Quantitative Data Analysis: A Comprehensive Guide

By: Ofem Eteng | Published: May 18, 2022

Related Articles

data analysis quantitative research example

A healthcare giant successfully introduces the most effective drug dosage through rigorous statistical modeling, saving countless lives. A marketing team predicts consumer trends with uncanny accuracy, tailoring campaigns for maximum impact.

Table of Contents

These trends and dosages are not just any numbers but are a result of meticulous quantitative data analysis. Quantitative data analysis offers a robust framework for understanding complex phenomena, evaluating hypotheses, and predicting future outcomes.

In this blog, we’ll walk through the concept of quantitative data analysis, the steps required, its advantages, and the methods and techniques that are used in this analysis. Read on!

What is Quantitative Data Analysis?

Quantitative data analysis is a systematic process of examining, interpreting, and drawing meaningful conclusions from numerical data. It involves the application of statistical methods, mathematical models, and computational techniques to understand patterns, relationships, and trends within datasets.

Quantitative data analysis methods typically work with algorithms, mathematical analysis tools, and software to gain insights from the data, answering questions such as how many, how often, and how much. Data for quantitative data analysis is usually collected from close-ended surveys, questionnaires, polls, etc. The data can also be obtained from sales figures, email click-through rates, number of website visitors, and percentage revenue increase. 

Quantitative Data Analysis vs Qualitative Data Analysis

When we talk about data, we directly think about the pattern, the relationship, and the connection between the datasets – analyzing the data in short. Therefore when it comes to data analysis, there are broadly two types – Quantitative Data Analysis and Qualitative Data Analysis.

Quantitative data analysis revolves around numerical data and statistics, which are suitable for functions that can be counted or measured. In contrast, qualitative data analysis includes description and subjective information – for things that can be observed but not measured.

Let us differentiate between Quantitative Data Analysis and Quantitative Data Analysis for a better understanding.

Numerical data – statistics, counts, metrics measurementsText data – customer feedback, opinions, documents, notes, audio/video recordings
Close-ended surveys, polls and experiments.Open-ended questions, descriptive interviews
What? How much? Why (to a certain extent)?How? Why? What are individual experiences and motivations?
Statistical programming software like R, Python, SAS and Data visualization like Tableau, Power BINVivo, Atlas.ti for qualitative coding.
Word processors and highlighters – Mindmaps and visual canvases
Best used for large sample sizes for quick answers.Best used for small to middle sample sizes for descriptive insights

Data Preparation Steps for Quantitative Data Analysis

Quantitative data has to be gathered and cleaned before proceeding to the stage of analyzing it. Below are the steps to prepare a data before quantitative research analysis:

  • Step 1: Data Collection

Before beginning the analysis process, you need data. Data can be collected through rigorous quantitative research, which includes methods such as interviews, focus groups, surveys, and questionnaires.

  • Step 2: Data Cleaning

Once the data is collected, begin the data cleaning process by scanning through the entire data for duplicates, errors, and omissions. Keep a close eye for outliers (data points that are significantly different from the majority of the dataset) because they can skew your analysis results if they are not removed.

This data-cleaning process ensures data accuracy, consistency and relevancy before analysis.

  • Step 3: Data Analysis and Interpretation

Now that you have collected and cleaned your data, it is now time to carry out the quantitative analysis. There are two methods of quantitative data analysis, which we will discuss in the next section.

However, if you have data from multiple sources, collecting and cleaning it can be a cumbersome task. This is where Hevo Data steps in. With Hevo, extracting, transforming, and loading data from source to destination becomes a seamless task, eliminating the need for manual coding. This not only saves valuable time but also enhances the overall efficiency of data analysis and visualization, empowering users to derive insights quickly and with precision

Hevo is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs. With integration with 150+ Data Sources (40+ free sources), we help you not only export data from sources & load data to the destinations but also transform & enrich your data, & make it analysis-ready.

Start for free now!

Now that you are familiar with what quantitative data analysis is and how to prepare your data for analysis, the focus will shift to the purpose of this article, which is to describe the methods and techniques of quantitative data analysis.

