A Force Field Diagram is a result of a force field analysis that shows the relationship between factors that help promote a change vs. those that oppose or create resistance. Like stakeholder analysis, the force field is used to develop plans to build support for a critical change.

An example of a force field diagram

A force field diagram helps the team to focus on improving the driving forces and weakening the resisting forces through education or refinements.

5. Balanced Scorecards

The balanced scorecard [45] is a strategic management tool that views the organization from different perspectives, usually the following:

  • Financial: The perspective of shareholders
  • Customer: How customers experience and perceive an organization
  • Business process: Key processes used to meet and exceed customer/shareholder needs
  • Learning and growth: How to foster ongoing change and continuous improvement

Example of a balanced scorecard for a ECI

A balanced scorecard provides feedback on both internal business processes and external outcomes to continuously improve strategic performance and results.

6. Solution Selection Matrix

A Solution Selection Matrix (SSM), also known as a Decision Matrix or a Criteria Matrix, is a tool used to objectively assess the strengths and weaknesses of each option and determine the best course of action.

SSM consists of a table or a grid of options and criteria. Each criterion represents a specific aspect or attribute that is important in evaluating the options. The evaluator assigns a rating or score to each option for each criterion.

Once the ratings are assigned, they are often weighted (by assigning a numerical value) to indicate the relative importance. A weighted score is then calculated for each option by multiplying the rating by the corresponding weight.

Solution Selection Matrix

The option with the highest overall score indicates the most favorable choice. SSM provides a structured and systematic approach to decision-making, helping to eliminate bias and subjectivity.

7. Process Dashboards

A Process Dashboard is a vital decision management tool that showcases essential information about process performance to process participants and owners. It provides high-maturity, metrics-intensive data necessary for process analysis and decision-making.

Example of a manufacturing dashboard

8. Process Documentation

As a DMAIC project reaches a conclusion with solutions in place and results in hand, the Six Sigma team must turn over responsibility to those who will manage the process on an ongoing basis.

Creating effective, clear, not overly complex process documentation that includes process maps, task instructions, measures, and more is the last and most important element of the DMAIC Control step.

Note on Six Sigma tools

While Six Sigma is rich with tools that help make better decisions, solve problems, and manage change, Six Sigma and the tools are one and the same.

Using too many tools can complicate things. Demanding that they be used when they aren’t helpful can undermine the goals of Six Sigma just as easily as not using tools.

The following are important considerations when selecting a Six Sigma tool:

  • Use only the tools that help in getting the job done.
  • Keep it as simple as possible.
  • When a tool isn’t helping, stop and try something else.

Six Sigma breakthrough equation

Six Sigma looks at every process through what is known as the breakthrough equation shown below:

Six Sigma breakthrough equation

  • Y is the outcome(s) or result(s) desired or needed.
  • X represents the inputs, factors, or pieces necessary to create the outcome(s). There can be more than one Xs.
  • ƒ is the function, the way or process by which the inputs are transformed into the outcome.
  • ε (epsilon) is the presence of error or uncertainty surrounding how accurately the Xs are transformed to create the outcome.

In any process, a set of input variables are transformed by a function (or process) and combined with error to form the output. The Y results from, or is a function of, the Xs.

Breakthrough equation applied to bread making

In the bread-making example above, bread is the Y (output). Inputs like the dough, salt, yeast etc., are the Xs while the process of dough making and baking are the ƒ. Errors like wrong temperature leading to improper baking represent the epsilon (ε).

Basic Metrics in Six Sigma

When applying Six Sigma to processes and improvements, the below metrics are used to access and measure process accuracy levels:

Defects Per Unit (DPU)

DPU is a measure of how many defects there are in relation to the number of units tested.

It is concerned with total defects, and one unit could have more than one defect.

Defects Per Unit

For example, if a publisher printed 1,000 books and pulled out 50 books for quality checks,

that revealed:

  • 3 books are missing pages
  • 1 book is missing pages and has a torn cover
  • 2 books have loose spines
  • 1 book has incorrect printing and incorrect alignment

There are 9 total errors in a sample size of 50 books, hence the DPU is calculated as:

DPU calculated

DPU provides an average level of quality. It tells how many defects on average each unit can be expected to have. In this case, that is 0.18 defects on average.

Defects per Opportunity (DPO)

DPO is the number of defects in a sample divided by the total number of defect opportunities.

In the above example, each book has a possibility of 5 types of errors (missing page, torn cover, loose spine, incorrect printing, and incorrect alignment). Hence the opportunity for error in each book is 5 and DPO is calculated as:

Defects per Opportunity

Defects per Million Opportunities (DPMO)

This represents a ratio of the number of defects in one million opportunities. In other words, how many times did a flaw or mistake (defect) occur for every million opportunities there were to have a flaw or a mistake?

Defects per Million Opportunities

DPMO is also the same as DPO multiplied by a million. By scaling the sample size to a common value (1 million), DPMO allows to compare accuracy levels of different processes.

In the book example, DPMO is calculated as:

DPMO calculated

First-Time Yield (FTY)

FTY is the ratio of units produced to units attempted to produce.

First-Time Yield

For example, if 100 cookies were put in the oven, but only 95 came out edible, then:

FTY calculated

Most products or services are created via multiple processes, in which case FTY for each process needs to be multiplied to calculate an overall FTY.

Rolled Throughput Yield (RTY)

RTY provides a probability that a unit will be generated by a process with no defects.

One of the main differences between RTY and FTY is that RTY considers whether rework was needed to generate the number of final units. This is valuable as organizations don’t always think about the rework that is inherent in a process, which means they often measure a process and deem it successful even if waste is present.

Consider the following process chain:

ProcessUnits EnteredUnits ScrappedUnits ReworkedUnits Produced
A1005595
B9510585
C8551580

The RTY is calculated as follows:

RTY for Process A: 100 – (5 + 5) = 90, 90/100 = 0.9

RTY for Process B: 95 – (10 + 5) = 80, 80/95 = 0.84

RTY for Process C: 85 – (5 + 15) = 65, 65/85 = 0.76

Overall RTY = 0.9 * 0.84 * 0.76 = 0.574

While RTY does not indicate final production or sales, a low RTY indicates that there is waste in the process in the form of rework.

Six Sigma vs. Lean Six Sigma

While Six Sigma focuses on eliminating defects and reducing variation, Lean Six Sigma (LSS) focuses on eliminating waste and improving speed. LSS combines Lean Management and Six Sigma to increase the velocity of value creation.

During the 2000s, Lean Six Sigma forked from Six Sigma and became its own unique process. LSS developed as a specific process of Six Sigma, incorporating ideas from lean manufacturing, which was developed as a part of the Toyota Production System in the 1950s.

Lean Six Sigma is more specifically used to streamline manufacturing and production processes, while Six Sigma methodologies can benefit any business.

A comparison between Six Sigma and Lean Six Sigma (Source: Amile Institute[50])

Six Sigma Training Levels and Roles

Possessing a Six Sigma certification proves that an individual has demonstrated practical applications and knowledge of Six Sigma. These certification levels are differentiated by belt level.

