explain the problem solving agent

Problem-Solving Agents In Artificial Intelligence

Problem-Solving Agents In Artificial Intelligence

In artificial intelligence, a problem-solving agent refers to a type of intelligent agent designed to address and solve complex problems or tasks in its environment. These agents are a fundamental concept in AI and are used in various applications, from game-playing algorithms to robotics and decision-making systems. Here are some key characteristics and components of a problem-solving agent:

  • Perception : Problem-solving agents typically have the ability to perceive or sense their environment. They can gather information about the current state of the world, often through sensors, cameras, or other data sources.
  • Knowledge Base : These agents often possess some form of knowledge or representation of the problem domain. This knowledge can be encoded in various ways, such as rules, facts, or models, depending on the specific problem.
  • Reasoning : Problem-solving agents employ reasoning mechanisms to make decisions and select actions based on their perception and knowledge. This involves processing information, making inferences, and selecting the best course of action.
  • Planning : For many complex problems, problem-solving agents engage in planning. They consider different sequences of actions to achieve their goals and decide on the most suitable action plan.
  • Actuation : After determining the best course of action, problem-solving agents take actions to interact with their environment. This can involve physical actions in the case of robotics or making decisions in more abstract problem-solving domains.
  • Feedback : Problem-solving agents often receive feedback from their environment, which they use to adjust their actions and refine their problem-solving strategies. This feedback loop helps them adapt to changing conditions and improve their performance.
  • Learning : Some problem-solving agents incorporate machine learning techniques to improve their performance over time. They can learn from experience, adapt their strategies, and become more efficient at solving similar problems in the future.

Problem-solving agents can vary greatly in complexity, from simple algorithms that solve straightforward puzzles to highly sophisticated AI systems that tackle complex, real-world problems. The design and implementation of problem-solving agents depend on the specific problem domain and the goals of the AI application.

Hridhya Manoj

Hello, I’m Hridhya Manoj. I’m passionate about technology and its ever-evolving landscape. With a deep love for writing and a curious mind, I enjoy translating complex concepts into understandable, engaging content. Let’s explore the world of tech together

Which Of The Following Is A Privilege In SQL Standard

Implicit Return Type Int In C

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Reach Out to Us for Any Query

SkillVertex is an edtech organization that aims to provide upskilling and training to students as well as working professionals by delivering a diverse range of programs in accordance with their needs and future aspirations.

© 2024 Skill Vertex

Cloud2Data

Latest Cloud, Data, DevOps Technologies

  • Artificial Intelligence

What is the problem-solving agent in artificial intelligence?

AI

Are you curious to know how machines can solve complex problems, just like humans? Enter the world of artificial intelligence and meet one of its most critical players- the Problem-Solving Agent. In this blog post, we’ll explore what a problem-solving agent is, how it works in AI systems and some exciting real-world applications that showcase its potential. So, buckle up for an insightful journey into the fascinating world of AI problem solvers!

Problem-solving in artificial intelligence can be quite complex, requiring the use of multiple algorithms and data structures. One critical player is the Problem-Solving Agent, which helps machines find solutions to problems. In this blog post, we’ll explore what a problem-solving agent is, how it works in AI systems and some exciting real-world applications that showcase its potential. So, buckle up for an insightful journey into the fascinating world of AI problem solvers!

Table of Contents

What is Problem Solving Agent?

Problem-solving in artificial intelligence is the process of finding a solution to a problem. There are many different types of problems that can be solved, and the methods used will depend on the specific problem. The most common type of problem is finding a solution to a maze or navigation puzzle.

Other types of problems include identifying patterns, predicting outcomes, and determining solutions to systems of equations. Each type of problem has its own set of techniques and tools that can be used to solve it.

There are three main steps in problem-solving in artificial intelligence:

1) understanding the problem: This step involves understanding the specifics of the problem and figuring out what needs to be done to solve it.

2) generating possible solutions: This step involves coming up with as many possible solutions as possible based on information about the problem and what you know about how computers work.

3) choosing a solution: This step involves deciding which solution is best based on what you know about the problem and your options for solving it.

Types of Problem-Solving Agents

Problem-solving agents are a type of artificial intelligence that helps automate problem-solving. They can be used to solve problems in natural language, algebra, calculus, statistics, and machine learning.

There are three types of problem-solving agents: propositional, predicate, and automata. Propositional problem-solving agents can understand simple statements like “draw a line between A and B” or “find the maximum value of x.” Predicate problem-solving agents can understand more complex statements like “find the shortest path between two points” or “find all pairs of snakes in a jar.” Automata is the simplest form of problem-solving agent and can only understand sequences of symbols like “draw a square.”

Classification of Problem-Solving Agents

Problem-solving agents can be classified as general problem solvers or domain-specific problem solvers. General problem solvers can solve a wide range of problems, while domain-specific problem solvers are better suited for solving specific types of problems.

General problem solvers include AI programs that are designed to solve general artificial intelligence (AI) problems such as learning how to navigate a 3D environment or playing games. Domain-specific problem solvers include programs that have been specifically tailored to solve certain types of problems, such as photo editing or medical diagnosis.

Both general and domain-specific problem-solving agents can be used in conjunction with other AI tools, including natural language processing (NLP) algorithms and machine learning models. By combining these tools, we can achieve more effective and efficient outcomes in our data analysis and machine learning processes.

Applications of Problem-Solving Agents

Problem-solving agents can be used in a number of different ways in artificial intelligence. They can be used to help find solutions to specific problems or tasks, or they can be used to generalize a problem and find potential solutions. In either case, the problem-solving agent is able to understand complex instructions and carry out specific tasks.

Problem-solving is an essential skill for any artificial intelligence developer. With AI becoming more prevalent in our lives, it’s important that we have a good understanding of how to approach and solve problems. In this article, we’ll discuss some common problem-solving techniques and provide you with tips on how to apply them when developing AI applications. By applying these techniques systematically, you can build robust AI solutions that work correctly and meet the needs of your users.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Related Articles

ov_chart

Intel AI openVino toolkit

data-center-google-cloud-gpu-407-ud@2x

NVIDIA GPU FOR THE GOOGLE CLOUD PLATFORM

deep-learning-evolution

Nvidia GPU family for Deep Learning

end-to-end-ai-acceleration-graphic

INTEL AI-BASED DEVELOPMENT

Box Of Notes

Problem Solving Agents in Artificial Intelligence

In this post, we will talk about Problem Solving agents in Artificial Intelligence, which are sort of goal-based agents. Because the straight mapping from states to actions of a basic reflex agent is too vast to retain for a complex environment, we utilize goal-based agents that may consider future actions and the desirability of outcomes.

You Will Learn

Problem Solving Agents

Problem Solving Agents decide what to do by finding a sequence of actions that leads to a desirable state or solution.

An agent may need to plan when the best course of action is not immediately visible. They may need to think through a series of moves that will lead them to their goal state. Such an agent is known as a problem solving agent , and the computation it does is known as a search .

The problem solving agent follows this four phase problem solving process:

  • Goal Formulation: This is the first and most basic phase in problem solving. It arranges specific steps to establish a target/goal that demands some activity to reach it. AI agents are now used to formulate goals.
  • Problem Formulation: It is one of the fundamental steps in problem-solving that determines what action should be taken to reach the goal.
  • Search: After the Goal and Problem Formulation, the agent simulates sequences of actions and has to look for a sequence of actions that reaches the goal. This process is called search, and the sequence is called a solution . The agent might have to simulate multiple sequences that do not reach the goal, but eventually, it will find a solution, or it will find that no solution is possible. A search algorithm takes a problem as input and outputs a sequence of actions.
  • Execution: After the search phase, the agent can now execute the actions that are recommended by the search algorithm, one at a time. This final stage is known as the execution phase.

Problems and Solution

Before we move into the problem formulation phase, we must first define a problem in terms of problem solving agents.

A formal definition of a problem consists of five components:

Initial State

Transition model.

It is the agent’s starting state or initial step towards its goal. For example, if a taxi agent needs to travel to a location(B), but the taxi is already at location(A), the problem’s initial state would be the location (A).

It is a description of the possible actions that the agent can take. Given a state s, Actions ( s ) returns the actions that can be executed in s. Each of these actions is said to be appropriate in s.

It describes what each action does. It is specified by a function Result ( s, a ) that returns the state that results from doing action an in state s.

The initial state, actions, and transition model together define the state space of a problem, a set of all states reachable from the initial state by any sequence of actions. The state space forms a graph in which the nodes are states, and the links between the nodes are actions.

It determines if the given state is a goal state. Sometimes there is an explicit list of potential goal states, and the test merely verifies whether the provided state is one of them. The goal is sometimes expressed via an abstract attribute rather than an explicitly enumerated set of conditions.

It assigns a numerical cost to each path that leads to the goal. The problem solving agents choose a cost function that matches its performance measure. Remember that the optimal solution has the lowest path cost of all the solutions .

Example Problems

The problem solving approach has been used in a wide range of work contexts. There are two kinds of problem approaches

  • Standardized/ Toy Problem: Its purpose is to demonstrate or practice various problem solving techniques. It can be described concisely and precisely, making it appropriate as a benchmark for academics to compare the performance of algorithms.
  • Real-world Problems: It is real-world problems that need solutions. It does not rely on descriptions, unlike a toy problem, yet we can have a basic description of the issue.

Some Standardized/Toy Problems

Vacuum world problem.

Let us take a vacuum cleaner agent and it can move left or right and its jump is to suck up the dirt from the floor.

The state space graph for the two-cell vacuum world.

The vacuum world’s problem can be stated as follows:

States: A world state specifies which objects are housed in which cells. The objects in the vacuum world are the agent and any dirt. The agent can be in either of the two cells in the simple two-cell version, and each call can include dirt or not, therefore there are 2×2×2 = 8 states. A vacuum environment with n cells has n×2 n states in general.

Initial State: Any state can be specified as the starting point.

Actions: We defined three actions in the two-cell world: sucking, moving left, and moving right. More movement activities are required in a two-dimensional multi-cell world.

Transition Model: Suck cleans the agent’s cell of any filth; Forward moves the agent one cell forward in the direction it is facing unless it meets a wall, in which case the action has no effect. Backward moves the agent in the opposite direction, whilst TurnRight and TurnLeft rotate it by 90°.

Goal States: The states in which every cell is clean.

Action Cost: Each action costs 1.

8 Puzzle Problem

In a sliding-tile puzzle , a number of tiles (sometimes called blocks or pieces) are arranged in a grid with one or more blank spaces so that some of the tiles can slide into the blank space. One variant is the Rush Hour puzzle, in which cars and trucks slide around a 6 x 6 grid in an attempt to free a car from the traffic jam. Perhaps the best-known variant is the 8- puzzle (see Figure below ), which consists of a 3 x 3 grid with eight numbered tiles and one blank space, and the 15-puzzle on a 4 x 4  grid. The object is to reach a specified goal state, such as the one shown on the right of the figure. The standard formulation of the 8 puzzles is as follows:

STATES : A state description specifies the location of each of the tiles.

INITIAL STATE : Any state can be designated as the initial state. (Note that a parity property partitions the state space—any given goal can be reached from exactly half of the possible initial states.)

ACTIONS : While in the physical world it is a tile that slides, the simplest way of describing action is to think of the blank space moving Left , Right , Up , or Down . If the blank is at an edge or corner then not all actions will be applicable.

TRANSITION MODEL : Maps a state and action to a resulting state; for example, if we apply Left to the start state in the Figure below, the resulting state has the 5 and the blank switched.

A typical instance of the 8-puzzle

GOAL STATE :  It identifies whether we have reached the correct goal state. Although any state could be the goal, we typically specify a state with the numbers in order, as in the Figure above.

ACTION COST : Each action costs 1.

You Might Like:

  • Agents in Artificial Intelligence

Types of Environments in Artificial Intelligence

  • Understanding PEAS in Artificial Intelligence
  • River Crossing Puzzle | Farmer, Wolf, Goat and Cabbage

Share Article:

Digital image processing: all you need to know.

  • Part 2 Problem-solving »
  • Chapter 3 Solving Problems by Searching
  • Edit on GitHub

Chapter 3 Solving Problems by Searching 

When the correct action to take is not immediately obvious, an agent may need to plan ahead : to consider a sequence of actions that form a path to a goal state. Such an agent is called a problem-solving agent , and the computational process it undertakes is called search .

Problem-solving agents use atomic representations, that is, states of the world are considered as wholes, with no internal structure visible to the problem-solving algorithms. Agents that use factored or structured representations of states are called planning agents .

We distinguish between informed algorithms, in which the agent can estimate how far it is from the goal, and uninformed algorithms, where no such estimate is available.

3.1 Problem-Solving Agents 

If the agent has no additional information—that is, if the environment is unknown —then the agent can do no better than to execute one of the actions at random. For now, we assume that our agents always have access to information about the world. With that information, the agent can follow this four-phase problem-solving process:

GOAL FORMULATION : Goals organize behavior by limiting the objectives and hence the actions to be considered.

PROBLEM FORMULATION : The agent devises a description of the states and actions necessary to reach the goal—an abstract model of the relevant part of the world.

SEARCH : Before taking any action in the real world, the agent simulates sequences of actions in its model, searching until it finds a sequence of actions that reaches the goal. Such a sequence is called a solution .

EXECUTION : The agent can now execute the actions in the solution, one at a time.

It is an important property that in a fully observable, deterministic, known environment, the solution to any problem is a fixed sequence of actions . The open-loop system means that ignoring the percepts breaks the loop between agent and environment. If there is a chance that the model is incorrect, or the environment is nondeterministic, then the agent would be safer using a closed-loop approach that monitors the percepts.

In partially observable or nondeterministic environments, a solution would be a branching strategy that recommends different future actions depending on what percepts arrive.

3.1.1 Search problems and solutions 

A search problem can be defined formally as follows:

A set of possible states that the environment can be in. We call this the state space .

The initial state that the agent starts in.

A set of one or more goal states . We can account for all three of these possibilities by specifying an \(Is\-Goal\) method for a problem.

The actions available to the agent. Given a state \(s\) , \(Actions(s)\) returns a finite set of actions that can be executed in \(s\) . We say that each of these actions is applicable in \(s\) .

A transition model , which describes what each action does. \(Result(s,a)\) returns the state that results from doing action \(a\) in state \(s\) .

An action cost function , denote by \(Action\-Cost(s,a,s\pr)\) when we are programming or \(c(s,a,s\pr)\) when we are doing math, that gives the numeric cost of applying action \(a\) in state \(s\) to reach state \(s\pr\) .