Methods and Techniques of Quantitative Data Analysis

Quantitative data analysis employs two techniques to extract meaningful insights from datasets, broadly. The first method is descriptive statistics, which summarizes and portrays essential features of a dataset, such as mean, median, and standard deviation.

Inferential statistics, the second method, extrapolates insights and predictions from a sample dataset to make broader inferences about an entire population, such as hypothesis testing and regression analysis.

An in-depth explanation of both the methods is provided below:

  • Descriptive Statistics
  • Inferential Statistics

1) Descriptive Statistics

Descriptive statistics as the name implies is used to describe a dataset. It helps understand the details of your data by summarizing it and finding patterns from the specific data sample. They provide absolute numbers obtained from a sample but do not necessarily explain the rationale behind the numbers and are mostly used for analyzing single variables. The methods used in descriptive statistics include: 

  • Mean:   This calculates the numerical average of a set of values.
  • Median: This is used to get the midpoint of a set of values when the numbers are arranged in numerical order.
  • Mode: This is used to find the most commonly occurring value in a dataset.
  • Percentage: This is used to express how a value or group of respondents within the data relates to a larger group of respondents.
  • Frequency: This indicates the number of times a value is found.
  • Range: This shows the highest and lowest values in a dataset.
  • Standard Deviation: This is used to indicate how dispersed a range of numbers is, meaning, it shows how close all the numbers are to the mean.
  • Skewness: It indicates how symmetrical a range of numbers is, showing if they cluster into a smooth bell curve shape in the middle of the graph or if they skew towards the left or right.

2) Inferential Statistics

In quantitative analysis, the expectation is to turn raw numbers into meaningful insight using numerical values, and descriptive statistics is all about explaining details of a specific dataset using numbers, but it does not explain the motives behind the numbers; hence, a need for further analysis using inferential statistics.

Inferential statistics aim to make predictions or highlight possible outcomes from the analyzed data obtained from descriptive statistics. They are used to generalize results and make predictions between groups, show relationships that exist between multiple variables, and are used for hypothesis testing that predicts changes or differences.

There are various statistical analysis methods used within inferential statistics; a few are discussed below.

  • Cross Tabulations: Cross tabulation or crosstab is used to show the relationship that exists between two variables and is often used to compare results by demographic groups. It uses a basic tabular form to draw inferences between different data sets and contains data that is mutually exclusive or has some connection with each other. Crosstabs help understand the nuances of a dataset and factors that may influence a data point.
  • Regression Analysis: Regression analysis estimates the relationship between a set of variables. It shows the correlation between a dependent variable (the variable or outcome you want to measure or predict) and any number of independent variables (factors that may impact the dependent variable). Therefore, the purpose of the regression analysis is to estimate how one or more variables might affect a dependent variable to identify trends and patterns to make predictions and forecast possible future trends. There are many types of regression analysis, and the model you choose will be determined by the type of data you have for the dependent variable. The types of regression analysis include linear regression, non-linear regression, binary logistic regression, etc.
  • Monte Carlo Simulation: Monte Carlo simulation, also known as the Monte Carlo method, is a computerized technique of generating models of possible outcomes and showing their probability distributions. It considers a range of possible outcomes and then tries to calculate how likely each outcome will occur. Data analysts use it to perform advanced risk analyses to help forecast future events and make decisions accordingly.
  • Analysis of Variance (ANOVA): This is used to test the extent to which two or more groups differ from each other. It compares the mean of various groups and allows the analysis of multiple groups.
  • Factor Analysis:   A large number of variables can be reduced into a smaller number of factors using the factor analysis technique. It works on the principle that multiple separate observable variables correlate with each other because they are all associated with an underlying construct. It helps in reducing large datasets into smaller, more manageable samples.
  • Cohort Analysis: Cohort analysis can be defined as a subset of behavioral analytics that operates from data taken from a given dataset. Rather than looking at all users as one unit, cohort analysis breaks down data into related groups for analysis, where these groups or cohorts usually have common characteristics or similarities within a defined period.
  • MaxDiff Analysis: This is a quantitative data analysis method that is used to gauge customers’ preferences for purchase and what parameters rank higher than the others in the process. 
  • Cluster Analysis: Cluster analysis is a technique used to identify structures within a dataset. Cluster analysis aims to be able to sort different data points into groups that are internally similar and externally different; that is, data points within a cluster will look like each other and different from data points in other clusters.
  • Time Series Analysis: This is a statistical analytic technique used to identify trends and cycles over time. It is simply the measurement of the same variables at different times, like weekly and monthly email sign-ups, to uncover trends, seasonality, and cyclic patterns. By doing this, the data analyst can forecast how variables of interest may fluctuate in the future. 
  • SWOT analysis: This is a quantitative data analysis method that assigns numerical values to indicate strengths, weaknesses, opportunities, and threats of an organization, product, or service to show a clearer picture of competition to foster better business strategies