The belt color someone holds will help to determine what role they will play in a given project and how they will be spending their time. Broadly they are shown as below:

Six Sigma Certification levels

In addition to the above levels, there is Six Sigma Champion which is not a belt per se but plays a crucial role in Six Sigma projects and organizations.

Six Sigma Interacting Roles

The primary function of the Champion is to ensure that all operational projects align with strategic business objectives.

1. “Six SIGMA: A Complete Step-By-Step Guide: A Complete Training & Reference Guide for White Belts, Yellow Belts, Green Belts, and Black Belts”. Six Sigma Council, https://www.sixsigmacouncil.org/wp-content/uploads/2018/08/Six-Sigma-A-Complete-Step-by-Step-Guide.pdf . Accessed 06 Jul 2023

2. “Air Traffic By The Numbers”. Fedaral Avaiation Administration, https://www.faa.gov/air_traffic/by_the_numbers . Accessed 06 Jul 2023

3. “How many Amazon packages get delivered each year?”. The Conversation, https://theconversation.com/how-many-amazon-packages-get-delivered-each-year-187587 . Accessed 06 Jul 2023

4. “Carl Friedrich Gauss”. Wikipedia, https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss . Accessed 06 Jul 2023

5. “Walter A Shewhart”. Sixsigmastudyguide, https://sixsigmastudyguide.com/shewhart/ . Accessed 06 Jul 2023

6. “Edwards Deming”. Wikipedia, https://en.wikipedia.org/wiki/W._Edwards_Deming . Accessed 08 Jul 2023

7. “Bill Smith”. Wikipedia, https://en.wikipedia.org/wiki/Bill_Smith_(Motorola_engineer) . Accessed 08 Jul 2023

8. “Mikel Harry”. Wikipedia, https://en.wikipedia.org/wiki/Mikel_Harry . Accessed 08 Jul 2023

9. “Trademark Status & Document Retrieval (TSDR)”. The United States Patent and Trademark Office (USPTO), https://tsdr.uspto.gov/#caseNumber=1647704&caseSearchType=US_APPLICATION&caseType=SERIAL_NO&searchType=statusSearch . Accessed 08 Jul 2023

10. “SIX SIGMA – Trademark Details”. Justia, https://trademarks.justia.com/741/99/six-74199225.html . Accessed 08 Jul 2023

11. “The History of Six Sigma”. Isixsigma, https://www.isixsigma.com/history/history-six-sigma/ . Accessed 08 Jul 2023

12. “Six Sigma Case Study: General Electric”. 6sigma, https://www.6sigma.us/ge/six-sigma-case-study-general-electric/ . Accessed 08 Jul 2023

13. “What Is Six Sigma?”. Peter S. Pande, Lawrence Holpp, https://books.google.co.in/books/about/What_Is_Six_Sigma.html?id=vBzaUJuH8hYC&redir_esc=y . Accessed 10 Sep 2023

14. “BRAINSTORMING”. American Society for Quality, https://asq.org/quality-resources/brainstorming . Accessed 08 Jul 2023

15. “WHAT IS AN AFFINITY DIAGRAM?”. American Society for Quality, https://asq.org/quality-resources/affinity . Accessed 08 Jul 2023

16. “WHAT IS MULTIVOTING?”. American Society for Quality, https://asq.org/quality-resources/multivoting . Accessed 08 Jul 2023

17. “WHAT IS A TREE DIAGRAM?”. American Society for Quality, https://asq.org/quality-resources/tree-diagram . Accessed 08 Jul 2023

18. “Tree Diagram: All you need to know about it”. Qidemy, https://qidemy.com/tree-diagram-all-you-need-to-know-about-it/ . Accessed 08 Jul 2023

19. “What is a SIPOC diagram? 7 steps to map and understand business processes”. Asana, https://asana.com/resources/sipoc-diagram . Accessed 08 Jul 2023

20. “SIPOC”. Wikipedia, https://en.wikipedia.org/wiki/SIPOC . Accessed 08 Jul 2023

21. “SIPOC+CM DIAGRAM”. American Society for Quality, https://asq.org/quality-resources/sipoc . Accessed 08 Jul 2023

22. “WHAT IS A FLOWCHART?”. American Society for Quality, https://asq.org/quality-resources/flowchart . Accessed 08 Jul 2023

23. “Comparison of Business Process Model and Notation modeling tools”. Wikipedia, https://en.wikipedia.org/wiki/Comparison_of_Business_Process_Model_and_Notation_modeling_tools . Accessed 08 Jul 2023

24. “Flowchart”. Wikipedia, https://en.wikipedia.org/wiki/Flowchart . Accessed 09 Jul 2023

25. “FISHBONE DIAGRAM”. American Society for Quality, https://asq.org/quality-resources/fishbone . Accessed 09 Jul 2023

26. “Ishikawa diagram”. Wikipedia, https://en.wikipedia.org/wiki/Ishikawa_diagram . Accessed 09 Jul 2023

27. “Critical to Quality Tree (CTQ)”. Minnesota Department of Health, https://www.health.state.mn.us/communities/practice/resources/phqitoolbox/ctqtree.html . Accessed 10 Jul 2023

28. “WHAT IS SAMPLING?”. American Society for Quality, https://asq.org/quality-resources/sampling . Accessed 11 Jul 2023

29. “Randomization: Key to Reducing Bias and Increasing Accuracy”. Isixsigma, https://www.isixsigma.com/dictionary/randomization/ . Accessed 09 Jul 2023

30. “Operational Definition”. Isixsigma, https://www.isixsigma.com/dictionary/operational-definition/ . Accessed 09 Jul 2023

31. “How to Use Voice of the Customer to Improve Customer Experience”. Isixsigma, https://www.isixsigma.com/dictionary/voice-of-the-customer-voc/ . Accessed 09 Jul 2023

32. “WHAT IS STRATIFICATION?”. American Society for Quality, https://asq.org/quality-resources/stratification . Accessed 09 Jul 2023

33. “CHECK SHEET”. American Society for Quality, https://asq.org/quality-resources/check-sheet . Accessed 11 Jul 2023

34. “Measurement System Analysis (MSA)”. Lean6sigmapro, https://www.lean6sigmapro.com/knowledgebase/msa . Accessed 09 Jul 2023

35. “Distinguishing Between Random and Fixed: Variables, Effects, and Coefficients”. Portland State University, https://web.pdx.edu/~newsomj/mlrclass/ho_randfixd.pdf . Accessed 09 Jul 2023

36. “ANOVA gauge R&R”. Wikipedia, https://en.wikipedia.org/wiki/ANOVA_gauge_R%26R . Accessed 09 Jul 2023

37. “Control Chart”. Project Management Research Institute, https://pmri.in/dictionary/control-chart/ . Accessed 10 Jul 2023

38. “Data Demystified: Correlation vs. Causation”. Datacamp, https://www.datacamp.com/blog/data-demystified-correlation-vs-causation . Accessed 09 Jul 2023