A sequence of actions forms a path , and a solution is a path from the initial state to a goal state. We assume that action costs are additive; that is, the total cost of a path is the sum of the individual action costs. An optimal solution has the lowest path cost among all solutions.

The state space can be represented as a graph in which the vertices are states and the directed edges between them are actions.

3.1.2 Formulating problems 

The process of removing detail from a representation is called abstraction . The abstraction is valid if we can elaborate any abstract solution into a solution in the more detailed world. The abstraction is useful if carrying out each of the actions in the solution is easier than the original problem.

3.2 Example Problems 

A standardized problem is intended to illustrate or exercise various problem-solving methods. It can be given a concise, exact description and hence is suitable as a benchmark for researchers to compare the performance of algorithms. A real-world problem , such as robot navigation, is one whose solutions people actually use, and whose formulation is idiosyncratic, not standardized, because, for example, each robot has different sensors that produce different data.

3.2.1 Standardized problems 

A grid world problem is a two-dimensional rectangular array of square cells in which agents can move from cell to cell.

Vacuum world

Sokoban puzzle

Sliding-tile puzzle

3.2.2 Real-world problems 

Route-finding problem

Touring problems

Trveling salesperson problem (TSP)

VLSI layout problem

Robot navigation

Automatic assembly sequencing

3.3 Search Algorithms 

A search algorithm takes a search problem as input and returns a solution, or an indication of failure. We consider algorithms that superimpose a search tree over the state-space graph, forming various paths from the initial state, trying to find a path that reaches a goal state. Each node in the search tree corresponds to a state in the state space and the edges in the search tree correspond to actions. The root of the tree corresponds to the initial state of the problem.

The state space describes the (possibly infinite) set of states in the world, and the actions that allow transitions from one state to another. The search tree describes paths between these states, reaching towards the goal. The search tree may have multiple paths to (and thus multiple nodes for) any given state, but each node in the tree has a unique path back to the root (as in all trees).

The frontier separates two regions of the state-space graph: an interior region where every state has been expanded, and an exterior region of states that have not yet been reached.

3.3.1 Best-first search 

In best-first search we choose a node, \(n\) , with minimum value of some evaluation function , \(f(n)\) .

../_images/Fig3.7.png

3.3.2 Search data structures 

A node in the tree is represented by a data structure with four components

\(node.State\) : the state to which the node corresponds;

\(node.Parent\) : the node in the tree that generated this node;

\(node.Action\) : the action that was applied to the parent’s state to generate this node;

\(node.Path\-Cost\) : the total cost of the path from the initial state to this node. In mathematical formulas, we use \(g(node)\) as a synonym for \(Path\-Cost\) .

Following the \(PARENT\) pointers back from a node allows us to recover the states and actions along the path to that node. Doing this from a goal node gives us the solution.

We need a data structure to store the frontier . The appropriate choice is a queue of some kind, because the operations on a frontier are:

\(Is\-Empty(frontier)\) returns true only if there are no nodes in the frontier.

\(Pop(frontier)\) removes the top node from the frontier and returns it.

\(Top(frontier)\) returns (but does not remove) the top node of the frontier.

\(Add(node, frontier)\) inserts node into its proper place in the queue.

Three kinds of queues are used in search algorithms:

A priority queue first pops the node with the minimum cost according to some evaluation function, \(f\) . It is used in best-first search.

A FIFO queue or first-in-first-out queue first pops the node that was added to the queue first; we shall see it is used in breadth-first search.

A LIFO queue or last-in-first-out queue (also known as a stack ) pops first the most recently added node; we shall see it is used in depth-first search.

3.3.3 Redundant paths 

A cycle is a special case of a redundant path .

As the saying goes, algorithms that cannot remember the past are doomed to repeat it . There are three approaches to this issue.

First, we can remember all previously reached states (as best-first search does), allowing us to detect all redundant paths, and keep only the best path to each state.

Second, we can not worry about repeating the past. We call a search algorithm a graph search if it checks for redundant paths and a tree-like search if it does not check.

Third, we can compromise and check for cycles, but not for redundant paths in general.

3.3.4 Measuring problem-solving performance 

COMPLETENESS : Is the algorithm guaranteed to find a solution when there is one, and to correctly report failure when there is not?

COST OPTIMALITY : Does it find a solution with the lowest path cost of all solutions?

TIME COMPLEXITY : How long does it take to find a solution?

SPACE COMPLEXITY : How much memory is needed to perform the search?

To be complete, a search algorithm must be systematic in the way it explores an infinite state space, making sure it can eventually reach any state that is connected to the initial state.

In theoretical computer science, the typical measure of time and space complexity is the size of the state-space graph, \(|V|+|E|\) , where \(|V|\) is the number of vertices (state nodes) of the graph and \(|E|\) is the number of edges (distinct state/action pairs). For an implicit state space, complexity can be measured in terms of \(d\) , the depth or number of actions in an optimal solution; \(m\) , the maximum number of actions in any path; and \(b\) , the branching factor or number of successors of a node that need to be considered.

3.4 Uninformed Search Strategies 

3.4.1 breadth-first search .

When all actions have the same cost, an appropriate strategy is breadth-first search , in which the root node is expanded first, then all the successors of the root node are expanded next, then their successors, and so on.

../_images/Fig3.9.png

Breadth-first search always finds a solution with a minimal number of actions, because when it is generating nodes at depth \(d\) , it has already generated all the nodes at depth \(d-1\) , so if one of them were a solution, it would have been found.

All the nodes remain in memory, so both time and space complexity are \(O(b^d)\) . The memory requirements are a bigger problem for breadth-first search than the execution time . In general, exponential-complexity search problems cannot be solved by uninformed search for any but the smallest instances .

3.4.2 Dijkstra’s algorithm or uniform-cost search 

When actions have different costs, an obvious choice is to use best-first search where the evaluation function is the cost of the path from the root to the current node. This is called Dijkstra’s algorithm by the theoretical computer science community, and uniform-cost search by the AI community.

The complexity of uniform-cost search is characterized in terms of \(C^*\) , the cost of the optimal solution, and \(\epsilon\) , a lower bound on the cost of each action, with \(\epsilon>0\) . Then the algorithm’s worst-case time and space complexity is \(O(b^{1+\lfloor C^*/\epsilon\rfloor})\) , which can be much greater than \(b^d\) .

When all action costs are equal, \(b^{1+\lfloor C^*/\epsilon\rfloor}\) is just \(b^{d+1}\) , and uniform-cost search is similar to breadth-first search.

3.4.3 Depth-first search and the problem of memory 

Depth-first search always expands the deepest node in the frontier first. It could be implemented as a call to \(Best\-First\-Search\) where the evaluation function \(f\) is the negative of the depth.

For problems where a tree-like search is feasible, depth-first search has much smaller needs for memory. A depth-first tree-like search takes time proportional to the number of states, and has memory complexity of only \(O(bm)\) , where \(b\) is the branching factor and \(m\) is the maximum depth of the tree.

A variant of depth-first search called backtracking search uses even less memory.

3.4.4 Depth-limited and iterative deepening search 

To keep depth-first search from wandering down an infinite path, we can use depth-limited search , a version of depth-first search in which we supply a depth limit, \(l\) , and treat all nodes at depth \(l\) as if they had no successors. The time complexity is \(O(b^l)\) and the space complexity is \(O(bl)\)

../_images/Fig3.12.png

Iterative deepening search solves the problem of picking a good value for \(l\) by trying all values: first 0, then 1, then 2, and so on—until either a solution is found, or the depth- limited search returns the failure value rather than the cutoff value.

Its memory requirements are modest: \(O(bd)\) when there is a solution, or \(O(bm)\) on finite state spaces with no solution. The time complexity is \(O(bd)\) when there is a solution, or \(O(bm)\) when there is none.

In general, iterative deepening is the preferred uninformed search method when the search state space is larger than can fit in memory and the depth of the solution is not known .

3.4.5 Bidirectional search 

An alternative approach called bidirectional search simultaneously searches forward from the initial state and backwards from the goal state(s), hoping that the two searches will meet.

../_images/Fig3.14.png

3.4.6 Comparing uninformed search algorithms 

../_images/Fig3.15.png

3.5 Informed (Heuristic) Search Strategies 

An informed search strategy uses domain–specific hints about the location of goals to find colutions more efficiently than an uninformed strategy. The hints come in the form of a heuristic function , denoted \(h(n)\) :

\(h(n)\) = estimated cost of the cheapest path from the state at node \(n\) to a goal state.

3.5.1 Greedy best-first search 

Greedy best-first search is a form of best-first search that expands first the node with the lowest \(h(n)\) value—the node that appears to be closest to the goal—on the grounds that this is likely to lead to a solution quickly. So the evaluation function \(f(n)=h(n)\) .

  • Speakers & Mentors
  • AI services

Examples of Problem Solving Agents in Artificial Intelligence

In the field of artificial intelligence, problem-solving agents play a vital role in finding solutions to complex tasks and challenges. These agents are designed to mimic human intelligence and utilize a range of algorithms and techniques to tackle various problems. By analyzing data, making predictions, and finding optimal solutions, problem-solving agents demonstrate the power and potential of artificial intelligence.

One example of a problem-solving agent in artificial intelligence is a chess-playing program. These agents are capable of evaluating millions of possible moves and predicting the best one to make based on a wide array of factors. By utilizing advanced algorithms and machine learning techniques, these agents can analyze the current state of the game, anticipate future moves, and make strategic decisions to outplay even the most skilled human opponents.

Another example of problem-solving agents in artificial intelligence is autonomous driving systems. These agents are designed to navigate complex road networks, make split-second decisions, and ensure the safety of both passengers and pedestrians. By continuously analyzing sensor data, identifying obstacles, and calculating optimal paths, these agents can effectively solve problems related to navigation, traffic congestion, and collision avoidance.

Definition and Importance of Problem Solving Agents

A problem solving agent is a type of artificial intelligence agent that is designed to identify and solve problems. These agents are programmed to analyze information, develop potential solutions, and select the best course of action to solve a given problem.

Problem solving agents are an essential aspect of artificial intelligence, as they have the ability to tackle complex problems that humans may find difficult or time-consuming to solve. These agents can handle large amounts of data and perform calculations and analysis at a much faster rate than humans.

Problem solving agents can be found in various domains, including healthcare, finance, manufacturing, and transportation. For example, in healthcare, problem solving agents can analyze patient data and medical records to diagnose diseases and recommend treatment plans. In finance, these agents can analyze market trends and make investment decisions.

The importance of problem solving agents in artificial intelligence lies in their ability to automate and streamline processes, improve efficiency, and reduce human error. These agents can also handle repetitive tasks, freeing up human resources for more complex and strategic work.

In addition, problem solving agents can learn and adapt from past experiences, making them even more effective over time. They can continuously analyze and optimize their problem-solving strategies, resulting in better decision-making and outcomes.

In conclusion, problem solving agents are a fundamental component of artificial intelligence. Their ability to analyze information, develop solutions, and make decisions has a significant impact on various industries and fields. Through their automation and optimization capabilities, problem solving agents contribute to improving efficiency, reducing errors, and enhancing decision-making processes.

Problem Solving Agent Architecture

A problem-solving agent is a central component in the field of artificial intelligence that is designed to tackle complex problems and find solutions. The architecture of a problem-solving agent consists of several key components that work together to achieve intelligent problem-solving.

One of the main components of a problem-solving agent is the knowledge base. This is where the agent stores relevant information and data that it can use to solve problems. The knowledge base can include facts, rules, and heuristics that the agent has acquired through learning or from experts in the domain.

Another important component of a problem-solving agent is the inference engine. This is the part of the agent that is responsible for reasoning and making logical deductions. The inference engine uses the knowledge base to generate possible solutions to a problem by applying various reasoning techniques, such as deduction, induction, and abduction.

Furthermore, a problem-solving agent often includes a search algorithm or strategy. This is used to systematically explore possible solutions and search for the best one. The search algorithm can be guided by various heuristics or constraints to efficiently navigate through the solution space.

In addition to these components, a problem-solving agent may also have a learning component. This allows the agent to improve its problem-solving capabilities over time through experience. The learning component can help the agent adapt its knowledge base, refine its inference engine, or adjust its search strategy based on feedback or new information.

Overall, the architecture of a problem-solving agent is designed to enable intelligent problem-solving by combining knowledge representation, reasoning, search, and learning. By utilizing these components, problem-solving agents can tackle a wide range of problems and find effective solutions in various domains.

Component Description
Knowledge base Stores relevant information and data that the agent can use to solve problems.
Inference engine Performs reasoning and logical deductions based on the knowledge base to generate possible solutions.
Search algorithm Systematically explores possible solutions and searches for the best one.
Learning component Allows the agent to improve its problem-solving capabilities through experience and feedback.

Uninformed Search Algorithms

In the field of artificial intelligence, problem-solving agents are often designed to navigate a large search space in order to find a solution to a given problem. Uninformed search algorithms, also known as blind search algorithms, are a class of algorithms that do not use any additional information about the problem to guide their search.

Breadth-First Search (BFS)

Breadth-First Search (BFS) is one of the most basic uninformed search algorithms. It explores all the neighbor nodes at the present depth before moving on to the nodes at the next depth level. BFS is implemented using a queue data structure, where the nodes to be explored are added to the back of the queue and the nodes to be explored next are removed from the front of the queue.

For example, BFS can be used to find the shortest path between two cities on a road map, exploring all possible paths in a breadth-first manner to find the optimal solution.

Depth-First Search (DFS)

Depth-First Search (DFS) is another uninformed search algorithm that explores the deepest path first before backtracking. It is implemented using a stack data structure, where nodes are added to the top of the stack and the nodes to be explored next are removed from the top of the stack.

DFS can be used in situations where the goal state is likely to be far from the starting state, as it explores the deepest paths first. However, it may get stuck in an infinite loop if there is a cycle in the search space.

For example, DFS can be used to solve a maze, exploring different paths until the goal state (exit of the maze) is reached.

Overall, uninformed search algorithms provide a foundational approach to problem-solving in artificial intelligence. They do not rely on any additional problem-specific knowledge, making them applicable to a wide range of problems. While they may not always find the optimal solution or have high efficiency, they provide a starting point for more sophisticated search algorithms.

Breadth-First Search

Breadth-First Search is a problem-solving algorithm commonly used in artificial intelligence. It is an uninformed search algorithm that explores all the immediate variations of a problem before moving on to the next level of variations.