How to Choose the Right Method for your Analysis?

Choosing between Descriptive Statistics or Inferential Statistics can be often confusing. You should consider the following factors before choosing the right method for your quantitative data analysis:

1. Type of Data

The first consideration in data analysis is understanding the type of data you have. Different statistical methods have specific requirements based on these data types, and using the wrong method can render results meaningless. The choice of statistical method should align with the nature and distribution of your data to ensure meaningful and accurate analysis.

2. Your Research Questions

When deciding on statistical methods, it’s crucial to align them with your specific research questions and hypotheses. The nature of your questions will influence whether descriptive statistics alone, which reveal sample attributes, are sufficient or if you need both descriptive and inferential statistics to understand group differences or relationships between variables and make population inferences.

Pros and Cons of Quantitative Data Analysis

1. Objectivity and Generalizability:

  • Quantitative data analysis offers objective, numerical measurements, minimizing bias and personal interpretation.
  • Results can often be generalized to larger populations, making them applicable to broader contexts.

Example: A study using quantitative data analysis to measure student test scores can objectively compare performance across different schools and demographics, leading to generalizable insights about educational strategies.

2. Precision and Efficiency:

  • Statistical methods provide precise numerical results, allowing for accurate comparisons and prediction.
  • Large datasets can be analyzed efficiently with the help of computer software, saving time and resources.

Example: A marketing team can use quantitative data analysis to precisely track click-through rates and conversion rates on different ad campaigns, quickly identifying the most effective strategies for maximizing customer engagement.

3. Identification of Patterns and Relationships:

  • Statistical techniques reveal hidden patterns and relationships between variables that might not be apparent through observation alone.
  • This can lead to new insights and understanding of complex phenomena.

Example: A medical researcher can use quantitative analysis to pinpoint correlations between lifestyle factors and disease risk, aiding in the development of prevention strategies.

1. Limited Scope:

  • Quantitative analysis focuses on quantifiable aspects of a phenomenon ,  potentially overlooking important qualitative nuances, such as emotions, motivations, or cultural contexts.

Example: A survey measuring customer satisfaction with numerical ratings might miss key insights about the underlying reasons for their satisfaction or dissatisfaction, which could be better captured through open-ended feedback.

2. Oversimplification:

  • Reducing complex phenomena to numerical data can lead to oversimplification and a loss of richness in understanding.

Example: Analyzing employee productivity solely through quantitative metrics like hours worked or tasks completed might not account for factors like creativity, collaboration, or problem-solving skills, which are crucial for overall performance.

3. Potential for Misinterpretation:

  • Statistical results can be misinterpreted if not analyzed carefully and with appropriate expertise.
  • The choice of statistical methods and assumptions can significantly influence results.

This blog discusses the steps, methods, and techniques of quantitative data analysis. It also gives insights into the methods of data collection, the type of data one should work with, and the pros and cons of such analysis.