39. “Tests of Statistical Significance”. California State University, Long Beach, https://home.csulb.edu/~msaintg/ppa696/696stsig.htm . Accessed 09 Jul 2023

40. “Statistics review 7: Correlation and regression”. National Library of Medicine , https://www.ncbi.nlm.nih.gov/pmc/articles/PMC374386/ . Accessed 09 Jul 2023

41. “WHAT IS DESIGN OF EXPERIMENTS (DOE)?”. American Society for Quality, https://asq.org/quality-resources/design-of-experiments . Accessed 09 Jul 2023

42. “Potential Problem Analysis”. Digital Healthcare Research, https://digital.ahrq.gov/health-it-tools-and-resources/evaluation-resources/workflow-assessment-health-it-toolkit/all-workflow-tools/potential-problem-analysis . Accessed 09 Jul 2023

43. “FAILURE MODE AND EFFECTS ANALYSIS (FMEA)”. American Society for Quality, https://asq.org/quality-resources/fmea . Accessed 09 Jul 2023

44. “Stakeholder Analysis Process”. Projectmanagement, https://www.projectmanagement.ie/blog/stakeholder-analysis-process/ . Accessed 10 Jul 2023

45. ” The Balanced Score Card”. Shree Phadnis, Master Black Belt at KPMG (India), https://www.symphonytech.com/articles/bscard.htm . Accessed 10 Jul 2023

46. “The Balanced Scorecard—Measures that Drive Performance”. Harvard Business Review, https://hbr.org/1992/01/the-balanced-scorecard-measures-that-drive-performance-2 . Accessed 10 Sep 2023

47. “MANUFACTURING DASHBOARD EXAMPLES”. Datapine, https://www.datapine.com/dashboard-examples-and-templates/manufacturing . Accessed 09 Jul 2023

48. “A comparison between Six Sigma and Lean Six Sigma”. Amileinstitute, https://www.amileinstitute.org/blog/a-comparison-between-six-sigma-and-lean-six-sigma/ . Accessed 10 Jul 2023

49. “What are the Levels (Belts) of Lean Six Sigma Certification?”. Dcmlearning, https://dcmlearning.ie/lean-resources/different-levels-belts-of-lean-six-sigma-certification.html . Accessed 11 Jul 2023

  • 5S Methodology: The Ultimate Guide

Leave a Comment Cancel reply

Save my name and email in this browser for the next time I comment.

Six Sigma Daily

What is Six Sigma?

Six sigma actually has its roots in a 19th century mathematical theory, but found its way into today’s mainstream business world through the efforts of an engineer at motorola in the 1980s. now heralded as one of the foremost methodological practices for improving customer satisfaction and improving business processes, six sigma has been refined and perfected over the years into what we see today..

' src=

Six Sigma ranks among the foremost methodologies for making business processes more effective and efficient. In addition to establishing a culture dedicated to continuous process improvement, Six Sigma offers tools and techniques that reduce variance, eliminate defects and help identify the root causes of errors, allowing organizations to create better products and services for consumers.

While most people associate Six Sigma with manufacturing, the methodology is applicable to every type of process in any industry. In all settings, organizations use Six Sigma to set up a management system that systematically identifies errors and provides methods for eliminating them.

People develop expertise in Six Sigma by earning belts at each level of accomplishment. These include White Belts, Yellow Belts , Green Belts , Black Belts and Master Black Belts.

How Six Sigma Began

In the 19th century, German mathematician and physicist Carl Fredrich Gauss developed the bell curve. By creating the concept of what a normal distribution looks like, the bell curve became an early tool for finding errors and defects in a process.

In the 1920s, American physicist, engineer and statistician Walter Shewhart expanded on this idea and demonstrated that “sigma imply where a process needs improvement,” according to “The Complete Business Process Handbook: Body of Knowledge From Process Modeling to BPM Vol. 1” by Mark von Rosing, August-Wilhelm Scheer and Henrik von Scheel.

In the 1980s, Motorola brought Six Sigma into the mainstream by using the methodology to create more consistent quality in the company’s products, according to “ Six Sigma ” by Mikel Harry and Richard Schroeder.

Motorola engineer Bill Smith eventually became one of the pioneers of modern Six Sigma , creating many of the methodologies still associated with Six Sigma in the late 1980s. The system is influenced by, but different than, other management improvement strategies of the time, including Total Quality Management and Zero Defects.

Does it work? Motorola reported in 2006 that the company had saved $17 billion using Six Sigma.

What Six Sigma Means

Experts credit Shewhart with first developing the idea that any part of process that deviates three sigma from the mean requires improvement. One sigma is one standard deviation .

The Six Sigma methodology calls for bringing operations to a “six sigma” level, which essentially means 3.4 defects for every one million opportunities. The goal is to use continuous process improvement and refine processes until they produce stable and predictable results.

Six Sigma is a data-driven methodology that provides tools and techniques to define and evaluate each step of a process. It provides methods to improve efficiencies in a business structure, improve the quality of the process and increase the bottom-line profit.

The Importance of People in Six Sigma

A key component of successful Six Sigma implementation is buy-in and support from executives. The methodology does not work as well when the entire organization has not bought in.

Another critical factor is the training of personnel at all levels of the organization. White Belts and Yellow Belts typically receive an introduction to process improvement theories and Six Sigma terminology . Green Belts typically work for Black Belts on projects, helping with data collection and analysis. Black Belts lead projects while Master Black Belts look for ways to apply Six Sigma across an organization.

Methodologies of Six Sigma

There are two major methodologies used within Six Sigma, both of which are composed of five sections, according to the 2005 book “JURAN Institute Six Sigma Breakthrough and Beyond” by Joseph A. De Feo and William Barnard.

DMAIC : The DMAIC method is used primarily for improving existing business processes. The letters stand for:

  • D efine the problem and the project goals
  • M easure in detail the various aspects of the current process
  • A nalyze data to, among other things, find the root defects in a process
  • I mprove the process
  • C ontrol how the process is done in the future

DMADV : The DMADV method is typically used to create new processes and new products or services. The letters stand for:

  • D efine the project goals
  • M easure critical components of the process and the product capabilities
  • A nalyze the data and develop various designs for the process, eventually picking the best one
  • D esign and test details of the process
  • V erify the design by running simulations and a pilot program, and then handing over the process to the client

There are also many management tools used within Six Sigma. Some examples include the following.

This is a method that uses questions (typically five) to get to the root cause of a problem . The method is simple: simply state the final problem (the car wouldn’t start, I was late to work again today) and then ask the question “why,” breaking down the issue to its root cause. In these two cases, it might be: because I didn’t maintain the car properly and because I need to leave my house earlier to get to work on time.

The Critical to Quality (CTQ) Tree diagram breaks down the components of a process that produces the features needed in your product and service if you wish to have satisfied customers.