Examples of problems that can be solved using Breadth-First Search include finding the shortest path between two points in a graph, solving a sliding puzzle, or searching for a word in a large text document.

How Breadth-First Search Works

The Breadth-First Search algorithm starts at the initial state of the problem and expands all the immediate successor states. It then explores the successor states of the expanded states, continuing this process until a goal state is reached.

At each step of the algorithm, the breadth-first search maintains a queue of states to explore. The algorithm removes a state from the front of the queue, explores its successor states, and adds them to the back of the queue. This ensures that states are explored in the order they were added to the queue, resulting in a breadth-first exploration of the problem space.

The algorithm also keeps track of the visited states to avoid revisiting them in the future, preventing infinite loops in cases where the problem space contains cycles.

Benefits and Limitations

Breadth-First Search guarantees that the shortest path to a goal state is found, if such a path exists. It explores all possible paths of increasing lengths until a goal state is reached, ensuring that shorter paths are explored first.

However, the main limitation of Breadth-First Search is its memory requirements. As it explores all immediate successor states, it needs to keep track of a large number of states in memory. This can become impractical for problems with a large state space. Additionally, Breadth-First Search does not take into account the cost or quality of the paths it explores, making it less suitable for problems with complex cost or objective functions.

Pros Cons
Guarantees finding the shortest path to a goal state Large memory requirements
Explores all possible paths of increasing lengths Does not consider path cost or quality

Depth-First Search

Depth-First Search (DFS) is a common algorithm used in the field of artificial intelligence to solve various types of problems. It is a search strategy that explores as far as possible along each branch of a tree-like structure before backtracking.

In the context of problem-solving agents, DFS is often used to traverse graph-based problem spaces in search of a solution. This algorithm starts at an initial state and explores all possible actions from that state until a goal state is found or all possible paths have been exhausted.

One example of using DFS in artificial intelligence is solving mazes. The agent starts at the entrance of the maze and explores one path at a time, prioritizing depth rather than breadth. It keeps track of the visited nodes and backtracks whenever it encounters a dead end, until it reaches the goal state (the exit of the maze).

Another example is solving puzzles, such as the famous Eight Queens Problem. In this problem, the agent needs to place eight queens on a chessboard in such a way that no two queens threaten each other. DFS can be used to explore all possible combinations of queen placements, backtracking whenever a placement is found to be invalid, until a valid solution is found or all possibilities have been exhausted.

DFS has advantages and disadvantages. Its main advantage is its simplicity and low memory usage, as it only needs to store the path from the initial state to the current state. However, it can get stuck in infinite loops if not implemented properly, and it may not always find the optimal solution.

In conclusion, DFS is a useful algorithm for problem-solving agents in artificial intelligence. It can be applied to a wide range of problems and provides a straightforward approach to exploring problem spaces. By understanding its strengths and limitations, developers can effectively utilize DFS to find solutions efficiently.

Iterative Deepening Depth-First Search

Iterative Deepening Depth-First Search (IDDFS) is a popular search algorithm used in problem solving within the field of artificial intelligence. It is a combination of depth-first search and breadth-first search algorithms and is designed to overcome some of the limitations of traditional depth-first search.

IDDFS operates in a similar way to depth-first search by exploring a problem space depth-wise. However, it does not keep track of the visited nodes in the search tree as depth-first search does. Instead, it uses a depth limit, which is gradually increased with each iteration, to restrict the depth to which it explores the search tree. This allows IDDFS to gradually explore the search space, starting from a shallow depth and progressively moving to deeper depths.

The iterative deepening depth-first search algorithm works by repeatedly performing depth-limited searches, incrementing the depth limit by one with each iteration. It performs a depth-first search to a given depth limit and if the goal state is not found, it increases the depth limit and performs the search again. This iterative process continues until the goal state is found or the entire search space has been explored.

IDDFS combines the advantages of both depth-first search and breadth-first search. It has the completeness of breadth-first search, meaning it is guaranteed to find a solution if one exists in the search space. At the same time, it preserves the memory efficiency of depth-first search by only keeping track of the current path being explored. This makes it an efficient algorithm for solving problems that have large or infinite search spaces.

Advantages of Iterative Deepening Depth-First Search

1. Completeness: IDDFS is a complete algorithm, meaning it is guaranteed to find a solution if one exists.

2. Memory efficiency: IDDFS only keeps track of the current path being explored, making it memory-efficient compared to breadth-first search which needs to store the entire search tree in memory.

Disadvantages of Iterative Deepening Depth-First Search

1. Redundant work: IDDFS performs multiple depth-limited searches, which can result in redundant work as nodes may be explored multiple times at different depths.

2. Inefficient for non-uniform branching factors: If the branching factor of the search tree varies greatly across different levels, IDDFS may spend a significant amount of time exploring deep levels with high branching factors, leading to inefficiency.

In conclusion, iterative deepening depth-first search is a powerful algorithm used in problem solving within artificial intelligence. It combines the efficiency of depth-first search with the completeness of breadth-first search, making it a valuable tool for solving problems that involve large or infinite search spaces.

Informed Search Algorithms

In artificial intelligence, problem-solving agents are designed to find solutions to complex problems by applying search algorithms. One class of search algorithms is known as informed search algorithms, which make use of additional knowledge or heuristics to guide the search process.

These algorithms are particularly useful when the problem space is large and the search process needs to be optimized. By using heuristics, informed search algorithms can prioritize certain paths or nodes that are more likely to lead to a solution.

Examples of Informed Search Algorithms

  • A* algorithm: This is a widely used informed search algorithm that combines the benefits of both breadth-first search and best-first search approaches. It uses a heuristic function to estimate the cost from a given node to the goal state, and selects the path with the lowest estimated cost.
  • Greedy Best-First Search: This algorithm uses a heuristic function to prioritize nodes based on their estimated distance to the goal. It always chooses the path that appears to be closest to the goal, without considering the overall cost of the path.
  • IDA* algorithm: Short for Iterative Deepening A*, this algorithm is an optimization of the A* algorithm. It performs a depth-first search with an increasing maximum depth limit, guided by a heuristic function. This allows it to find the optimal solution with less memory usage.

These are just a few examples of the many informed search algorithms that exist in the field of artificial intelligence. Each algorithm has its own advantages and is suitable for different types of problems. By applying these algorithms, problem-solving agents can efficiently navigate through complex problem spaces and find optimal solutions.

Uniform-Cost Search

In the field of artificial intelligence, problem-solving agents are designed to find optimal solutions to given problems. One common approach is the use of search algorithms to explore the problem space and find the best path from an initial state to a goal state. Uniform-cost search is one such algorithm that is widely used in various problem-solving scenarios.

Uniform-cost search works by maintaining a priority queue of states, with the cost of reaching each state as the priority. The algorithm starts with an initial state and repeatedly selects the state with the lowest cost from the queue for expansion. It then generates all possible successors of the selected state and adds them to the queue with their respective costs. This process continues until the goal state is reached or the queue is empty.

To illustrate the use of uniform-cost search, let’s consider an example of finding the shortest path from one city to another on a map. The map can be represented as a graph, with cities as the nodes and roads as the edges. Each road has a cost associated with it, representing the distance between the two cities it connects.

Using uniform-cost search, the algorithm would start from the initial city and explore the neighboring cities, considering the cost of each road. It would then continue expanding the cities with the lowest cumulative costs, gradually moving towards the goal city. The algorithm terminates when it reaches the goal city or exhausts all possible paths.

Uniform-cost search is particularly useful in scenarios where the goal is to find the optimal solution with the lowest cost. It guarantees the discovery of the optimal path by exploring all possible paths in a systematic way. However, it can be computationally expensive in terms of time and memory requirements, especially in large problem spaces.

Advantages Disadvantages
Guarantees finding optimal solution Can be computationally expensive
Systematically explores all possible paths Requires significant memory usage
Applicable to a wide range of problem-solving scenarios Not suitable for problems with infinite state spaces

In conclusion, uniform-cost search is an effective algorithm used by problem-solving agents in artificial intelligence to find optimal solutions. It systematically explores all possible paths, guaranteeing the discovery of the optimal solution. However, it can be computationally expensive and requires significant memory usage, making it less suitable for problems with large or infinite state spaces.

Greedy Best-First Search

Greedy Best-First Search (GBFS) is a problem-solving algorithm used in artificial intelligence. It is an example of an intelligent agent that aims to find the most promising solution based solely on its heuristic function.

The GBFS algorithm starts by initializing the initial state of the problem. Then, it evaluates all the neighboring states using a heuristic function, which estimates the cost or value of each state based on certain criteria. The algorithm selects the state that has the lowest heuristic value as the next state to explore.

This means that GBFS always chooses the path that seems most promising at the current moment, without considering the global picture or evaluating future consequences. It follows a greedy approach by making locally optimal decisions. This can sometimes lead to suboptimal solutions if the initial path chosen ends up being a dead-end or if there is a better path further down the line.

GBFS can be used in various problem-solving scenarios. One example is the traveling salesman problem, where the goal is to find the shortest possible route that visits a set of cities and returns to the starting point. The algorithm can evaluate the heuristic value of each potential next city based on its proximity to the current city and select the city with the shortest distance as the next destination.

Another example is the maze-solving problem, where GBFS can be used to navigate through a maze by evaluating the heuristic value of each possible move, such as the distance to the exit or the number of obstacles in the path. The algorithm then chooses the move that leads to the most promising outcome based on the heuristic evaluation.

Overall, GBFS is an example of an intelligent agent in artificial intelligence that utilizes a heuristic function to make locally optimal decisions in problem-solving scenarios. While it may not always guarantee the optimal solution, it can often provide a good approximation and is efficient in many practical applications.

A* search is a widely used algorithm in artificial intelligence for problem-solving. It is an informed search algorithm that combines the features of uniform-cost search with heuristic functions to find an optimal path from a start state to a goal state.

The A* search algorithm is especially useful when dealing with problems that have a large search space or multiple possible paths to the goal state. It uses a heuristic function to estimate the cost of reaching the goal from each state and adds this estimated cost to the actual cost of getting to that state so far. The algorithm then explores the states with the lowest total cost first, making it a best-first search algorithm.

How A* Search Works

At each step of the A* search algorithm, it selects the state with the lowest total cost from the open set of states to explore next. The total cost is calculated as the sum of the actual cost of reaching the state plus the estimated cost of reaching the goal from that state. The open set is initially populated with the start state, and the algorithm continues until the goal state is reached or the open set is empty.

To estimate the cost of reaching the goal, A* search uses a heuristic function, often denoted as h(n), which provides an optimistic estimate of the cost from a given state to the goal. This heuristic function is problem-specific and can be defined based on various factors, such as distance, time, or other relevant considerations.

One commonly used heuristic function is the Manhattan distance, which calculates the distance between two points in a grid-like environment by summing the absolute differences of their x and y coordinates. Another example is the Euclidean distance, which calculates the straight-line distance between two points in a continuous space.

Examples of A* Search

A* search has been successfully applied to various problem-solving scenarios. Some examples include:

  • Pathfinding in a grid-based environment, such as finding the shortest path in a maze or a game level.
  • Optimal route planning for vehicles or delivery services, considering factors like traffic conditions or fuel consumption.
  • Puzzle solving, such as finding the minimum number of moves to solve a sliding puzzle or the Tower of Hanoi problem.
  • Scheduling and resource allocation, where the objective is to minimize costs or maximize efficiency.

These examples demonstrate the versatility and effectiveness of A* search in solving a wide range of problems in artificial intelligence.

Constraint Satisfaction Problems

In the field of artificial intelligence, constraint satisfaction problems (CSPs) are a type of problem-solving agent that deals with a set of variables and a set of constraints that define the relationships between those variables. The aim is to find an assignment of values to the variables that satisfies all the given constraints.

One example of a CSP is the Sudoku puzzle. In this puzzle, the variables are the empty cells, and the constraints are that each row, column, and 3×3 subgrid must contain distinct numbers from 1 to 9. The problem-solving agent must find a valid assignment of numbers to the variables in order to solve the puzzle.

Another example of a CSP is the map coloring problem. In this problem, the variables are the regions on a map, and the constraints are that adjacent regions cannot have the same color. The problem-solving agent must assign a color to each region in such a way that no adjacent regions have the same color.

CSPs can be solved using various algorithms, such as backtracking, constraint propagation, and local search. These algorithms iteratively explore the search space of possible variable assignments, while taking into account the constraints, in order to find a valid solution.

Overall, constraint satisfaction problems provide a framework for modeling and solving a wide range of problems in artificial intelligence, from puzzles to planning and scheduling problems. By representing the problem as a set of variables and constraints, problem-solving agents can efficiently search for solutions that satisfy all the given constraints.

Backtracking

Backtracking is a common technique used in solving problems in artificial intelligence. It is particularly useful when exploring all possible solutions to a problem. Backtracking involves a systematic approach to finding a solution by incrementally building a potential solution, and when a dead-end is encountered, it backtracks and tries a different path.

One example of backtracking is the n-queens problem . In this problem, the goal is to place n queens on an n x n chessboard such that no two queens can attack each other. Backtracking can be used to find all possible solutions to this problem by systematically placing queens on the board and checking if the current configuration is valid. If a configuration is not valid, the algorithm backtracks and tries a different position.

Another example of backtracking is the knight’s tour problem . In this problem, the goal is to find a sequence of moves for a knight on a chessboard such that it visits every square exactly once. Backtracking can be used to explore all possible paths the knight can take, and when a dead-end is encountered, it backtracks and tries a different path.

Backtracking algorithms can be time-consuming as they may need to explore a large number of potential solutions. However, they are powerful and flexible, making them suitable for solving a wide range of problems. In artificial intelligence, backtracking is often used in problem-solving agents to find optimal solutions or to explore the space of possible solutions.

Forward Checking

Forward Checking is a technique used by problem-solving agents in artificial intelligence to improve the efficiency and effectiveness of their search algorithms. It is particularly useful when dealing with constraint satisfaction problems, where there are variables that need to be assigned values while satisfying certain constraints.

How does it work?

When a variable is assigned a value, forward checking updates the remaining domains of the variables by removing any values that are inconsistent with the assigned value, based on the constraints. This helps reduce the search space and allows the agent to explore more promising paths towards a solution.

For example, let’s consider a Sudoku puzzle, which is a classic constraint satisfaction problem. The goal is to fill a 9×9 grid with digits from 1 to 9, such that each row, each column, and each of the nine 3×3 subgrids contains all of the digits from 1 to 9 without repetition.