Gain a better understanding of data analysis with these essential reads:

  • Data Analysis and Modeling: 4 Critical Differences
  • Exploratory Data Analysis Simplified 101
  • 25 Best Data Analysis Tools in 2024

Carrying out successful data analysis requires prepping the data and making it analysis-ready. That is where Hevo steps in.

Want to give Hevo a try? Sign Up for a 14-day free trial and experience the feature-rich Hevo suite first hand. You may also have a look at the amazing Hevo price , which will assist you in selecting the best plan for your requirements.

Share your experience of understanding Quantitative Data Analysis in the comment section below! We would love to hear your thoughts.

Ofem Eteng is a seasoned technical content writer with over 12 years of experience. He has held pivotal roles such as System Analyst (DevOps) at Dagbs Nigeria Limited and Full-Stack Developer at Pedoquasphere International Limited. He specializes in data science, data analytics and cutting-edge technologies, making him an expert in the data industry.

No-code Data Pipeline for your Data Warehouse

  • Data Analysis
  • Data Warehouse
  • Quantitative Data Analysis

Continue Reading

data analysis quantitative research example

Srujana Maddula

Apache Iceberg vs Parquet – Comparing Table and File Formats

data analysis quantitative research example

Raju Mandal

A Deep Dive into Data Lakes

data analysis quantitative research example

Radhika Gholap

Apache Iceberg Table Format: Comprehensive Guide

I want to read this e-book.

data analysis quantitative research example

data analysis quantitative research example

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

data analysis quantitative research example

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations .

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

data analysis quantitative research example

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

77 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

MWASOMOLA, BROWN

Very useful, I have got the concept

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

lule victor

its nice work and excellent job ,you have made my work easier

Pedro Uwadum

Wow! So explicit. Well done.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organizations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organize and summarize the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalize your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarize your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, other interesting articles.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalize your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Variable Type of data
Age Quantitative (ratio)
Gender Categorical (nominal)
Race or ethnicity Categorical (nominal)
Baseline test scores Quantitative (interval)
Final test scores Quantitative (interval)
Parental income Quantitative (ratio)
GPA Quantitative (interval)

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

data analysis quantitative research example

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalizable findings, you should use a probability sampling method. Random selection reduces several types of research bias , like sampling bias , and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to at risk for biases like self-selection bias , they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalizing your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalize your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialized, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalized in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardized indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarize them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organizing data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualizing the relationship between two variables using a scatter plot .

By visualizing your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

Pretest scores Posttest scores
Mean 68.44 75.25
Standard deviation 9.43 9.88
Variance 88.96 97.96
Range 36.25 45.12
30

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

Parental income (USD) GPA
Mean 62,100 3.12
Standard deviation 15,000 0.45
Variance 225,000,000 0.16
Range 8,000–378,000 2.64–4.00
653

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimize the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasizes null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval

Methodology

  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hostile attribution bias
  • Affect heuristic

Is this article helpful?

Other students also liked.

  • Descriptive Statistics | Definitions, Types, Examples
  • Inferential Statistics | An Easy Introduction & Examples
  • Choosing the Right Statistical Test | Types & Examples