Root Cause Analysis

Much like the Five Whys, this is a process by which a business attempts to identify the root cause of a defect and then correct it, rather than simply correcting the surface “symptoms.”

All the Six Sigma tools and methodologies serve one purpose: to streamline business processes to produce the best products and services possible with the smallest number of defects. Its adoption by corporations around the globe is an indicator of its remarkable success in today’s business environment.

six sigma problem solving methods

  • Product overview
  • All features
  • Latest feature release
  • App integrations

CAPABILITIES

  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Capacity planning
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • asana-intelligence icon Asana AI
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Campaign management
  • Creative production
  • Content calendars
  • Marketing strategic planning
  • Resource planning
  • Project intake
  • Product launches
  • Employee onboarding
  • View all uses arrow-right icon
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Work management resources Discover best practices, watch webinars, get insights
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.

Featured Reads

six sigma problem solving methods

  • Project management |
  • Six Sigma: All you need to know about t ...

Six Sigma: All you need to know about the lean methodology

Sarah Laoyan contributor headshot

Six Sigma is a process improvement method that helps organizations improve their business processes. The end goal of Six Sigma is to reduce the amount of variations in a process as much as possible in order to prevent defects within your product. While this methodology is often used to optimize manufacturing processes, it can also be applied to other industries—including tech companies who produce digital products rather than physical ones.

Imagine your development team is in the process of putting the final touches together for a big product launch. When the product gets to the testing stage, the team catches several unanticipated bugs in the code. How can your team prevent this from happening in the future?

One way to do this is to implement an old manufacturing tool: the Six Sigma methodology.

What is Six Sigma?

The main philosophy of Six Sigma is that all processes can be defined, measured, analyzed, improved, and controlled (commonly referred to as the DMAIC method).

According to Six Sigma, all processes require inputs and outputs. Inputs are the actions that your team performs, and the outputs are the effects of those actions. The main idea is that if you can control as many inputs (or actions) as possible, you also control the outputs. 

Where does Six Sigma come from?

In 1809 , German mathematician Carl Friedrich Gauss first used the famous bell curve to explain measurement errors. In the 1920s , Walter Shewhart found that three sigma from the mean is the precise point where a process needs to be corrected. 

But it wasn’t until 1986 that the engineer and developer Bill Smith created the Six Sigma methodology for Motorola that we know today. Motorola used the methodology to identify the maturity of a process by its “sigma” rating, which indicates the percentage of products that are defect-free.

By definition, a Six Sigma process is one in which fewer than 3.4 defects per million opportunities occur. In other words, 99.9997% of opportunities are statistically expected to be free of defects.

Six Sigma is still commonly used in lean manufacturing and production because the process can be helpful in preventing and eliminating defects. However, this methodology can also be used in the service industry and with software engineering teams.

Lean Six Sigma

In general, the goal of a lean methodology is to drive out waste or anything that doesn’t add value to a product or process. The Lean Six Sigma (LSS) methodology values defect prevention over defect detection. This means that the goal of LSS is not to identify where the defect is, but to prevent defects from happening in the first place. 

The 5 key principles of Six Sigma

The Six Sigma methodology has five key principles you can use when analyzing your processes.

1. Focus on the customer

In Six Sigma, the goal is to ensure you can provide your customers with as much value as possible. This means your team should spend a lot of time identifying who your customers are, what their needs are, and what drives their behavior to purchase products. This principle works well for SaaS companies since they often focus on recurring revenue streams.

Identifying your customer’s wants and needs can help your team better understand how to retain customers and keep them coming back to your product.

This requires your team to understand the quality of product your customers would find acceptable, so you can meet or even exceed their expectations. Once you understand that level of quality, you can use it as a benchmark for production. 

2. Use data to find where variation occurs

Outline all of the steps of your current production process. Once you’ve done this, analyze and gather data on the current process to see if there are certain areas that can be optimized or areas that are causing a bottleneck in your workflow.

For example, consider how you share information with your team. Is everyone on your team getting the same information, or are they referencing outdated documents? Establishing a centralized location for all pertinent project information can help minimize the amount of time spent searching for the right documents.

Sometimes it can be challenging to decide what metrics you need to analyze. An easy way to figure this out is by working backward. Identify a goal you want to achieve and work back from there. For example, if your goal is to shorten production time, analyze how long each step in the production process takes.

3. Continuously improve your process

While you’re looking at your production process, consider any steps that don’t add value for your team or your end customers. Use tools such as value stream mapping to identify where you can streamline processes and decrease the amount of bottlenecks. 

The idea of making small improvements to your processes over time is known as kaizen , or continuous improvement. The philosophy behind continuous improvement is that if you’re making small changes over a long period of time, it can lead to major positive changes in the long run.

4. Get everyone involved

Six Sigma is a methodology that allows everyone on the team to contribute. However, this does require everyone on the team to have some training on the Six Sigma process to reduce the risk of creating more blockers instead of getting rid of them. 

Six Sigma works especially well when cross-functional teams are involved, because it provides a holistic view of how a process can affect all parts of your business. When you include representatives from all teams involved in a process, you give everyone insight into the improvements you’re making and how those changes might impact their teams.

We’ll dive into the different types of Six Sigma trainings and certifications later in this article.

5. Ensure a flexible and responsive ecosystem

Six Sigma is all about creating positive change for your customers. This means you should consistently look for ways to improve your processes, and your entire team should stay flexible so they can pivot without much disturbance.

This also means that processes need to be easily interchangeable. An easy way to do this is to break out processes into steps. If there’s an issue with just one step, then only that step needs to be fixed, as opposed to the entire process. 

The two main Six Sigma methodologies

There are two common processes within Six Sigma and they’re each used in different situations.

In general, the DMAIC method is the standard method to optimize existing processes. Alternatively, use the DMADV method when a process is not yet established and you need to create one.

DMAIC is an acronym, meaning each letter represents a step in the process. DMAIC stands for define, measure, analyze, improve, and control.

[inline illustration] The DMAIC method (infographic)

Define the system. Identify your ideal customer profile, including your customers’ wants and needs. During this stage you also want to identify the goals of your entire project as a whole.

Measure key aspects of current processes. Using the goals you established in the “define” stage, benchmark your current processes and use that data to inform how you want to optimize your project.

Analyze the process. Determine any root causes of problems and identify how variations are formed.

Improve or optimize your process. Based on the analysis from the previous step, create a new future state process. This means you should create a sample of the improved process and test it in a separate environment to see how it performs.

Control the future state process. If the results in the “improve” stage are up to your team’s standards, implement this new process into your current workflow. When doing this, it’s important to try and control as many variables as possible. This is often done using statistical process control or continuous monitoring.

DMAIC example

Your product team notices that the customer churn rate (the rate at which customers stop doing business with you) is increasing. To prevent this problem from getting worse, you can use the Six Sigma DMAIC methodology to identify the issue and develop a solution. 

Define: The customer churn rate has increased from 3% to 7% in the last six months.

Measure: Your team has a lot of information about how prospective customers convert into actual customers, but there’s not much information about what happens after someone becomes a customer. You decide to analyze and measure user behavior after they purchase the product.