When forward checking is applied to solve a Sudoku puzzle, the agent starts by assigning a value to an empty cell. Then, it updates the domains of the remaining variables (empty cells) by removing any values that violate the Sudoku constraints. This reduces the number of possible values for the remaining variables and improves the efficiency of the search algorithm.

Advantages of Forward Checking

Forward checking has several advantages when used by problem-solving agents:

  • It helps reduce the search space by eliminating values that are inconsistent with the constraints.
  • It can lead to more efficient search algorithms by guiding the agent towards more promising paths.
  • It can improve the accuracy of the search algorithm by considering the constraints during the assignment of values.

Overall, forward checking is an important technique used by problem-solving agents to efficiently solve constraint satisfaction problems, such as Sudoku puzzles, and improve the effectiveness of their search algorithms.

Arc Consistency

Arc consistency is a key concept in artificial intelligence problem-solving agents, specifically in constraint satisfaction problems (CSPs). CSPs are mathematical problems that involve finding a solution that satisfies a set of constraints.

In a CSP, variables are assigned values from a domain, and constraints define the relationships between the variables. Arc consistency is a technique used to reduce the search space by ensuring that all values in the domain are consistent with the constraints.

For example, consider a scheduling problem where we need to assign tasks to workers. We have a set of constraints that specify which tasks can be assigned to which workers. Arc consistency would involve checking each constraint to ensure that the assigned values satisfy the constraints. If a constraint is not satisfied, the agent would backtrack and try a different assignment.

The arc consistency technique uses a process called domain filtering, which iteratively eliminates values from the domain that are not consistent with the current assignments and constraints. This process continues until no more values can be removed or until a solution is found.

Variable Domain Constraints
Task 1 {Worker A, Worker B} Task 1 can only be assigned to Worker A
Task 2 {Worker B, Worker C} Task 2 can only be assigned to Worker B or Worker C

In this example, initially both Task 1 and Task 2 can be assigned to both Worker A and Worker B. However, by applying arc consistency, we can eliminate the assignments that violate the constraints. After applying arc consistency, we end up with the following assignments:

Variable Domain Constraints
Task 1 {Worker A} Task 1 can only be assigned to Worker A
Task 2 {Worker B} Task 2 can only be assigned to Worker B or Worker C

By applying arc consistency, we have reduced the solution space and ensured that all assignments satisfy the constraints. This allows the problem-solving agent to search for a solution more efficiently.

Game Playing Agents

Game playing agents are artificial intelligence agents that are designed to play games. These agents are capable of making decisions and taking actions in order to achieve the goal of winning the game. They use various problem solving techniques and strategies to analyze the current state of the game and make the best possible move.

There are several examples of game playing agents in artificial intelligence:

A chess playing agent is a program that can play the game of chess against a human opponent or another computer program. The agent uses algorithms and search techniques to analyze the current position on the chessboard and determine the best move to make.

A go playing agent is a program that can play the game of go, a strategy board game, against a human opponent or another computer program. The agent uses techniques such as Monte Carlo tree search and pattern recognition to evaluate the current state of the game and make intelligent decisions.

A poker playing agent is a program that can play the game of poker against human players or other computer programs. These agents use probabilistic reasoning and game theory to make decisions based on the current state of the game and the actions of the opponents.

A video game playing agent is a program that can play a specific video game, such as a first-person shooter or a platformer. These agents use techniques such as pathfinding, decision trees, and reinforcement learning to navigate the game world and achieve the objectives of the game.

Game playing agents have been a subject of research and development in artificial intelligence for many years. They have contributed to advancements in areas such as machine learning, pattern recognition, and decision-making algorithms.

Minimax Algorithm

The Minimax Algorithm is a common solving approach used by intelligent agents in the field of artificial intelligence. It is primarily used in scenarios where an agent needs to make decisions in a competitive setting with an opponent.

The goal of the Minimax Algorithm is to determine the best possible move for an agent, assuming that the opponent is also playing optimally. It works by exploring all potential moves and their resulting outcomes, ultimately selecting the move that minimizes the maximum possible outcome for the opponent.

One example of the Minimax Algorithm in action is in the game of Chess. The agent (player) evaluates the potential moves it can make and computes the possible moves the opponent (opponent player) can make in response. The agent then simulates each possible sequence of moves, looking several moves ahead, and assigns a score to each sequence based on the predicted outcome. The agent selects the move that leads to the sequence with the lowest score, assuming the opponent will always make the move that maximizes their score.

Another example is in the game of Tic Tac Toe. The agent and the opponent each take turns making moves on a 3×3 grid. The agent uses the Minimax Algorithm to explore the possible outcomes of each move and selects the move that minimizes the maximum potential outcome for the opponent.

The Minimax Algorithm is a powerful tool for solving problems in artificial intelligence, as it allows intelligent agents to make optimal decisions in competitive settings. It can be applied to a wide range of scenarios beyond games, including decision-making processes in robotics, resource allocation, and strategic planning.

Alpha-Beta Pruning

In the field of artificial intelligence, one of the key techniques used by problem-solving agents is called alpha-beta pruning. This technique is employed in game playing algorithms, where the agent needs to make decisions that maximize its chances of winning.

The goal of alpha-beta pruning is to reduce the number of nodes that need to be evaluated in a game tree, without compromising the correctness of the agent’s decision. By pruning branches of the tree that are deemed to be less promising, the agent can save significant computational resources and make faster decisions.

How Alpha-Beta Pruning Works

Alpha-beta pruning is based on the concept of minimax algorithm, which explores the entire game tree to find the optimal move for the agent. However, unlike minimax, alpha-beta pruning stops exploring certain branches when it is determined that they will not affect the final decision.

The algorithm maintains two values called alpha and beta, which represent the best values achievable for the maximizing player and the minimizing player, respectively. As the agent explores the tree, it updates these values based on the current position and the possible moves.

If the agent finds a move that yields a value greater than or equal to the beta value, it means that the minimizing player can force a value greater than or equal to beta, so there is no need to explore that branch further. Similarly, if the agent finds a move that yields a value less than or equal to the alpha value, it means that the maximizing player can force a value less than or equal to alpha, so there is no need to explore that branch further either.

Benefits of Alpha-Beta Pruning

Alpha-beta pruning is a powerful technique that can greatly improve the efficiency of problem-solving agents in artificial intelligence. By avoiding the evaluation of unnecessary nodes in the game tree, agents can make faster decisions without sacrificing accuracy.

This technique is particularly useful in games with large branching factors, where the game tree can be extremely large. Alpha-beta pruning allows agents to focus their computational resources on the most promising branches, leading to more effective decision-making and improved gameplay.

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a popular algorithm used in solving complex problems by artificial intelligence agents. It is particularly effective in problem domains with large state spaces and difficult decision-making processes.

MCTS simulates the problem-solving process by traversing a tree of possible actions and outcomes. It uses random sampling, or “Monte Carlo” simulations, to estimate the potential value or utility of each action. This allows the agent to focus its search on promising actions and avoid wasting time exploring unpromising ones.

The MCTS algorithm consists of four main steps: selection, expansion, simulation, and backpropagation. In the selection step, the algorithm chooses a node from the tree based on a selection policy, typically the Upper Confidence Bound (UCB). The expansion step adds child nodes to the selected node, representing possible actions. The simulation step performs a Monte Carlo simulation by randomly selecting actions and obtaining a simulated outcome. Finally, the backpropagation step updates the values of the nodes in the tree based on the simulation results.

By iteratively performing these steps, MCTS gradually builds up knowledge about the problem domain and improves its decision-making capabilities. It can be used in a wide range of problem-solving scenarios, such as playing board games, optimizing resource allocation, or finding optimal strategies in complex environments.

Overall, Monte Carlo Tree Search is an effective algorithm for solving problems in artificial intelligence. Its ability to balance exploration and exploitation allows agents to efficiently search large state spaces and find optimal solutions to complex problems.

Expert Systems

Expert systems are a type of problem-solving agents in the field of artificial intelligence. They are designed to mimic the behavior and knowledge of human experts in a specific domain. These systems use a combination of rules, inference engines, and knowledge bases to solve complex problems and provide expert-level solutions.

Expert systems can be found in various industries and domains, including healthcare, finance, manufacturing, and customer support. They are used to assist professionals in making complex decisions, troubleshoot problems, and provide expert advice.

One example of an expert system is IBM Watson, which gained fame for its victory on the television quiz show Jeopardy! Watson is designed to understand natural language, process large amounts of data, and provide accurate answers to questions. It utilizes machine learning techniques to improve its performance over time.

Another example is Dendral, an expert system developed in the 1960s to solve problems in organic chemistry. Dendral was able to analyze mass spectrometry data and identify the structure of organic compounds. It was one of the first successful applications of expert systems in the field of chemistry.

Expert systems can be classified as rule-based systems, where a set of rules is defined to guide the decision-making process. These rules are usually created by domain experts and encoded in the knowledge base of the system. The inference engine then uses these rules to reason and make inferences.

Overall, expert systems play a crucial role in artificial intelligence by combining human expertise and machine learning techniques to solve complex problems in various domains. They provide valuable insights and solutions, making them powerful tools for professionals in different industries.

Rule-Based Systems

Rule-based systems are a common type of problem-solving agent in artificial intelligence. These systems use a set of rules or “if-then” statements to solve problems. Each rule consists of a condition and an action. If the condition is met, then the action is performed.

Example 1: Expert Systems

One example of a rule-based system is an expert system. Expert systems are designed to mimic the decision-making abilities of human experts in a specific domain. They use a knowledge base of rules to provide advice or make decisions. For example, a medical expert system could use rules to diagnose a patient’s symptoms and recommend a course of treatment.

Example 2: Production Systems

Another example of a rule-based system is a production system. Production systems are commonly used in manufacturing and planning domains. They consist of rules that describe the steps to be taken in a production process. For example, a production system for building a car could have rules for assembling different components in a specific order.

In conclusion, rule-based systems are a powerful tool in artificial intelligence for solving problems. They use a set of rules to make decisions or perform actions based on specific conditions. Examples include expert systems and production systems.

Fuzzy Logic

Fuzzy logic is a branch of artificial intelligence that deals with reasoning that is approximate rather than precise. In contrast to traditional logic, which is based on binary true/false values, fuzzy logic allows for degrees of truth. This makes it particularly useful for problem solving agents in artificial intelligence, as it enables them to work with uncertain or ambiguous information.

One of the key advantages of fuzzy logic is its ability to handle imprecise data and make decisions based on incomplete or uncertain information. This makes it well-suited for applications such as decision-making systems, control systems, and expert systems.

One example of fuzzy logic in action is in weather forecasting. Since weather conditions can be difficult to predict with complete accuracy, fuzzy logic can be used to analyze various factors such as temperature, humidity, and wind speed, and make a determination about the likelihood of rain or sunshine.

Another example is in autonomous vehicles. Fuzzy logic can be used to interpret sensor data, such as distance, speed, and road conditions, and make decisions about how to navigate and respond to the environment. This allows the vehicle to adapt and make intelligent decisions in real-time.

Bayesian Networks

Bayesian Networks are a powerful tool in the field of Artificial Intelligence, used by problem-solving agents to model uncertain knowledge and make decisions based on probability.

Bayesian Networks are graphical models that represent a set of variables and their probabilistic relationships through a directed acyclic graph. The nodes in the graph represent the variables, while the edges represent the dependencies between the variables.

These networks are widely used in various domains, including healthcare, finance, and robotics, to name a few. They are particularly useful when dealing with uncertain and complex situations, where decisions need to be made based on incomplete or imperfect information.

Examples of Bayesian Networks:

  • Medical Diagnosis: Bayesian Networks can be used to model and diagnose diseases based on symptoms, medical history, and test results. The network can update the probabilities of different diseases based on new evidence and help in making accurate diagnoses.
  • Weather Prediction: Bayesian Networks can be used to model the relationships between different weather variables such as temperature, humidity, and wind speed. By updating the probabilities of these variables based on observed data, the network can predict the likelihood of different weather conditions.

In both examples, Bayesian Networks provide a systematic framework for combining prior knowledge with observed evidence to make informed decisions. They enable problem-solving agents to reason under uncertainty and update beliefs in a principled and consistent manner.

Machine Learning Agents

Machine learning agents are a subset of artificial intelligence agents that utilize machine learning algorithms to solve problems. These agents are capable of learning from experience and improving their performance over time. They are trained on large datasets and use various techniques to analyze and interpret the data, such as deep learning and reinforcement learning.

One example of a machine learning agent is a predictive model that is trained to predict future outcomes based on historical data. For example, in finance, machine learning agents can be used to predict stock prices or identify patterns in market data to make informed investment decisions.

Another example of a machine learning agent is a virtual assistant, such as Siri or Alexa, that uses natural language processing and machine learning techniques to understand and respond to user queries and commands. These virtual assistants continuously learn from user interactions and improve their accuracy in interpreting and responding to user inputs.

Examples of Machine Learning Agents
Predictive models
Virtual assistants
Image recognition systems
Autonomous vehicles

Machine learning agents have revolutionized many industries and have the potential to drive innovation and improve efficiency in various domains. By leveraging the power of data and advanced algorithms, these agents can solve complex problems and make intelligent decisions that were previously not possible.

Reinforcement Learning Agents

Reinforcement learning agents are a type of problem-solving agent in artificial intelligence. These agents are designed to learn and improve their behavior through trial and error, using a system of rewards and punishments.

One example of a reinforcement learning agent is an autonomous robot that learns to navigate its environment. The robot starts with no prior knowledge of the environment and must explore and interact with its surroundings to learn how to reach a specific goal. It receives positive reinforcement, such as a reward, when it successfully performs the desired action, and negative reinforcement, such as a punishment or penalty, when it makes a mistake.

Another example of a reinforcement learning agent is a computer program that learns to play a game. The program is initially unaware of the rules and strategies of the game and must learn through repeated play. It receives positive reinforcement when it makes a winning move or achieves a high score, and negative reinforcement when it makes a losing move or receives a low score. Over time, the program learns to make better decisions and improve its performance.

Reinforcement Learning Process

The reinforcement learning process consists of the following steps:

  • Observation: The agent observes the current state of the environment.
  • Action: The agent selects an action to perform based on its current knowledge and strategy.
  • Reward: The agent receives a reward or punishment based on the outcome of its action.
  • Learning: The agent adjusts its strategy and behavior based on the received reward or punishment.
  • Iteration: The process is repeated, with the agent continuously learning and improving over time.