More interesting articles

  • Akaike Information Criterion | When & How to Use It (Example)
  • An Easy Introduction to Statistical Significance (With Examples)
  • An Introduction to t Tests | Definitions, Formula and Examples
  • ANOVA in R | A Complete Step-by-Step Guide with Examples
  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Chi-Square (Χ²) Distributions | Definition & Examples
  • Chi-Square (Χ²) Table | Examples & Downloadable Table
  • Chi-Square (Χ²) Tests | Types, Formula & Examples
  • Chi-Square Goodness of Fit Test | Formula, Guide & Examples
  • Chi-Square Test of Independence | Formula, Guide & Examples
  • Coefficient of Determination (R²) | Calculation & Interpretation
  • Correlation Coefficient | Types, Formulas & Examples
  • Frequency Distribution | Tables, Types & Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | 4 Ways with Examples & Explanation
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Mode | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Hypothesis Testing | A Step-by-Step Guide with Easy Examples
  • Interval Data and How to Analyze It | Definitions & Examples
  • Levels of Measurement | Nominal, Ordinal, Interval and Ratio
  • Linear Regression in R | A Step-by-Step Guide & Examples
  • Missing Data | Types, Explanation, & Imputation
  • Multiple Linear Regression | A Quick Guide (Examples)
  • Nominal Data | Definition, Examples, Data Collection & Analysis
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • One-way ANOVA | When and How to Use It (With Examples)
  • Ordinal Data | Definition, Examples, Data Collection & Analysis
  • Parameter vs Statistic | Definitions, Differences & Examples
  • Pearson Correlation Coefficient (r) | Guide & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Probability Distribution | Formula, Types, & Examples
  • Quartiles & Quantiles | Calculation, Definition & Interpretation
  • Ratio Scales | Definition, Examples, & Data Analysis
  • Simple Linear Regression | An Easy Introduction & Examples
  • Skewness | Definition, Examples & Formula
  • Statistical Power and Why It Matters | A Simple Introduction
  • Student's t Table (Free Download) | Guide & Examples
  • T-distribution: What it is and how to use it
  • Test statistics | Definition, Interpretation, and Examples
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Two-Way ANOVA | Examples & When To Use It
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Understanding P values | Definition and Examples
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Kurtosis? | Definition, Examples & Formula
  • What Is Standard Error? | How to Calculate (Guide with Examples)

What is your plagiarism score?

  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Textual Analysis

Textual Analysis – Types, Examples and Guide

Qualitative Research

Qualitative Research – Methods, Analysis Types...

Ethnographic Research

Ethnographic Research -Types, Methods and Guide

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Transformative Design

Transformative Design – Methods, Types, Guide

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Data Analysis in Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

data analysis quantitative research example

  • Yong Moon Jung 2  

2278 Accesses

2 Citations

Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility. Conducting quantitative data analysis requires a prerequisite understanding of the statistical knowledge and skills. It also requires rigor in the choice of appropriate analysis model and the interpretation of the analysis outcomes. Basically, the choice of appropriate analysis techniques is determined by the type of research question and the nature of the data. In addition, different analysis techniques require different assumptions of data. This chapter provides introductory guides for readers to assist them with their informed decision-making in choosing the correct analysis models. To this end, it begins with discussion of the levels of measure: nominal, ordinal, and scale. Some commonly used analysis techniques in univariate, bivariate, and multivariate data analysis are presented for practical examples. Example analysis outcomes are produced by the use of SPSS (Statistical Package for Social Sciences).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

data analysis quantitative research example

Data Analysis Techniques for Quantitative Study

data analysis quantitative research example

Meta-Analytic Methods for Public Health Research

Armstrong JS. Significance tests harm progress in forecasting. Int J Forecast. 2007;23(2):321–7.

Article   Google Scholar  

Babbie E. The practice of social research. 14th ed. Belmont: Cengage Learning; 2016.

Google Scholar  

Brockopp DY, Hastings-Tolsma MT. Fundamentals of nursing research. Boston: Jones & Bartlett; 2003.

Creswell JW. Research design: qualitative, quantitative, and mixed methods approaches. Thousand Oaks: Sage; 2014.

Fawcett J. The relationship of theory and research. Philadelphia: F. A. Davis; 1999.

Field A. Discovering statistics using IBM SPSS statistics. London: Sage; 2013.

Grove SK, Gray JR, Burns N. Understanding nursing research: building an evidence-based practice. 6th ed. St. Louis: Elsevier Saunders; 2015.

Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RD. Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall; 2006.

Katz MH. Multivariable analysis: a practical guide for clinicians. Cambridge: Cambridge University Press; 2006.

Book   Google Scholar  

McHugh ML. Scientific inquiry. J Specialists Pediatr Nurs. 2007; 8 (1):35–7. Volume 8, Issue 1, Version of Record online: 22 FEB 2007

Pallant J. SPSS survival manual: a step by step guide to data analysis using IBM SPSS. Sydney: Allen & Unwin; 2016.