Analyze: After looking at the behavior of users after they become customers, your team notices that newer customers are having a harder time getting used to the new product UI than existing customers.

Improve: Your team decides to implement a “new customer onboarding” workflow that helps customers identify key parts of the product and how to use it. Your team works with the customer success team to help set best practices and create trainings. This gives the customer success team all the information they need to train new customers effectively and ensure customer satisfaction. 

Control: Your team monitors both the churn rate and how customers are behaving now that the changes have been implemented. After a few months, you notice the churn rate beginning to decrease again, so you choose to keep the new changes to the process.

The DMADV method is sometimes referred to as Design for Six Sigma (DFSS). DMADV stands for define, measure, analyze, design, and verify. Here’s what to do during each phase:

Define your goals. When defining goals for the new process you’re establishing, it’s important to consider both business goals and the goals of your ideal customer profile. 

Measure and identify CTQs. CTQ stands for “critical to quality.” These are the characteristics that define your perfect product. During this step you will identify how your new process can help achieve these CTQs and any potential risks that could impact quality.

Analyze to develop and design multiple options. When you’re designing a new production process, it’s important to have multiple options. Take a look at the different options you create and analyze the strengths and weaknesses of each one. 

Design the chosen option. Based on the analysis in the previous step, take the next step and implement the option that best fits your needs. 

Verify the design and set up pilot runs. Once you finish implementing your process, it’s time to hand it over to process owners and measure how the process works. Once the process is up and running, then your team can optimize it using the DMAIC method. 

Six Sigma certification

Six Sigma is a multi-level training program . Much like in martial arts, each ranking is a different belt color that indicates a different body of knowledge and years of experience. The Six Sigma certification program breaks down into six different rankings—from white belt to champion:

[inline illustration] Six Sigma levels (infographic)

White Belt : If you’re brand-new to the Six Sigma method, you’ll start out in this stage. Someone with a Six Sigma White Belt doesn’t need to have any formal training or certification in Six Sigma, but they understand the basic framework and guidelines. This means they can participate in waste reduction and quality control projects. 

Yellow Belt : This level requires some formal training and you can receive an official Six Sigma Yellow Belt certification. With a Yellow Belt you can help contribute to strategy more than you could with a White Belt. You can now assist higher-ups with problem solving and analysis.

Green Belt : With a Six Sigma Green Belt certification, you can start strategizing and implementing smaller process improvement techniques on your own.

Black Belt : Once you receive the Black Belt certification, you will be able to break down processes and handle more complex projects than any previous belts. In this training, you’re taught how to manage large-scale changes that can impact a business’s bottom line.

Master Black Belt : The Six Sigma Master Black Belt is an additional course that helps you enhance your current skills by deepening your understanding of Lean Six Sigma. You’ll learn more about statistical tools and cultivate a greater appreciation for the DMAIC method.

Champion : You can become a Six Sigma Champion with a final training that is typically helpful for senior managers and executives who want to become proficient in guiding project teams and leaders through the different DMAIC phases. 

While there is no unified standard for certification, the courses are designed to teach the essentials of the process and how to apply Six Sigma tools to your day-to-day work situations.

Track and improve workflows with Six Sigma

Improving your business processes ultimately helps reduce waste. As you brainstorm and analyze workflows, take time to pinpoint and address bottlenecks . Visualize each step in your production process so you can assign them to specific owners.

If you’re looking to improve your team’s workflows , it’s best to use software that helps connect your team and manage goals. Asana workflows can help you manage and automate how work is completed. Plus, you can easily alert other team members of workflow changes, make real-time adjustments, and create a single source of truth for your entire team.

Related resources

six sigma problem solving methods

New site openings: How to reduce costs and delays

six sigma problem solving methods

8 steps to write an effective project status report

six sigma problem solving methods

Provider onboarding software: Simplify your hiring process

six sigma problem solving methods

Inventory management software: How to control your stock

  • Insights & Resources

What Is Six Sigma?

Six Sigma is a problem solving methodology rooted in data. Born at Motorola in 1986, the approach quickly gained recognition among global corporations thanks to Jack Welch at GE.

Today, Six Sigma is applied across organizations, large and small, and is heralded for its rigorous, data-driven approach to improving process performance and instilling continuous improvement.

Six Sigma is more than simply a set of tools; it is a methodology that brings a roadmap, roles, language and culture change to an organization. It is about identifying your biggest problems, assigning them to your best people, and providing the resources and support to solve those problems—once and for all.

What Does “Six Sigma” Mean?

What Is Six Sigma

Number of defects stratified by sigma level

The goal of Six Sigma is an aggressive one. It translates to only 3.4 defects per million opportunities (DPMO). In a six sigma process, 99.99966% of the opportunities—defined based on those critical elements important to your customers—are defect-free.

When considering defects and opportunities, it’s important to define them through the eyes of your customer. Rather than counting every possible opportunity for an error, you want to count the ones that are most important.

Six Sigma is about improving customer satisfaction, and to do so means understanding what matters to your customers. Once you can link customer satisfaction to internal business processes, you can appropriately drive improvements in the business.

The DMAIC Roadmap

The heart of the Six Sigma methodology is the DMAIC roadmap, which combines sound problem solving methods with proven tools. DMAIC stands for Define-Measure-Analyze-Improve-Control.

One of the goals in a DMAIC project is to identify the most significant variables, or X’s, affecting the outputs, or Y’s, of the process you’re concerned with. This is characterized by a simple equation: Y = f(X). If we understand the relationship between X’s and Y’s, where the X’s are the customer’s needs, and the Y’s are the owner’s needs, we can directly measure those things that keep us in touch with our customers.

Goals in a DMAIC project are to identify the most significant variables affecting the outputs of the process you’re concerned with and to ensure that a problem is never going to come back.

Another goal of a DMAIC project is to ensure that a problem is never going to come back, because we’re finally going to get an intimate understanding of the way our process works.

There’s a well-supported rule of thumb, the Pareto Principle , which states that 80 percent of the effects in any process are caused by 20 percent of the causes. Also known as the law of the vital few, with these critical input variables properly identified, we can put systems in place to ensure that improvements are maintained for the long-term.

The Five Phases of DMAIC
Define Transform the opportunity identified into a clearly defined Six Sigma project by identifying metrics, objectives and timelines.
Measure Gather information on all possible input variables, called X’s, which could be the cause of the problem; filter out least-relevant variables by using qualitative or simple quantitative tools.
Analyze Apply statistical quantitative analysis to look for relationships between the X’s and the output of the process, called the Y; work toward the identification of the vital few X’s, while weeding out the trivial many.
Improve Validate that the X’s remaining are the right X’s; determine the optimal solution to the problem and what settings in the process will yield the best performance.
Control Implement the solutions; track results and benefits; establish controls and accountabilities for the proper operation of the process.

Roles and Responsibilities

Within a Six Sigma deployment or effort, there are a handful of important roles. Here’s an overview of those roles and the responsibility and associated training of each.