Applications of Reinforcement Learning Agents

Reinforcement learning agents have various applications in artificial intelligence, including:

  • Autonomous robotics
  • Game playing
  • Optimization problems
  • Resource allocation
  • Financial trading

These examples demonstrate how reinforcement learning agents can adapt and improve their behavior in different environments and problem-solving scenarios.

Genetic Algorithms

Genetic Algorithms are a type of problem-solving technique used in artificial intelligence. They are inspired by the process of natural selection and genetic inheritance in living organisms. These algorithms use a population of possible solutions to a problem and apply genetic operators such as selection, crossover, and mutation to evolve and improve the solutions over time.

Genetic Algorithms have been successfully applied to various optimization problems, such as finding the best combination of parameters for a machine learning model or optimizing the routing of vehicles in logistics. They are particularly useful in problems where there is no deterministic algorithm to find an optimal solution.

Here are a few examples of how Genetic Algorithms can be used:

Example Description
Traveling Salesman Problem Finding the shortest possible route for a salesman to visit a given set of cities.
Knapsack Problem Determining the best combination of items to fit within a limited carrying capacity, maximizing the total value.
Job Scheduling Optimizing the allocation of tasks to resources, minimizing the total makespan.

In each of these examples, Genetic Algorithms can be used to search the solution space more efficiently and find near-optimal or optimal solutions. The population-based approach of Genetic Algorithms allows for exploration of multiple potential solutions simultaneously, increasing the chances of finding a good solution.

Overall, Genetic Algorithms are a powerful and flexible problem-solving technique in the field of artificial intelligence. They can be applied to a wide range of problems and have been proven to be effective in finding optimal or near-optimal solutions.

Swarm Intelligence

Swarm intelligence is a field of artificial intelligence that involves studying the collective behavior of multi-agent systems in order to solve complex problems. In this approach, individual agents work together as a swarm to find optimal solutions without centralized control or coordination.

Central to the concept of swarm intelligence is the idea that intelligence emerges from the interactions and cooperation of simple agents. These agents, often inspired by natural systems such as ant colonies or bird flocks, follow simple rules and communicate with each other to achieve a common goal.

Applications

  • Swarm intelligence has been used in various problem-solving scenarios, including optimization problems, task allocation, and decision-making.
  • One notable application is in robotics, where swarms of robots can collectively explore and map unknown environments, perform search and rescue operations, or even assemble complex structures.
  • Another application is in finance, where swarm intelligence algorithms are used to analyze and predict stock market trends or optimize investment portfolios.
  • One of the main advantages of swarm intelligence is its robustness and adaptability. As individual agents can communicate and adjust their behavior based on the information from their neighbors, the swarm as a whole can quickly adapt to changes or disturbances in the environment.
  • Swarm intelligence also offers a scalable solution, as the performance of the swarm can improve with the addition of more agents.
  • Furthermore, swarm intelligence algorithms are often computationally efficient and can handle large-scale problems that would be intractable for traditional optimization techniques.

In conclusion, swarm intelligence is a promising approach in artificial intelligence that leverages the collective intelligence of simple agents to solve complex problems. Its applications span various domains, and its advantages make it an appealing technique for solving real-world challenges.

Questions and answers

What are problem solving agents in artificial intelligence.

Problem solving agents in artificial intelligence are intelligent systems that are designed to solve complex problems by searching for the best solution based on well-defined rules and goals.

How do problem solving agents work?

Problem solving agents work by analyzing a given problem, breaking it into smaller sub-problems, and then searching for a solution by applying various problem-solving techniques, such as heuristics, pattern recognition, logical reasoning, and machine learning algorithms.

Can you give an example of a problem solving agent?

One example of a problem solving agent is a chess-playing computer program. It analyzes the current state of the chessboard, generates possible moves, evaluates their outcomes using a specified evaluation function, and then selects the move with the highest expected outcome as the solution to the problem of finding the best move.

What are some other applications of problem solving agents?

Problem solving agents have a wide range of applications in various fields. They are used in robotics to plan and execute actions, in automated planning systems to optimize resource allocation, in natural language processing to interpret and respond to user queries, and in medical diagnosis to analyze symptoms and suggest possible treatments.

Are problem solving agents capable of solving all types of problems?

No, problem solving agents are not capable of solving all types of problems. Their effectiveness depends on the specific problem domain and the availability of knowledge and resources. Some problems may be too complex or ill-defined, making it difficult for problem solving agents to find optimal solutions.

Related posts:

Default Thumbnail

About the author

' src=

AI for Social Good

Add comment, cancel reply.

You must be logged in to post a comment.

AI and Handyman: The Future is Here

Embrace ai-powered cdps: the future of customer engagement, elon musk’s vision ai, creating a powerful gpt telegram chatbot.

' src=

Table of Contents

What is an agent in ai, the functions of an artificial intelligence agent, the number and types of agents in artificial intelligence, the structure of agents in artificial intelligence, what are agents in artificial intelligence composed of, how to improve the performance of intelligent agents, all about problem-solving agents in artificial intelligence, choose the right program, can you picture a career in artificial intelligence, exploring intelligent agents in artificial intelligence.

Exploring Intelligent Agents in Artificial Intelligence

Artificial Intelligence, typically abbreviated to AI, is a fascinating field of Information Technology that finds its way into many aspects of modern life. Although it may seem complex, and yes, it is, we can gain a greater familiarity and comfort with AI by exploring its components separately. When we learn how the pieces fit together, we can better understand and implement them.

That’s why today we’re tackling the intelligent Agent in AI. This article defines intelligent agents in Artificial Intelligence , AI agent functions and structure, and the number and types of agents in AI.

Let’s define what we mean by an intelligent agent in AI.

Okay, did anyone, upon hearing the term “intelligent agent,” immediately picture a well-educated spy with a high IQ? No? Anyway, in the context of the AI field, an “agent” is an independent program or entity that interacts with its environment by perceiving its surroundings via sensors, then acting through actuators or effectors.

Agents use their actuators to run through a cycle of perception, thought, and action. Examples of agents in general terms include:

  • Software: This Agent has file contents, keystrokes, and received network packages that function as sensory input, then act on those inputs, displaying the output on a screen.
  • Human: Yes, we’re all agents. Humans have eyes, ears, and other organs that act as sensors, and hands, legs, mouths, and other body parts act as actuators.
  • Robotic: Robotic agents have cameras and infrared range finders that act as sensors, and various servos and motors perform as actuators.

Intelligent agents in AI are autonomous entities that act upon an environment using sensors and actuators to achieve their goals. In addition, intelligent agents may learn from the environment to achieve those goals. Driverless cars and the Siri virtual assistant are examples of intelligent agents in AI.

These are the main four rules all AI agents must adhere to:

  • Rule 1: An AI agent must be able to perceive the environment.
  • Rule 2: The environmental observations must be used to make decisions.
  • Rule 3: The decisions should result in action.
  • Rule 4: The action taken by the AI agent must be a rational. Rational actions are actions that maximize performance and yield the best positive outcome.

Artificial Intelligence agents perform these functions continuously:

  • Perceiving dynamic conditions in the environment
  • Acting to affect conditions in the environment
  • Using reasoning to interpret perceptions
  • Problem-solving
  • Drawing inferences
  • Determining actions and their outcomes

There are five different types of intelligent agents used in AI. They are defined by their range of capabilities and intelligence level:

  • Reflex Agents: These agents work here and now and ignore the past. They respond using the event-condition-action rule. The ECA rule applies when a user initiates an event, and the Agent turns to a list of pre-set conditions and rules, resulting in pre-programmed outcomes.
  • Model-based Agents: These agents choose their actions like reflex agents do, but they have a better comprehensive view of the environment. An environmental model is programmed into the internal system, incorporating into the Agent's history.
  • Goal-based agents: These agents build on the information that a model-based agent stores by augmenting it with goal information or data regarding desirable outcomes and situations.
  • Utility-based agents: These are comparable to the goal-based agents, except they offer an extra utility measurement. This measurement rates each possible scenario based on the desired result and selects the action that maximizes the outcome. Rating criteria examples include variables such as success probability or the number of resources required.
  • Learning agents: These agents employ an additional learning element to gradually improve and become more knowledgeable over time about an environment. The learning element uses feedback to decide how the performance elements should be gradually changed to show improvement.

Agents in Artificial Intelligence follow this simple structural formula:

Architecture + Agent Program = Agent

These are the terms most associated with agent structure:

  • Architecture: This is the machinery or platform that executes the agent.
  • Agent Function: The agent function maps a precept to the Action, represented by the following formula: f:P* - A
  • Agent Program: The agent program is an implementation of the agent function. The agent program produces function f by executing on the physical architecture.

Many AI Agents use the PEAS model in their structure. PEAS is an acronym for Performance Measure, Environment, Actuators, and Sensors. For instance, take a vacuum cleaner.

  • Performance: Cleanliness and efficiency
  • Environment: Rug, hardwood floor, living room
  • Actuator: Brushes, wheels, vacuum bag
  • Sensors: Dirt detection sensor, bump sensor

Here’s a diagram that illustrates the structure of a utility-based agent, courtesy of Researchgate.net.

Intelligent_Agents

Become a AI & Machine Learning Professional

  • $267 billion Expected Global AI Market Value By 2027
  • 37.3% Projected CAGR Of The Global AI Market From 2023-2030
  • $15.7 trillion Expected Total Contribution Of AI To The Global Economy By 2030

Artificial Intelligence Engineer

  • Industry-recognized AI Engineer Master’s certificate from Simplilearn
  • Dedicated live sessions by faculty of industry experts

Professional Certificate Program in Generative AI and Machine Learning

Here's what learners are saying regarding our programs:.

Indrakala Nigam Beniwal

Indrakala Nigam Beniwal

Technical consultant , land transport authority (lta) singapore.

I completed a Master's Program in Artificial Intelligence Engineer with flying colors from Simplilearn. Thanks to the course teachers and others associated with designing such a wonderful learning experience.

Aman Kukreti

Aman Kukreti

Business process analyst , ds group.

The generative ai machine learning module was an eye opener for me. The mentor's teaching style in the weekend sessions was spot on. While there's a lot of Gen AI content online, this module stood out for its structured approach and the mentor's interactive guidance. It made learning about AI easy, even for beginners like me.

Agents in Artificial Intelligence contain the following properties:

  • Enrironment

Flexibility

  • Proactiveness

Using Response Rules

Now, let's discuss these in detail.

Environment

The agent is situated in a given environment.

The agent can operate without direct human intervention or other software methods. It controls its activities and internal environment. The agent independently which steps it will take in its current condition to achieve the best improvements. The agent achieves autonomy if its performance is measured by its experiences in the context of learning and adapting.

  • Reactive: Agents must recognize their surroundings and react to the changes within them.
  • Proactive: Agents shouldn’t only act in response to their surroundings but also be able to take the initiative when appropriate and effect an opportunistic, goal-directed performance.
  • Social: Agents should work with humans or other non-human agents.
  • Reactive systems maintain ongoing interactions with their environment, responding to its changes.
  • The program’s environment may be guaranteed, not concerned about its success or failure.
  • Most environments are dynamic, meaning that things are constantly in a state of change, and information is incomplete.
  • Programs must make provisions for the possibility of failure.

Pro-Activeness

Taking the initiative to create goals and try to meet them.

The goal for the agent is directed behavior, having it do things for the user.

  • Mobility: The agent must have the ability to actuate around a system.
  • Veracity: If an agent’s information is false, it will not communicate.
  • Benevolence: Agents don’t have contradictory or conflicting goals. Therefore, every Agent will always try to do what it is asked.
  • Rationality: The agent will perform to accomplish its goals and not work in a way that opposes or blocks them.
  • Learning: An agent must be able to learn.

When tackling the issue of how to improve intelligent Agent performances, all we need to do is ask ourselves, “How do we improve our performance in a task?” The answer, of course, is simple. We perform the task, remember the results, then adjust based on our recollection of previous attempts.

Artificial Intelligence Agents improve in the same way. The Agent gets better by saving its previous attempts and states, learning how to respond better next time. This place is where Machine Learning and Artificial Intelligence meet.

Problem-solving Agents in Artificial Intelligence employ several algorithm s and analyses to develop solutions. They are:

  • Search Algorithms: Search techniques are considered universal problem-solving methods. Problem-solving or rational agents employ these algorithms and strategies to solve problems and generate the best results.

Uninformed Search Algorithms: Also called a Blind search, uninformed searches have no domain knowledge, working instead in a brute-force manner.

Informed Search Algorithms: Also known as a Heuristic search, informed searches use domain knowledge to find the search strategies needed to solve the problem.

  • Hill Climbing Algorithms: Hill climbing algorithms are local search algorithms that continuously move upwards, increasing their value or elevation until they find the best solution to the problem or the mountain's peak.

Hill climbing algorithms are excellent for optimizing mathematical problem-solving. This algorithm is also known as a "greedy local search" because it only checks out its good immediate neighbor.

  • Means-Ends Analysis: The means-end analysis is a problem-solving technique used to limit searches in Artificial Intelligence programs , combining Backward and Forward search techniques.

The means-end analysis evaluates the differences between the Initial State and the Final State, then picks the best operators that can be used for each difference. The analysis then applies the operators to each matching difference, reducing the current and goal state difference.

Supercharge your career in AI and ML with Simplilearn's comprehensive courses. Gain the skills and knowledge to transform industries and unleash your true potential. Enroll now and unlock limitless possibilities!

Program Name AI Engineer Post Graduate Program In Artificial Intelligence Post Graduate Program In Artificial Intelligence Geo All Geos All Geos IN/ROW University Simplilearn Purdue Caltech Course Duration 11 Months 11 Months 11 Months Coding Experience Required Basic Basic No Skills You Will Learn 10+ skills including data structure, data manipulation, NumPy, Scikit-Learn, Tableau and more. 16+ skills including chatbots, NLP, Python, Keras and more. 8+ skills including Supervised & Unsupervised Learning Deep Learning Data Visualization, and more. Additional Benefits Get access to exclusive Hackathons, Masterclasses and Ask-Me-Anything sessions by IBM Applied learning via 3 Capstone and 12 Industry-relevant Projects Purdue Alumni Association Membership Free IIMJobs Pro-Membership of 6 months Resume Building Assistance Upto 14 CEU Credits Caltech CTME Circle Membership Cost $$ $$$$ $$$$ Explore Program Explore Program Explore Program

As you can infer from what we’ve covered, the field of Artificial Intelligence is complicated and involved. However, AI is the way of the future and is making its way into every area of our lives. If you want to join the AI revolution and pursue a career in the field, Simplilearn has everything you need.