Executives & Deployment Leaders

Key leaders of the culture change, executives and deployment leaders own the vision, direction, integration and results of a Six Sigma program. They’re responsible for determining the scope of a deployment, and identifying goals and strategic priorities that Champions will use to align projects.

Six Sigma Core Team

The core team is a group of multidisciplinary business leaders from key supporting functions of the company: finance, human resources, information technology, communications, training, and operations. They are responsible for taking the vision of the executive team and making it a reality. They help create the supporting infrastructure that enables the long-term success of Black Belts and other performance excellence leaders. Of this group, the finance representative plays a particularly important role in assisting with forecasting for potential projects and validating and tracking project savings.

Master Black Belt

Master Black Belts are gurus of the process excellence world. They’re highly respected and sought-after resources who not only wield considerable knowledge of problem solving methodologies, but also coach and mentor other professional problem solvers, including Green Belts and Black Belts. Master Black Belts take more of a strategic role in the organization both in selecting tactical projects needed to achieve strategic goals and in developing future leaders that will eventually manage and lead the business. They also manage the project pipeline, develop and administer curriculum, support the deployment leader and champions, and lead large-scale projects. Training: Master Black Belt Development Program

Black Belt certification is seen as a personal and professional development building block.

Black Belts

Black Belts are key resources of a Six Sigma program who are 100 percent dedicated to the effort. They facilitate and lead projects, provide deployment support, and coach and train other performance excellence resources. As dedicated resources that complete four to six projects a year, Black Belts experience a 7:1 ROI and average $200,000 in median savings per project . Additionally, Black Belt certification is seen as a personal and professional development building block that prepares people for leadership roles later on. Training: Black Belt | Black Belt Online | Green Belt to Black Belt Upgrade | GB to BB Upgrade Online

Green Belts

Green Belts carry the language of Six Sigma deeper into the organization. These part-time resources implement smaller scale projects that have direct impact to daily non-Six Sigma duties. They are skilled in the DMAIC methodology and principles of Six Sigma, and assist Black Belts with team activities and tool application. They become local advocates, supporting improvement efforts through data-driven decision-making and accelerate the number of employees positively affected by Six Sigma. Training: Green Belt | Green Belt Online

Process Owners

As the Process Owner, this team member owns the solution delivered by the Six Sigma team and is responsible for its implementation. The Process Owner assists with culture change at a local level, as well as with project identification and providing resources to serve as team members on projects. The Process Owner may also be involved in scoping and defining projects and providing support to the project team. Training: Yellow Belt Online

Team Members

Providing invaluable process expertise, Team Members assist Black Belts with data collection and tool application. They also assist the Process Owner with the long-term implementation of the solution and extend the reach of the Six Sigma language into the trenches. Training: Yellow Belt Online

Complementary Methods

While some companies deploy Six Sigma solo, more often than not it is part of broader continuous improvement or performance excellence efforts that include Lean , innovation , and other problem solving approaches.

Six Sigma is often applied in conjunction with Lean. Lean focuses on reducing waste so what is left is value-added. Six Sigma focuses on reducing variation and defects. Together, the two become a powerful combo to first lean out and then perfect your processes. In the last decade, companies have moved from treating Lean and Six Sigma as independent approaches to combining them into an improved operating system.

All of these continuous improvement efforts roll up into the organization’s strategic planning and execution , ensuring that everyone is working on improvements and innovations that align with the company’s strategic goals.

lean-six-sigma-project-definition-worksheet

A tool used to identify and reduce errors and increase the efficiency of business processes

What is Six Sigma?

Six Sigma is a term used to define various techniques and management tools designed to make business processes more efficient and effective. It provides statistical tools to eliminate defects, identify the cause of the error, and reduce the possibilities of error. Thus, Six Sigma creates an environment of continuous process improvement, enabling businesses to provide better products and services to customers. It was developed by Motorola, Inc. in 1986.

Six Sigma

Six Sigma can be applied to any process in any industry to establish a management system for identifying errors and eliminating them. It provides methods to improve the efficiency of business structure and quality of processes, enhancing the profitability of the business.

The term “Six Sigma” is derived from the bell curve in statistics, in which sigma represents the standard deviation from the center. Hence, a process with six sigmas will achieve an extremely low defect rate. The failure of a business process or product is regarded as a defect. When a process produces less than 3.4 defects for one million chances, it is considered efficient.

  • Six Sigma is used to identify and reduce errors and increase the efficiency of business processes.
  • The primary objective of Six Sigma is customer satisfaction, and to achieve the objective, various methods are followed to improve the performance of a product or business process.
  • DMAIC and DMADV are the main methodologies of Six Sigma that apply to different business environments.

Six Sigma Principles

There are five main principles of Six Sigma:

1. Customer focus

The main objective is to maximize the benefits for customers. Hence, a business must understand the needs of their customers and the drivers of sales. It requires establishing quality standards according to the market or customer demands.

2. Assess the value chain and find the problem

Outline the steps of a process to find out unwanted areas and gather related data. Define goals for data collection, purposes for data gathering, and expected insights. Verify that the data is assisting in achieving the objectives, whether more information is needed to be collected, or if data cleansing is required. Find out the problem and its root cause.

3. Eliminate defects and outliers

After the identification of the problem, make appropriate modifications in the process to eliminate defects. Eliminate any activity in the given process that does not contribute to the customer value. If the value chain is unable to reveal the problem area, various tools are used to find out the problem areas and outliers. Eliminating the outliers and defects removes the bottlenecks in a given process.

4. Involve stakeholders

A structured process should be adopted where all stakeholders collaborate and contribute to finding solutions to complex issues. The team needs to achieve proficiency in the methodologies and principles applied. Hence, specialized knowledge and training are required to lower project failure risks and ensure optimal performance of the processes.

5. Flexible and responsive system

Whenever an inefficient or faulty process is eliminated, the employee approach and work practices need to be changed. A flexible and responsive environment to the changes in processes can lead to the efficient implementation of the projects.

The departments involved should be capable of adapting easily to the change. Companies that periodically examine the data and make appropriate changes to their processes may achieve a competitive advantage.

Diagram of Six Sigma Objectives

Six Sigma Methodology

The following are the two main methodologies of Six Sigma, which are used in different business environments:

DMAIC is a data-driven approach used for optimizing and improving the existing business designs and processes. It is an effective method of controlled change management. The five phases of DMAIC are listed below, and each phase involves tools and tasks to help find the final solution.

  • Define the problem and the goals of the project
  • Measure the different aspects of the existing process in detail
  • Analyze data to find the main flaw in a process
  • Improve the given process
  • Control the way the process is implemented in the future

DMADV focuses on the development of an entirely new process, product, or service. It is used when existing processes, even after improvement, do not satisfy the customer’s needs, and new methods are required to be developed. It comprises five phases:

  • Define the purpose of the project, product, or service
  • Measure the crucial components of a process and product capabilities
  • Analyze data and develop design alternatives, ultimately selecting the best design
  • Design the selected best alternative and test the prototype
  • Verify the effectiveness of the design through several simulations and a pilot program

Related Readings

CFI is the official provider of the Commercial Banking & Credit Analyst (CBCA)™ certification program, designed to transform anyone into a world-class financial analyst.

To keep learning and developing your knowledge of financial analysis, we highly recommend the additional resources below:

  • Competitive Advantage
  • Decision Analysis (DA)
  • Organization Design
  • Strategic Management
  • See all management & strategy resources
  • Share this article

Excel Fundamentals - Formulas for Finance

Create a free account to unlock this Template

Access and download collection of free Templates to help power your productivity and performance.

Already have an account? Log in

Supercharge your skills with Premium Templates

Take your learning and productivity to the next level with our Premium Templates.

Upgrading to a paid membership gives you access to our extensive collection of plug-and-play Templates designed to power your performance—as well as CFI's full course catalog and accredited Certification Programs.

Already have a Self-Study or Full-Immersion membership? Log in

Access Exclusive Templates

Gain unlimited access to more than 250 productivity Templates, CFI's full course catalog and accredited Certification Programs, hundreds of resources, expert reviews and support, the chance to work with real-world finance and research tools, and more.

Already have a Full-Immersion membership? Log in

The Six Sigma Strategy's DMAIC Problem-Solving Method

  • Supply Chain Management
  • Sustainable Businesses
  • Operations & Technology
  • Market Research
  • Business Law & Taxes
  • Business Insurance
  • Business Finance
  • Becoming an Owner

Six Sigma is a business management strategy that was initially developed by Motorola in the 1980s and is used by many Fortune 500 companies today. It is primarily used to identify and rectify errors in a manufacturing or business process.

The Six Sigma system uses a number of quality methods and tools that are used by Six Sigma trained professionals within the organization. The DMAIC problem-solving method can be used to help with any issue that arises, usually by professionals in the organization who have reached the "green belt" level.

The DMAIC Method

The DMAIC problem-solving method is a roadmap that can be used for any projects or quality improvements that need to be made. The term DMAIC stands for the five main steps in the process: Define, Measure, Analyze, Improve, and Control.

  • Define: It is important in Six Sigma to define the problem or project goals. The more specific the problem is defined, the greater the chance of obtaining measurements and then successfully completing the project or solving the problem. The definition should describe the issue accurately with numeric representation. For example, “damaged finished goods from the production line have increased 17 percent in the last three months." The definition of the problem or project should not be vague, such as, “quality has fallen.” As part of the definition stage, the scope of the project or issue should be defined, as well as the business processes involved.
  • Measure: When the project or problem has been defined, decisions should then be made about additional measurements required to quantify the problem. For example, if the definition of the problem is “damaged finished goods from the production line have increased 17 percent in the last three months,” then additional measurements might need to be looked at. This includes what finished goods are being damaged, when they are being damaged, and the level of damage.
  • Analyze: Once the measuring stage has defined the additional measurements, the data is then collected and analyzed. At this point, it is possible to determine whether the problem is valid or whether it is a random event that does not have a specific cause that can be corrected. The data that has been collected can be used as a base level to compare against measurements after the project has been completed to ascertain the success of the project.
  • Improve: After measurements have been taken and analyzed, possible solutions can then be developed. Test data can be created and pilot studies launched to find which of the solutions offers the best improvements to the issue. The team should also look at the results to ensure that there are no unanticipated consequences to the selected solution. When the most appropriate solution is selected, then the team can develop an implementation plan and a timeline for the completion of the project.
  • Control: After the implementation of the solution or project, a number of controls must be put in place so that measurements can be taken to confirm that the solution is still valid and to prevent a recurrence. The control measurements can be scheduled for specific dates, e.g., monthly, daily, and yearly. The solution should also be well documented and any other related process documentation updated.

The DMAIC problem-solving method can produce significant improvements for an organization that is using the Six Sigma methodology and tools. The method offers a five-step plan that gives organizations a roadmap to follow so that issues can be resolved using a structured methodology.

  • The Living Supply Chain Glossary
  • The Origins and Principles of Lean Manufacturing
  • 7 Ways To Optimize Your End-to-End Supply Chain
  • Wholesaling Distribution Channels
  • 7 Warehouse Pallet Storage Methods
  • Introduction to Lawson ERP Software
  • 6 Ways to Know Your Wholesale Target Market
  • Reorder Methodologies in Manufacturing
  • Order Picking in the Warehouse
  • The Top 9 Reasons You Do Not Have 100% Inventory Accuracy
  • Contract Termination
  • Cycle Counting in the Warehouse
  • Small Business Guide to Manufacturing
  • Strategic Forecasting In The Supply Chain For Manufacturers
  • Efficient Packaging Methods in a Warehouse
  • Department of Transportation Truck Inspections

Problem Solving - A step by step guide - LearnLeanSigma

The Art of Effective Problem Solving: A Step-by-Step Guide

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

Problem Solving Methodologies

Methodology of 8D (Eight Discipline) Problem Solving:

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Step 2 – Gather Information and Brainstorm Ideas

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Step 4 – Implement and Monitor the Solution

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

Was this helpful?

Daniel croft, preparation strategies for the green belt exam, what every lean six sigma green belt should know, free lean six sigma templates.

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Understanding Process Performance: Pp and Ppk

Understand Process Performance (Pp) and Process Performance Index (Ppk) to assess and improve manufacturing processes.…

LIFO or FIFO for Stock Management?

Choosing between LIFO and FIFO for stock management depends on factors like product nature, market…

Are There Any Official Standards for Six Sigma?

Are there any official standards for Six Sigma? While Six Sigma is a well-defined methodology…

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

IMAGES

  1. Top Six Sigma Problem-Solving Tools You Should Know About

    six sigma problem solving methods

  2. Six sigma problem solving process

    six sigma problem solving methods

  3. Five phases of the Six Sigma DMAIC process for a problem-solving

    six sigma problem solving methods

  4. Problem-solving workflow shown with a scheme and outline icons

    six sigma problem solving methods

  5. 4 Problem Solving Methods Explained : r/Lean_Six_Sigma

    six sigma problem solving methods

  6. Lean Six Sigma Problem Solving Process Ppt Powerpoint Presentation

    six sigma problem solving methods

VIDEO

  1. How to prepare for a Job Interview

  2. E

  3. #6 Steps Problem Solving Model# By SN Panigrahi

  4. Six Sigma 101

  5. #34 Free Lean Six Sigma Green Belt

  6. Triple SIGMA Problem From Allen Test

COMMENTS

  1. DMAIC

    DMAIC is the problem-solving approach that drives Lean Six Sigma. It's a five-phase method—Define, Measure, Analyze, Improve and Control—for improving existing process problems with unknown causes. DMAIC is based on the Scientific Method and it's pronounced "duh-may-ik.". Originally published on August 24th, 2017, this article was ...