The Caltech Post Graduate Program in AI & ML program, built and delivered in partnership with Caltech CTME and IBM, will help you master vital Artificial Intelligence concepts such as Data Science with Python , Machine Learning , Deep Learning, and Natural Language Programming (NLP). In addition, the course offers exclusive hackathons and “Ask me anything” sessions held by IBM. Before you know it, the live sessions, practical labs, and hands-on projects give you job-ready AI certification.

Glassdoor says that Artificial Intelligence Engineers in the United States can earn an average of $119,316 per year. However, a similar position in India makes a yearly average of ₹986,682.

Check out Simplilearn today, and get started on that exciting new career in Artificial Intelligence!

1. What are Intelligent Agents in Artificial Intelligence?

Intelligent Agents in AI are autonomous entities that perceive their environment and make decisions to achieve specific goals.

2. How do Intelligent Agents contribute to AI?

Intelligent Agents enhance AI by autonomously processing information and performing actions to meet set objectives.

3. What are examples of Intelligent Agents in AI?

Examples include recommendation systems, self-driving cars, and voice assistants like Siri or Alexa.

4. How do Intelligent Agents perceive their environment?

Intelligent Agents use sensors to perceive their environment, gathering data for decision-making.

5. What role do Intelligent Agents play in Machine Learning?

In Machine Learning, Intelligent Agents can learn and improve their performance without explicit programming.

6. Are Intelligent Agents the same as AI robots?

Not all Intelligent Agents are robots, but all AI robots can be considered Intelligent Agents.

7. What's the future of Intelligent Agents in AI?

The future of Intelligent Agents is promising, with potential advancements in automation, decision-making, and problem-solving.

8. How do Intelligent Agents impact everyday life?

Intelligent Agents impact our lives by providing personalized recommendations, automating tasks, and enhancing user experiences.

9. How do Intelligent Agents make decisions in AI?

Intelligent Agents make decisions based on their perception of the environment and pre-defined goals.

10. Can anyone use Intelligent Agents in AI?

Yes, anyone with the right tools and understanding can utilize Intelligent Agents in AI.

Our AI & Machine Learning Courses Duration And Fees

AI & Machine Learning Courses typically range from a few weeks to several months, with fees varying based on program and institution.

Program NameDurationFees

Cohort Starts:

11 Months€ 3,990

Cohort Starts:

11 Months€ 2,290

Cohort Starts:

4 months€ 2,490

Cohort Starts:

4 Months€ 3,000

Cohort Starts:

11 Months€ 2,990

Cohort Starts:

4 Months€ 1,999

Cohort Starts:

11 months€ 2,290
11 Months€ 1,490

Get Free Certifications with free video courses

Machine Learning using Python

AI & Machine Learning

Machine Learning using Python

Artificial Intelligence Beginners Guide: What is AI?

Artificial Intelligence Beginners Guide: What is AI?

Learn from Industry Experts with free Masterclasses

Prompt Engineering Unlocked: Uncover the Secrets to Effective AI Conversations

The Future of Work with ChatGPT: Applications for Every Professional

Global Next-Gen AI Engineer Career Roadmap: Salary, Scope, Jobs, Skills

Recommended Reads

Artificial Intelligence Career Guide: A Comprehensive Playbook to Becoming an AI Expert

What is Artificial Intelligence and Why Gain AI Certification

What is Artificial Intelligence: Types, History, and Future

Introduction to Artificial Intelligence: A Beginner's Guide

Top Artificial Intelligence Interview Questions

How Does AI Work

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.
  • Data Science
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • Deep Learning
  • Computer Vision
  • Artificial Intelligence
  • AI ML DS Interview Series
  • AI ML DS Projects series
  • Data Engineering
  • Web Scrapping

How does an agent formulate a problem?

In artificial intelligence (AI) and machine learning, an agent is an entity that perceives its environment, processes information and acts upon that environment to achieve specific goals. The process by which an agent formulates a problem is critical, as it lays the foundation for the agent’s decision-making and problem-solving capabilities.

This article explores the steps and considerations involved in problem formulation by an intelligent agent.

Table of Content

Understanding Problem Formulation

Example: problem formulation for a package delivery by an autonomous drone, step 1: define the initial state, step 2: define actions and transition model, step 3: define the goal state and objective function, importance of problem formulation, challenges in problem formulation.

Problem formulation is the process by which an agent defines the task it needs to solve. This involves specifying the initial state, goal state, actions, constraints, and the criteria for evaluating solutions. Effective problem formulation is crucial for the success of the agent in finding optimal or satisfactory solutions.

Steps in Problem Formulation

  • Example: In a navigation problem, the initial state could be the agent’s starting location on a map.
  • Example: For the navigation problem, the goal state is the destination location.
  • Example: In a robot navigation scenario, actions could include moving forward, turning left, or turning right.
  • Example: In a game, the transition model would include the rules that specify how the game state changes based on the player’s moves.
  • Example: For a delivery drone, constraints might include battery life, weight capacity, and no-fly zones.
  • Example: In route planning, the cost function could represent the distance traveled, time taken, or energy consumed.
  • Example: For a puzzle-solving agent, success criteria could be the completion of the puzzle within the shortest time or the fewest moves.

We will demonstrate how to formulate the problem of package delivery by an autonomous drone, implementing the concepts in Python code. The drone needs to navigate from an initial location to a customer’s location while avoiding no-fly zones and managing its battery life.

The initial state includes the drone’s starting location and its battery level.

We create a Drone class with an initializer ( __init__ method) that sets the initial location, battery level, no-fly zones, and goal location.

The drone can take various actions such as taking off, landing, and moving in different directions. The transition model updates the drone’s state based on the action taken.

The takeoff , land , and move methods define how the drone’s state changes with each action. The transition_model method uses these actions to update the drone’s state.

The goal state is the customer’s location. The objective function evaluates the drone’s performance based on whether it reaches the goal and the remaining battery life.

The objective_function method returns a high score if the drone reaches the goal and otherwise returns the remaining battery level.

Complete Implementation

Now let’s put the problem formulation for a package delivery by an autonomous drone into practice:

We instantiate a Drone , execute a sequence of actions, and print the final location, battery level, and objective function score.

Effective problem formulation is essential because:

  • Clarity : It provides a clear understanding of the problem, making it easier to devise a solution.
  • Efficiency : Proper formulation can significantly reduce the computational resources required to solve the problem.
  • Optimal Solutions : It helps in finding the most optimal or satisfactory solution by accurately defining the goals and constraints.
  • Incomplete Information : The agent may not have access to all the necessary information about the environment.
  • Dynamic Environments : The environment may change unpredictably, requiring the agent to adapt its problem formulation.
  • Complex Constraints : Managing and incorporating complex constraints can be challenging.

A key step in artificial intelligence is problem formulation, which has a big influence on how well an agent completes its duties. An agent may efficiently traverse its environment and accomplish desired results by providing precise definitions for the starting state, actions, target state, restrictions, transition model, and objective function. By using a structured approach, the agent is guaranteed to be able to tackle complicated issues methodically and make well-informed judgments that result in effective and efficient solutions. The examples given show how issue formulation is used in a variety of contexts, underscoring its adaptability and significance in the area of artificial intelligence. Problem formulation techniques will continue to be essential to creating intelligent agents that can solve an ever-expanding array of problems as AI develops.

Please Login to comment...

Similar reads.

  • AI-ML-DS With Python
  • Data Science Blogathon 2024

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IncludeHelp_logo

  • Data Structure
  • Coding Problems
  • C Interview Programs
  • C++ Aptitude
  • Java Aptitude
  • C# Aptitude
  • PHP Aptitude
  • Linux Aptitude
  • DBMS Aptitude
  • Networking Aptitude
  • AI Aptitude
  • MIS Executive
  • Web Technologie MCQs
  • CS Subjects MCQs
  • Databases MCQs
  • Programming MCQs
  • Testing Software MCQs
  • Digital Mktg Subjects MCQs
  • Cloud Computing S/W MCQs
  • Engineering Subjects MCQs
  • Commerce MCQs
  • More MCQs...
  • Machine Learning/AI
  • Operating System
  • Computer Network
  • Software Engineering
  • Discrete Mathematics
  • Digital Electronics
  • Data Mining
  • Embedded Systems
  • Cryptography
  • CS Fundamental
  • More Tutorials...
  • Tech Articles
  • Code Examples
  • Programmer's Calculator
  • XML Sitemap Generator
  • Tools & Generators

IncludeHelp

Embedded Systems Tutorial

  • Machine Learning, AI, Deep Learning, & Data Science
  • How to Learn ML & AI

Artificial Intelligence

  • AI - Introduction
  • AI - Types, Applications, Advantages & Disadvantages
  • AI-based Agent
  • AI - Types of Agents
  • AI - Classification of Environment
  • AI - PEAS Based Grouping of Agents
  • AI - Important Terms
  • AI - Problem Solving
  • AI - Water jug problem
  • AI - Problem Solving by Searching
  • AI - Hill Climbing Search
  • AI - Best-first Search (BFS)
  • AI - Vacuum Cleaner Problem
  • AI - Constraint Satisfaction Problems
  • AI - N-Queens Problem
  • AI - Crypt-Arithmetic Problem
  • AI - Knowledge Representation
  • AI - Quantifiers in knowledge Representation
  • AI - Knowledge-Based Agent Levels
  • AI - Backus-Naur Form (BNF)
  • AI - Uncertainty
  • AI - Reasons for Uncertainty
  • AI - Probabilistic Reasoning
  • AI - Conditional Probability
  • AI - Bayes Theorem
  • AI - Certainty Factor
  • AI - Inference in Terms
  • AI - Decision Making Under Uncertainty
  • AI - Fuzzy Logic
  • AI - Fuzzy Logic System Architecture
  • AI - Membership Function in Fuzzy Logic
  • AI - Learning Agents
  • AI - Types of Learning in Agents
  • AI - Elements of a Learning Agent
  • AI - Reinforcement Learning
  • AI - Artificial Communication
  • AI - Components of Communicating Agents
  • AI - Natural Language Processing (NLP)
  • AI - Natural Language Understanding (NLU) Process

Machine Learning

  • ML - Types & Working Mechanism
  • ML - Naive Bayes Algorithm
  • ML - Linear Regression
  • Getting Started with Python Spyder
  • Split a Dataset into Train & Test Sets
  • Validation Before Testing
  • Pearson Coefficient of Correlation
  • Spearman's Correlation Using Python
  • RMSE: Root-Mean-Square Error
  • Kendall's Tau Correlation Using Python
  • Decision Tree Algorithm
  • K-Nearest Neighbor (KNN) Algorithm Using Python
  • Probabilistic Graphical Model (PGMs) Algorithm
  • Bayesian Network in Machine Learning
  • Boyfriend Problem Using PGMs and Neural Network
  • Markov Random Field Model

Machine Learning with Java

  • Weka Tutorial
  • Attribute Relation File Format (ARFF)
  • Attribute Selection (with Java)
  • Training and Test Sets

ML & AI Practice

  • Artificial Intelligence MCQs
  • Reinforcement Learning MCQs
  • PySpark MCQs
  • PyBrain MCQs
  • Data Science MCQs
  • Statistics MCQs
  • Data & Information MCQs
  • AI Aptitude Questions

Home » Machine Learning/Artificial Intelligence

Problem Solving in Artificial Intelligence

In this tutorial, you will study about the problem-solving approach in Artificial Intelligence. You will learn how an agent tackles the problem and what steps are involved in solving it? By Monika Sharma Last updated : April 12, 2023

Problem Solving in AI

The aim of Artificial Intelligence is to develop a system which can solve the various problems on its own. But the challenge is, to understand a problem, a system must predict and convert the problem in its understandable form. That is, when an agent confronts a problem, it should first sense the problem, and this information that the agent gets through the sensing should be converted into machine-understandable form. For this, a particular sequence should be followed by the agent in which a particular format for the representation of agent's knowledge is defined and each time a problem arises, the agent can follow that particular approach to find a solution to it .

Types of Problems in AI

The types of problems in artificial intelligence are:

1. Ignorable Problems

In ignorable problems, the solution steps can be ignored.

2. Recoverable Problems

In recoverable problems, the solution steps which you have already implemented can be undone.

3. Irrecoverable Problems

In irrecoverable problems, the solution steps which you have already implemented cannot be undone.

Steps for Problem Solving in AI

The steps involved in solving a problem (by an agent based on Artificial Intelligence ) are:

1. Define a problem

Whenever a problem arises, the agent must first define a problem to an extent so that a particular state space can be represented through it. Analyzing and defining the problem is a very important step because if the problem is understood something which is different than the actual problem, then the whole problem-solving process by the agent is of no use.

2. Form the state space

Convert the problem statement into state space. A state space is the collection of all the possible valid states that an agent can reside in. But here, all the possible states are chosen which can exist according to the current problem. The rest are ignored while dealing with this particular problem.

3. Gather knowledge

collect and isolate the knowledge which is required by the agent to solve the current problem. This knowledge gathering is done from both the pre-embedded knowledge in the system and the knowledge it has gathered through the past experiences in solving the same type of problem earlier.

4. Planning-(Decide data structure and control strategy)

A problem may not always be an isolated problem. It may contain various related problems as well or some related areas where the decision made with respect to the current problem can affect those areas. So, a well-suited data structure and a relevant control strategy must be decided before attempting to solve the problem.

5. Applying and executing

After all the gathering of knowledge and planning the strategies, the knowledge should be applied and the plans should be executed in a systematic way so s to reach the goal state in the most efficient and fruitful manner.

Components to Formulate the Associated Problem

  • Initial State
  • Path Costing

Related Tutorials

  • Machine Learning, AI, Deep Learning, and Data Science
  • How to Learn Machine Learning and Artificial Intelligence?
  • Artificial Intelligence - Introduction
  • Artificial Intelligence: What It is, Types, Applications, Advantages and Disadvantages
  • Artificial Intelligence-based Agent
  • Types of Agents in AI
  • Classification of Environment in AI
  • PEAS Based Grouping of Agents in AI
  • Important terms used while problem solving in AI
  • Water jug problem in AI
  • Problem Solving by Searching in AI
  • Hill Climbing Search in AI
  • Best-first Search (BFS) in AI
  • Vacuum Cleaner Problem in AI
  • Constraint Satisfaction Problems in AI
  • N-Queens Problem
  • Crypt-Arithmetic Problem
  • Knowledge Representation in AI
  • Quantifiers in knowledge Representation in an AI Agent
  • What is logic in AI?
  • Knowledge-Based Agent Levels in AI
  • Backus-Naur Form (BNF) in AI
  • Uncertainty in AI – A brief Introduction
  • Reasons for Uncertainty in AI
  • Probabilistic Reasoning in AI - A way to deal with Uncertainty
  • Conditional Probability in AI
  • Bayes Theorem in Conditional Probability
  • Certainty Factor in AI
  • Inference in terms of Artificial Intelligence
  • Decision Making Under Uncertainty in AI
  • What is Fuzzy Logic in AI and Why It is used?
  • Fuzzy Logic System Architecture and Its Components in AI
  • Membership Function in Fuzzy Logic | Artificial Intelligence
  • Learning Agents in AI
  • Types of Learning in Agents in AI
  • Elements of a Learning Agent in AI
  • Reinforcement Learning: What It Is, Types, Applications
  • Artificial Communication | Artificial Intelligence
  • Components of communicating agents | Artificial Intelligence
  • Natural language processing (NLP)
  • Natural Language Understanding (NLU) Process

Comments and Discussions!