  2. How to Solve Your Problems With Lean Six Sigma (Free DMAIC Checklist

    In other words, problem-solving (especially via Lean Six Sigma) is an absolutely vital skill. Lean Six Sigma & the checklist. If problem-solving is a must-have skill and checklists are key to good outcomes, then combining the two makes sense. DMAIC - Define, Measure, Analyze, Improve & Control - is the 5-Step model for Lean Six Sigma and ...

  3. Six Sigma Tools: DMAIC, Lean & Other Techniques

    Six Sigma tools are defined as the problem-solving tools used to support Six Sigma and other process improvement efforts. The Six Sigma expert uses qualitative and quantitative techniques to drive process improvement. Although the tools themselves are not unique, the way they are applied and integrated as part of a system is.

  4. The Easy Guide to Solving Problems with Six Sigma DMAIC Method

    Step 3: Analyze the Problem. The analyze phase of the DMAIC process is about identifying the root cause that is causing the problem. • Referring to the process maps and value stream maps you have created, further, analyze the process to identify the problem areas. • Visualize the data you have collected (both in the 'Measure' phase and ...

  5. DMAIC Model

    The DMAIC Problem Solving Approach is a process improvement methodology based on the Six Sigma approach that helps to improve business processes and products. It is used to identify, analyze, and solve existing processes that are inefficient or ineffective. The approach breaks down into five phases: Define, Measure, Analyze, Improve and Control.

  6. Understanding Six Sigma: Definition, Benefits, and Best Practices

    The foundation of the Six Sigma methodology is based on a five-step process referred to as DMAIC (Define-Measure-Analyze-Improve-Control). The deployment of Six Sigma can range from a simple problem-solving approach to an organization-wide transformation.

  7. DMAIC Process: Define, Measure, Analyze, Improve, Control

    DMAIC is an acronym that stands for Define, Measure, Analyze, Improve, and Control. It represents the five phases that make up the process: Define the problem, improvement activity, opportunity for improvement, the project goals, and customer (internal and external) requirements. Project charter to define the focus, scope, direction, and ...

  8. Lean Six Sigma: Step by Step (DMAIC Infographic)

    Phase 1: Define. Clarify the problem and process. The Define Phase is the first phase of the Lean Six Sigma improvement process. In this phase, the project team creates a Project Charter and begins to understand the needs of the customers of the process. This is a critical phase in which the team outlines the project focus for themselves and ...

  9. Lean Six Sigma Tools and Techniques You Need to Know

    As a data-driven method, Lean Six Sigma uses precise tools and techniques to identify challenges, solve problems, and attain business goals. For the most part, these tools and techniques relate to specific stages in the improvement cycle denoted as DMAIC (Define, Measure, Analyze, Improve, Control). 20+ powerful tools and techniques in Lean Six ...

  10. What Is Six Sigma?

    Smith and Harry worked together to come up with a four-stage problem-solving approach: measure, analyze, improve, control (MAIC), which became a cornerstone for the Six Sigma process, later called DMAIC. ... The most common Six Sigma method is known as DMAIC. The graphic below shows this structured 5 stage sequential approach.

  11. DMAIC: The Complete Guide to Lean Six Sigma in 5 Key Steps

    One of the core techniques behind any process improvement, particularly in Six Sigma, is DMAIC. This handy approach, pronounced duh-may-ik, is the key to employing Six Sigma ... together to help you visualize what factors within the business operations are contributing collectively to the same problem. One of the advantages of this method is ...

  12. What Is Six Sigma? Concept, Steps, Examples, and Certification

    Six Sigma is a set of techniques and tools used to improve business processes. It was introduced in 1986 by engineer Bill Smith while working at Motorola. Six Sigma practitioners use statistics ...

  13. Six Sigma Definition

    Quality Glossary Definition: Six Sigma. Six Sigma is a method that provides organizations tools to improve the capability of their business processes. This increase in performance and decrease in process variation helps lead to defect reduction and improvement in profits, employee morale, and quality of products or services. "Six Sigma quality ...

  14. Six Sigma Basics: DMAIC Like Normal Problem Solving

    Here are the steps in the DMAIC process: Define phase: Understand what process is to be improved and set a goal. Measure phase: Measure the current state. Analyze phase: a) Develop cause-and-effect theories of what may be causing the problem; b) Search for the real causes of the problem and scientifically prove the cause-and-effect linkage.

  15. Six Sigma: The Definitive Guide

    Making change is the final key and part of this problem-solving approach. The Six Sigma toolkit. Any technique that helps better understand, manage, and improve a business or a process can qualify as a Six Sigma tool, but some of them are key to planning and executing Six Sigma projects. ... Many Six Sigma methods have brainstorming, or idea ...

  16. What is Six Sigma? Definition, Methodology and Tools

    The goal is to use continuous process improvement and refine processes until they produce stable and predictable results. Six Sigma is a data-driven methodology that provides tools and techniques to define and evaluate each step of a process. It provides methods to improve efficiencies in a business structure, improve the quality of the process ...

  17. Guide: DMAIC

    The DMAIC methodology is a popular problem-solving framework that is used to drive process improvements and achieve measurable results. Businesses can improve efficiency, quality, and customer satisfaction by using a structured and data-driven approach to identify, analyze, and address issues. What is DMAIC DMAIC is an acronym for the stages of a Lean Six Sigma…

  18. Six Sigma: All you need to know about the lean methodology

    By definition, a Six Sigma process is one in which fewer than 3.4 defects per million opportunities occur. In other words, 99.9997% of opportunities are statistically expected to be free of defects. Six Sigma is still commonly used in lean manufacturing and production because the process can be helpful in preventing and eliminating defects.

  19. What Is Six Sigma?

    The heart of the Six Sigma methodology is the DMAIC roadmap, which combines sound problem solving methods with proven tools. DMAIC stands for Define-Measure-Analyze-Improve-Control. One of the goals in a DMAIC project is to identify the most significant variables, or X's, affecting the outputs, or Y's, of the process you're concerned with.

  20. Six Sigma

    Six Sigma Principles. There are five main principles of Six Sigma: 1. Customer focus. The main objective is to maximize the benefits for customers. Hence, a business must understand the needs of their customers and the drivers of sales. It requires establishing quality standards according to the market or customer demands. 2.

  21. Guide: A3 Problem Solving

    The A3 problem-solving method is a key tool in Lean Six Sigma and continuous improvement in business, and in my experience, it is often the standard approach all improvement activities must follow and is particularly popular in the automotive industry. ... A3 Structured Problem Solving, rooted in Lean Six Sigma, addresses complex business ...

  22. The Six Sigma Strategy's DMAIC Problem-Solving Method

    The DMAIC problem-solving method is a roadmap that can be used for any projects or quality improvements that need to be made. The term DMAIC stands for the five main steps in the process: Define, Measure, Analyze, Improve, and Control. Define: It is important in Six Sigma to define the problem or project goals.

  23. The Art of Effective Problem Solving: A Step-by-Step Guide

    A3 Problem Solving Method: The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.