Load comments ↻

  • Marketing MCQs
  • Blockchain MCQs
  • Data Analytics & Visualization MCQs
  • Python MCQs
  • C++ Programs
  • Python Programs
  • Java Programs
  • D.S. Programs
  • Golang Programs
  • C# Programs
  • JavaScript Examples
  • jQuery Examples
  • CSS Examples
  • C++ Tutorial
  • Python Tutorial
  • ML/AI Tutorial
  • MIS Tutorial
  • Software Engineering Tutorial
  • Scala Tutorial
  • Privacy policy
  • Certificates
  • Content Writers of the Month

Copyright © 2024 www.includehelp.com. All rights reserved.

Javatpoint Logo

Artificial Intelligence

Control System

  • Interview Q

Intelligent Agent

Problem-solving, adversarial search, knowledge represent, uncertain knowledge r., subsets of ai, artificial intelligence mcq, related tutorials.

JavaTpoint

The process of problem-solving is frequently used to achieve objectives or resolve particular situations. In computer science, the term "problem-solving" refers to artificial intelligence methods, which may include formulating ensuring appropriate, using algorithms, and conducting root-cause analyses that identify reasonable solutions. Artificial intelligence (AI) problem-solving often involves investigating potential solutions to problems through reasoning techniques, making use of polynomial and differential equations, and carrying them out and use modelling frameworks. A same issue has a number of solutions, that are all accomplished using an unique algorithm. Additionally, certain issues have original remedies. Everything depends on how the particular situation is framed.

Artificial intelligence is being used by programmers all around the world to automate systems for effective both resource and time management. Games and puzzles can pose some of the most frequent issues in daily life. The use of ai algorithms may effectively tackle this. Various problem-solving methods are implemented to create solutions for a variety complex puzzles, includes mathematics challenges such crypto-arithmetic and magic squares, logical puzzles including Boolean formulae as well as N-Queens, and quite well games like Sudoku and Chess. Therefore, these below represent some of the most common issues that artificial intelligence has remedied:

Depending on their ability for recognising intelligence, these five main artificial intelligence agents were deployed today. The below would these be agencies:

This mapping of states and actions is made easier through these agencies. These agents frequently make mistakes when moving onto the subsequent phase of a complicated issue; hence, problem-solving standardized criteria such cases. Those agents employ artificial intelligence can tackle issues utilising methods like B-tree and heuristic algorithms.

The effective approaches of artificial intelligence make it useful for resolving complicated issues. All fundamental problem-solving methods used throughout AI were listed below. In accordance with the criteria set, students may learn information regarding different problem-solving methods.

The heuristic approach focuses solely upon experimentation as well as test procedures to comprehend a problem and create a solution. These heuristics don't always offer better ideal answer to something like a particular issue, though. Such, however, unquestionably provide effective means of achieving short-term objectives. Consequently, if conventional techniques are unable to solve the issue effectively, developers turn to them. Heuristics are employed in conjunction with optimization algorithms to increase the efficiency because they merely offer moment alternatives while compromising precision.

Several of the fundamental ways that AI solves every challenge is through searching. These searching algorithms are used by rational agents or problem-solving agents for select the most appropriate answers. Intelligent entities use molecular representations and seem to be frequently main objective when finding solutions. Depending upon that calibre of the solutions they produce, most searching algorithms also have attributes of completeness, optimality, time complexity, and high computational.

This approach to issue makes use of the well-established evolutionary idea. The idea of "survival of the fittest underlies the evolutionary theory. According to this, when a creature successfully reproduces in a tough or changing environment, these coping mechanisms are eventually passed down to the later generations, leading to something like a variety of new young species. By combining several traits that go along with that severe environment, these mutated animals aren't just clones of something like the old ones. The much more notable example as to how development is changed and expanded is humanity, which have done so as a consequence of the accumulation of advantageous mutations over countless generations.

Genetic algorithms have been proposed upon that evolutionary theory. These programs employ a technique called direct random search. In order to combine the two healthiest possibilities and produce a desirable offspring, the developers calculate the fit factor. Overall health of each individual is determined by first gathering demographic information and afterwards assessing each individual. According on how well each member matches that intended need, a calculation is made. Next, its creators employ a variety of methodologies to retain their finest participants.





Youtube

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Interview Questions

Company Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

Help | Advanced Search

Computer Science > Computation and Language

Title: octo-planner: on-device language model for planner-action agents.

Abstract: AI agents have become increasingly significant in various domains, enabling autonomous decision-making and problem-solving. To function effectively, these agents require a planning process that determines the best course of action and then executes the planned actions. In this paper, we present an efficient on-device Planner-Action framework that separates planning and action execution into two distinct components: a planner agent based on Phi-3 Mini, a 3.8 billion parameter LLM optimized for edge devices, and an action agent using the Octopus model for function execution. The planner agent first responds to user queries by decomposing tasks into a sequence of sub-steps, which are then executed by the action agent. To optimize performance on resource-constrained devices, we employ model fine-tuning instead of in-context learning, reducing computational costs and energy consumption while improving response times. Our approach involves using GPT-4 to generate diverse planning queries and responses based on available functions, with subsequent validations to ensure data quality. We fine-tune the Phi-3 Mini model on this curated dataset, achieving a 97\% success rate in our in-domain test environment. To address multi-domain planning challenges, we developed a multi-LoRA training method that merges weights from LoRAs trained on distinct function subsets. This approach enables flexible handling of complex, multi-domain queries while maintaining computational efficiency on resource-constrained devices. To support further research, we have open-sourced our model weights at \url{ this https URL }. For the demo, please refer to \url{ this https URL }.
Subjects: Computation and Language (cs.CL); Human-Computer Interaction (cs.HC)
Cite as: [cs.CL]
  (or [cs.CL] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

explain the problem solving agent

Problem-solving in Artificial Intelligence

Ritiksangam

Ritiksangam

The reflex agents are known as the simplest agents because they directly map states into actions. Unfortunately, these agents fail to operate in an environment where the mapping is too large to store and learn. Goal-based agent, on the other hand, considers future actions and the desired outcomes.

Here, we will discuss one type of goal-based agent known as a problem-solving agent , which uses atomic representation with no internal states visible to the problem-solving algorithms .

Problem-solving agent

The problem-solving agent perfoms precisely by defining problems and its several solutions.

According to psychology, “ a problem-solving refers to a state where we wish to reach to a definite goal from a present state or condition.”

According to computer science, a problem-solving is a part of artificial intelligence which encompasses a number of techniques such as algorithms, heuristics to solve a problem.

Therefore, a problem-solving agent is a goal-driven agent and focuses on satisfying the goal.

Steps performed by Problem-solving agent

  • Goal Formulation: It is the first and simplest step in problem-solving. It organizes the steps/sequence required to formulate one goal out of multiple goals as well as actions to achieve that goal. Goal formulation is based on the current situation and the agent’s performance measure (discussed below).
  • Problem Formulation: It is the most important step of problem-solving which decides what actions should be taken to achieve the formulated goal. There are following five components involved in problem formulation:
  • Initial State: It is the starting state or initial step of the agent towards its goal.
  • Actions: It is the description of the possible actions available to the agent.
  • Transition Model: It describes what each action does.
  • Goal Test: It determines if the given state is a goal state.
  • Path cost: It assigns a numeric cost to each path that follows the goal. The problem-solving agent selects a cost function, which reflects its performance measure. Remember, an optimal solution has the lowest path cost among all the solutions.
  • Search: It identifies all the best possible sequence of actions to reach the goal state from the current state. It takes a problem as an input and returns solution as its output.
  • Solution: It finds the best algorithm out of various algorithms, which may be proven as the best optimal solution.
  • Execution: It executes the best optimal solution from the searching algorithms to reach the goal state from the current state.

Example Problems

Basically, there are two types of problem approaches:

  • Toy Problem: It is a concise and exact description of the problem which is used by the researchers to compare the performance of algorithms.
  • Real-world Problem: It is real-world based problems which require solutions. Unlike a toy problem, it does not depend on descriptions, but we can have a general formulation of the problem.

Some Toy Problems

  • 8 Puzzle Problem: Here, we have a 3×3 matrix with movable tiles numbered from 1 to 8 with a blank space. The tile adjacent to the blank space can slide into that space. The objective is to reach a specified goal state similar to the goal state, as shown in the below figure.
  • In the figure, our task is to convert the current state into goal state by sliding digits into the blank space.

Ritiksangam

Written by Ritiksangam

Text to speech

Screen Rant

Doctor who: 73 yards & the tardis connection explained.

4

Your changes have been saved

Email Is sent

Please verify your email address.

You’ve reached your account maximum for followed topics.

All 15 Doctor Who Easter Eggs In Season 14's Memory TARDIS Explained

How david tennant's doctor who special episodes teased sutekh's return explained by showrunner, doctor who's 4th divisive finale in a row is my biggest problem with the show right now.

  • "73 Yards" is an experimental Doctor Who episode with mysteries and connections.
  • Ruby's solo adventure leads her to infiltrate Roger ap Gwilliam's inner circle and use the mystery woman to get rid of him.
  • The mysteries of "73 Yards" are not completely resolved, but "Empire of Death" explains the meaning of 73 yards.

In one of the most experimental episodes of Doctor Who in years, "73 Yards" delivered an intriguing episode wrought with mysteries and elusive connections. Doctor Who has never shied away from stories that challenge the audience and shake up the format. In the more than 60 years that the show has been on the air, it has explored a wide variety of styles, formats, and genres which add to the complex tapestry and rich history of the show. And Russell T Davies continues to carry this tradition into the latest iteration of the show.

In Ncuti Gatwa's premiere season, the show once again dips its toes into new waters with an episode that essentially boils down to a thought experiment. With the Doctor gone, his companion , Ruby Sunday (Millie Gibson), is left to fend for herself, but a mysterious woman appears to constantly follow her, always at a distance of exactly 73 yards. The twist ending cemented the episode's status as one of the more experimental of the series, as well as providing an important link between Ruby and the TARDIS that would not be revealed until the season finale.

Ruby (Millie Gibson) and The Doctor (Ncuti Gatwa) in a rememebered TARDIS in Doctor Who season 14 episode 8

The Doctor Who season 14 finale, Empire of Death, saw the return of the memory TARDIS and included several brand new Easter eggs from past adventures.

Ruby's Hidden Memories Lead The Doctor To Trapping Sutekh

The only secret sutekh could not solve.

In "73 Yards," Ruby's solo adventure leads her to living a full life without the doctor, with the mystery woman close behind. While this is harrowing and terrifying, it did lead to Ruby possessing the necessary information to fight Sutekh and win in the end. At the beginning of the episode, before the Doctor disappears, he mentions Roger ap Gwilliam, a man who would one day become the most controversial prime minister of all time.

With the name ringing in Ruby's ears as the final conversation she had with the Doctor, Ruby remembers the name when he does eventually rise to power . In the course of the episode, Ruby finds a way to infiltrate Gwilliam's inner circle, and uses the mystery woman in her favor to get rid of Gwilliam. Considering everyone who speaks to the woman runs away in terror, completely writing off Ruby and trying to get as far away as possible, Gwilliam flees and resigns from his position before making any significant changes.

However, while the episode resolves and Ruby forgets the life that happened in "73 Yards," there are traces of memory that stuck with her. In "Empire of Death," Ruby remembers the name Gwilliam, and inspires the Doctor to go to the future where he created a database of all British citizens, which was mandatory. Armed with the knowledge of who her mother is, and wielding the only mystery Sutekh couldn't solve, Ruby is then able to trap Sutekh , leading to his demise.

"Empire Of Death" Can Explain A Mystery From "73 Yards"

What does 73 yards mean.

Despite this connection, the mysteries of "73 Yards" are not completely resolved. Questions about how the mystery woman first appeared, what it meant that Ruby is that woman, and what she says to cause people to run all remain after the season's finale. However, "Empire of Death" does conclude one mystery. The woman always stood exactly 73 yards away , never coming closer, and no matter where Ruby was, she only ever came to that point.

David Tennant as Fourteenth Doctor next to Sutekh in the Time Vortex in in Doctor Who

Doctor Who showrunner Russell T Davies reveals how David Tennant's special episodes for the 60th anniversary teased Sutekh's return in season 14.

In "Empire of Death," the Doctor explains to Ruby that the TARDIS has a perception filter that extends to 66.7 meters. Ruby instinctively knows that this distance is equivalent to 73 yards, which is the exact distance the mystery woman always kept from her. This strongly suggests there was a link between the old woman and the TARDIS , which meant she could not come within that range of Ruby.

While Ruby may have forgotten the exact details of "73 Yards," it is clear that the events left an impression on her mind which has not disappeared despite that reality seemingly fading away. Her knowledge of the specific distance, and her memories of Gwilliam allude to Ruby still having a deeper, subconscious awareness of what happened to her , even if that reality no longer exists. While this likely points to a clear connection, the finer details about why, and how remain a secret that may be revealed in season 2, or beyond, depending on where Doctor Who's story goes next .

Ruby forgets the life that happened in "73 Yards," there are traces of memory that stuck with her.

Does Ruby Remember The Events Of "73 Yards" Now?

She lived a whole other life.

Time is not a clear and definite linear system , and this becomes even more true for companions of the doctor who jump between realities and points in time and space. Beyond the regular dimensional travels of the Doctor which see him and his companions explore the vast expanse of space and the ends of time, there have also been several times when the Doctor crosses into other dimensions and realities. Ruby is definitively on Earth, in the present day, but that does not mean she wasn't in the past, future and even alternate realities too.

Ruby likely has no conscious understanding or memory about the events of "73 Yards." But, just like the Doctor under the influence of the chameleon arch, those memories, and that identity exist somewhere. There are events that can cause these opposing realities to clash, which may lead to Ruby having some hint of a memory , like she did with the name Robert ap Gwilliam, and the distance of 73 yards. However, it is almost certain that this is only subconscious at present. Russell T Davies has included a lot more fantasy and exploration of the supernatural and godly in the latest reboot.

The Thirteenth Doctor, The Fifteenth Doctor, and Ruby Sunday in Doctor Who

Doctor Who has a big problem after putting out four divisive finales in a row, with the most recent being "Empire of Death."

As a result of this, Ruby's memories and her existence in other realities may come into play later in the show. If RTD continues to include storylines where myth and legend become real, and the imaginary invades reality, there is every reason to believe that future episodes will continue to explore the mythical nature of Ruby Sunday , despite her average lineage. Just because Ruby doesn't remember now, it doesn't mean her memories can't be altered and changed, as seen with Donna, and RTD could still be building to some even bigger reveals in Doctor Who .

Doctor Who Season 14 Poster

*Availability in US

Not available

The latest season of Doctor Who introduces the Fifteenth Doctor, joined by new companion Ruby Sunday. Their first adventure begins with "The Church on Ruby Road," where they face powerful new foes and unravel the mystery surrounding Ruby's origins. The Doctor grapples with the aftermath of a unique regeneration event and battles enemies more formidable than ever before.

Doctor Who (2023)

Purdue Mitchell E. Daniels, Jr. School of Business logo

Effective Problem-Solving Techniques in Business

Problem solving is an increasingly important soft skill for those in business. The Future of Jobs Survey by the World Economic Forum drives this point home. According to this report, complex problem solving is identified as one of the top 15 skills that will be sought by employers in 2025, along with other soft skills such as analytical thinking, creativity and leadership.

Dr. Amy David , clinical associate professor of management for supply chain and operations management, spoke about business problem-solving methods and how the Purdue University Online MBA program prepares students to be business decision-makers.

Why Are Problem-Solving Skills Essential in Leadership Roles?

Every business will face challenges at some point. Those that are successful will have people in place who can identify and solve problems before the damage is done.

“The business world is constantly changing, and companies need to be able to adapt well in order to produce good results and meet the needs of their customers,” David says. “They also need to keep in mind the triple bottom line of ‘people, profit and planet.’ And these priorities are constantly evolving.”

To that end, David says people in management or leadership need to be able to handle new situations, something that may be outside the scope of their everyday work.

“The name of the game these days is change—and the speed of change—and that means solving new problems on a daily basis,” she says.

The pace of information and technology has also empowered the customer in a new way that provides challenges—or opportunities—for businesses to respond.

“Our customers have a lot more information and a lot more power,” she says. “If you think about somebody having an unhappy experience and tweeting about it, that’s very different from maybe 15 years ago. Back then, if you had a bad experience with a product, you might grumble about it to one or two people.”

David says that this reality changes how quickly organizations need to react and respond to their customers. And taking prompt and decisive action requires solid problem-solving skills.

What Are Some of the Most Effective Problem-Solving Methods?

David says there are a few things to consider when encountering a challenge in business.

“When faced with a problem, are we talking about something that is broad and affects a lot of people? Or is it something that affects a select few? Depending on the issue and situation, you’ll need to use different types of problem-solving strategies,” she says.

Using Techniques

There are a number of techniques that businesses use to problem solve. These can include:

  • Five Whys : This approach is helpful when the problem at hand is clear but the underlying causes are less so. By asking “Why?” five times, the final answer should get at the potential root of the problem and perhaps yield a solution.
  • Gap Analysis : Companies use gap analyses to compare current performance with expected or desired performance, which will help a company determine how to use its resources differently or adjust expectations.
  • Gemba Walk : The name, which is derived from a Japanese word meaning “the real place,” refers to a commonly used technique that allows managers to see what works (and what doesn’t) from the ground up. This is an opportunity for managers to focus on the fundamental elements of the process, identify where the value stream is and determine areas that could use improvement.
  • Porter’s Five Forces : Developed by Harvard Business School professor Michael E. Porter, applying the Five Forces is a way for companies to identify competitors for their business or services, and determine how the organization can adjust to stay ahead of the game.
  • Six Thinking Hats : In his book of the same name, Dr. Edward de Bono details this method that encourages parallel thinking and attempting to solve a problem by trying on different “thinking hats.” Each color hat signifies a different approach that can be utilized in the problem-solving process, ranging from logic to feelings to creativity and beyond. This method allows organizations to view problems from different angles and perspectives.
  • SWOT Analysis : This common strategic planning and management tool helps businesses identify strengths, weaknesses, opportunities and threats (SWOT).

“We have a lot of these different tools,” David says. “Which one to use when is going to be dependent on the problem itself, the level of the stakeholders, the number of different stakeholder groups and so on.”

Each of the techniques outlined above uses the same core steps of problem solving:

  • Identify and define the problem
  • Consider possible solutions
  • Evaluate options
  • Choose the best solution
  • Implement the solution
  • Evaluate the outcome

Data drives a lot of daily decisions in business and beyond. Analytics have also been deployed to problem solve.

“We have specific classes around storytelling with data and how you convince your audience to understand what the data is,” David says. “Your audience has to trust the data, and only then can you use it for real decision-making.”

Data can be a powerful tool for identifying larger trends and making informed decisions when it’s clearly understood and communicated. It’s also vital for performance monitoring and optimization.

How Is Problem Solving Prioritized in Purdue’s Online MBA?

The courses in the Purdue Online MBA program teach problem-solving methods to students, keeping them up to date with the latest techniques and allowing them to apply their knowledge to business-related scenarios.

“I can give you a model or a tool, but most of the time, a real-world situation is going to be a lot messier and more valuable than what we’ve seen in a textbook,” David says. “Asking students to take what they know and apply it to a case where there’s not one single correct answer is a big part of the learning experience.”

Make Your Own Decision to Further Your Career

An online MBA from Purdue University can help advance your career by teaching you problem-solving skills, decision-making strategies and more. Reach out today to learn more about earning an online MBA with Purdue University .

If you would like to receive more information about pursuing a business master’s at the Mitchell E. Daniels, Jr. School of Business, please fill out the form and a program specialist will be in touch!

Connect With Us

VIDEO

  1. Problem Solving Method in Urdu by Khurram Shehzad

  2. Problem Solving Agent

  3. AI-Problem solving agent

  4. What is an agent?

  5. What Is The Traveling Salesman Problem

  6. PART 09

COMMENTS

  1. Problem-Solving Agents In Artificial Intelligence

    May 10, 2024. In artificial intelligence, a problem-solving agent refers to a type of intelligent agent designed to address and solve complex problems or tasks in its environment. These agents are a fundamental concept in AI and are used in various applications, from game-playing algorithms to robotics and decision-making systems.

  2. What is the problem-solving agent in artificial intelligence?

    Problem-solving agents can be used in a number of different ways in artificial intelligence. They can be used to help find solutions to specific problems or tasks, or they can be used to generalize a problem and find potential solutions. In either case, the problem-solving agent is able to understand complex instructions and carry out specific ...

  3. Artificial Intelligence Series: Problem Solving Agents

    The problem solving agent chooses a cost function that reflects its own performance measure. The solution to the problem is an action sequence that leads from initial state to goal state and the ...

  4. Problem Solving in Artificial Intelligence

    The problem-solving agent performs precisely by defining problems and several solutions. So we can say that problem solving is a part of artificial intelligence that encompasses a number of techniques such as a tree, B-tree, heuristic algorithms to solve a problem. We can also say that a problem-solving agent is a result-driven agent and always ...

  5. Problem Solving Agents in Artificial Intelligence

    The problem solving agent follows this four phase problem solving process: Goal Formulation: This is the first and most basic phase in problem solving. It arranges specific steps to establish a target/goal that demands some activity to reach it. AI agents are now used to formulate goals. Problem Formulation: It is one of the fundamental steps ...

  6. PDF Problem-Solving Agents

    CPE/CSC 580-S06 Artificial Intelligence - Intelligent Agents Well-Defined Problems exact formulation of problems and solutions initial state current state / set of states, or the state at the beginning of the problem-solving process must be known to the agent operator description of an action state space set of all states reachable from the ...

  7. PDF Problem-solving agents

    Problem formulation ♦ Example problems ♦ Basic search algorithms Chapter 3 2 Problem-solving agents Restricted form of general agent: function Simple-Problem-Solving-Agent (percept) returns an action static: seq, an action sequence, initially empty state, some description of the current world state goal, a goal, initially null problem, a ...

  8. Chapter 3 Solving Problems by Searching

    Chapter 3 Solving Problems by Searching . When the correct action to take is not immediately obvious, an agent may need to plan ahead: to consider a sequence of actions that form a path to a goal state. Such an agent is called a problem-solving agent, and the computational process it undertakes is called search.. Problem-solving agents use atomic representations, that is, states of the world ...

  9. PDF Chapter 3 Problem solving

    Problem-solving agents Restricted form of general agent: function Simple-Problem-Solving-Agent(percept) returns an action static: seq, an action sequence, initially empty state, some description of the current world state goal, a goal, initially null problem, a problem formulation state Update-State(state,percept) if seq is empty then

  10. PDF Problem-solving agents

    Chapter 3. Outline. Chapter3 1. Problem-solving agents. function Simple-Problem-Solving-Agent(percept) returns an action static: seq, an action sequence, initially empty state, some description of the current world state goal, a goal, initially null problem, a problem formulation. state←Update-State(state,percept)

  11. Examples of Problem Solving Agents in Artificial Intelligence

    By analyzing data, making predictions, and finding optimal solutions, problem-solving agents demonstrate the power and potential of artificial intelligence. One example of a problem-solving agent in artificial intelligence is a chess-playing program. These agents are capable of evaluating millions of possible moves and predicting the best one ...

  12. PDF Problem Solving and Search

    Problem Solving and Search Problem Solving • Agent knows world dynamics • World state is finite, small enough to enumerate • World is deterministic • Utility for a sequence of states is a sum over path The utility for sequences of states is a sum over the path of the utilities of the individual states.

  13. Agents in AI: Exploring Intelligent Agents and Its Types, Functions

    Problem-solving Agents in Artificial Intelligence employ several algorithms and analyses to develop solutions. They are: Search Algorithms: Search techniques are considered universal problem-solving methods. Problem-solving or rational agents employ these algorithms and strategies to solve problems and generate the best results.

  14. PDF Cs 380: Artificial Intelligence Problem Solving

    Problem Formulation • Initial state: S 0 • Initial configuration of the problem (e.g. starting position in a maze) • Actions: A • The different ways in which the agent can change the state (e.g. moving to an adjacent position in the maze) • Goal condition: G • A function that determines whether a state reached by a given sequence of actions constitutes a solution to the problem or not.

  15. Agents in Artificial Intelligence

    Model-Based Reflex Agents. It works by finding a rule whose condition matches the current situation. A model-based agent can handle partially observable environments by the use of a model about the world. The agent has to keep track of the internal state which is adjusted by each percept and that depends on the percept history. The current state is stored inside the agent which maintains some ...

  16. PDF 3 SOLVING PROBLEMS BY SEARCHING

    After formulating a goal and a problem to solve, the agent calls a search procedure to solve it. It then uses the solution to guide its actions, doing whatever the solution recommends as 1 Notice that each of these "states" actually corresponds to a large set of world states, because a real world state specifies every aspect of reality.

  17. Search Algorithms Part 1: Problem Formulation and Searching for

    There are two kinds of goal-based agents: problem-solving agents and planning agents. ... In this post (and further too), as an example to explain the various algorithms, we consider the problem ...

  18. How does an agent formulate a problem?

    Problem formulation is the process by which an agent defines the task it needs to solve. This involves specifying the initial state, goal state, actions, constraints, and the criteria for evaluating solutions. Effective problem formulation is crucial for the success of the agent in finding optimal or satisfactory solutions. Steps in Problem ...

  19. PDF Chapter 3 Solving problems by searching

    Problem solving agents • "formulate, search, execute" design for the agent • After formulating a goal and a problem to solve the agent calls a search procedure to solve it • It then uses the solution to guide its actions, doing whatever the solution recommends as the next thing to do (typically the first action in the sequence)

  20. Problem Solving in Artificial Intelligence

    Steps for Problem Solving in AI. The steps involved in solving a problem (by an agent based on Artificial Intelligence) are: 1. Define a problem. Whenever a problem arises, the agent must first define a problem to an extent so that a particular state space can be represented through it. Analyzing and defining the problem is a very important ...

  21. Artificial Intelligence Series: Structure of agents

    Photo by hobijist3d on Unsplash. There are four basic kinds of agent programs that embodies the principles underlying almost all the intelligent systems. Simple Reflex Agents. Model-based Reflex ...

  22. Problem Solving Techniques in AI

    Artificial intelligence (AI) problem-solving often involves investigating potential solutions to problems through reasoning techniques, making use of polynomial and differential equations, and carrying them out and use modelling frameworks. A same issue has a number of solutions, that are all accomplished using an unique algorithm.

  23. Octo-planner: On-device Language Model for Planner-Action Agents

    AI agents have become increasingly significant in various domains, enabling autonomous decision-making and problem-solving. To function effectively, these agents require a planning process that determines the best course of action and then executes the planned actions. In this paper, we present an efficient on-device Planner-Action framework that separates planning and action execution into ...

  24. READ: Biden-Trump debate transcript

    The problem they have is they're radical, because they will take the life of a child in the eighth month, the ninth month, and even after birth - after birth. If you look at the former ...

  25. Problem-solving in Artificial Intelligence

    The problem-solving agent selects a cost function, which reflects its performance measure. Remember, an optimal solution has the lowest path cost among all the solutions.

  26. Doctor Who: 73 Yards & The TARDIS Connection Explained

    In "73 Yards," Ruby's solo adventure leads her to living a full life without the doctor, with the mystery woman close behind. While this is harrowing and terrifying, it did lead to Ruby possessing the necessary information to fight Sutekh and win in the end. At the beginning of the episode, before the Doctor disappears, he mentions Roger ap Gwilliam, a man who would one day become the most ...

  27. Effective Problem-Solving Techniques in Business

    Problem solving is an increasingly important soft skill for those in business. The Future of Jobs Survey by the World Economic Forum drives this point home. According to this report, complex problem solving is identified as one of the top 15 skills that will be sought by employers in 2025, along with other soft skills such as analytical thinking, creativity and leadership.