Polit DF, Beck CT. Nursing research: principles and methods. Philadelphia: Lippincott Williams & Wilkins; 2004.

Trochim WMK, Donnelly JP. Research methods knowledge base. 3rd ed. Mason: Thomson Custom Publishing; 2007.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston: Pearson Education.

Wells CS, Hin JM. Dealing with assumptions underlying statistical tests. Psychol Sch. 2007;44(5):495–502.

Download references

Author information

Authors and affiliations.

Centre for Business and Social Innovation, University of Technology Sydney, Ultimo, NSW, Australia

Yong Moon Jung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yong Moon Jung .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Jung, Y.M. (2019). Data Analysis in Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_109

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_109

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Logo for UEN Digital Press with Pressbooks

Part II: Data Analysis Methods in Quantitative Research

Data analysis methods in quantitative research.

We started this module with levels of measurement as a way to categorize our data. Data analysis is directed toward answering the original research question and achieving the study purpose (or aim). Now, we are going to delve into two main statistical analyses to describe our data and make inferences about our data:

Descriptive Statistics and Inferential Statistics.

Descriptive Statistics:

Before you panic, we will not be going into statistical analyses very deeply. We want to simply get a good overview of some of the types of general statistical analyses so that it makes some sense to us when we read results in published research articles.

Descriptive statistics   summarize or describe the characteristics of a data set. This is a method of simply organizing and describing our data. Why? Because data that are not organized in some fashion are super difficult to interpret.

Let’s say our sample is golden retrievers (population “canines”). Our descriptive statistics  tell us more about the same.

  • 37% of our sample is male, 43% female
  • The mean age is 4 years
  • Mode is 6 years
  • Median age is 5.5 years

Image of golden retriever in field

Let’s explore some of the types of descriptive statistics.

Frequency Distributions : A frequency distribution describes the number of observations for each possible value of a measured variable. The numbers are arranged from lowest to highest and features a count of how many times each value occurred.

For example, if 18 students have pet dogs, dog ownership has a frequency of 18.

We might see what other types of pets that students have. Maybe cats, fish, and hamsters. We find that 2 students have hamsters, 9 have fish, 1 has a cat.

You can see that it is very difficult to interpret the various pets into any meaningful interpretation, yes?

Now, let’s take those same pets and place them in a frequency distribution table.                          

Type of Pet

Frequency

Dog

18

Fish

9

Hamsters

2

Cat

1

As we can now see, this is much easier to interpret.

Let’s say that we want to know how many books our sample population of  students have read in the last year. We collect our data and find this:

Number of Books

Frequency (How many students read that number of books)

13

1

12

6

11

18

10

58

9

99

8

138

7

99

6

56

5

21

4

8

3

2

2

1

1

0

We can then take that table and plot it out on a frequency distribution graph. This makes it much easier to see how the numbers are disbursed. Easier on the eyes, yes?

Chart, histogram Description automatically generated

Here’s another example of symmetrical, positive skew, and negative skew:

Understanding Descriptive Statistics | by Sarang Narkhede | Towards Data Science

Correlation : Relationships between two research variables are called correlations . Remember, correlation is not cause-and-effect. Correlations  simply measure the extent of relationship between two variables. To measure correlation in descriptive statistics, the statistical analysis called Pearson’s correlation coefficient I is often used.  You do not need to know how to calculate this for this course. But, do remember that analysis test because you will often see this in published research articles. There really are no set guidelines on what measurement constitutes a “strong” or “weak” correlation, as it really depends on the variables being measured.

However, possible values for correlation coefficients range from -1.00 through .00 to +1.00. A value of +1 means that the two variables are positively correlated, as one variable goes up, the other goes up. A value of r = 0 means that the two variables are not linearly related.

Often, the data will be presented on a scatter plot. Here, we can view the data and there appears to be a straight line (linear) trend between height and weight. The association (or correlation) is positive. That means, that there is a weight increase with height. The Pearson correlation coefficient in this case was r = 0.56.

data analysis quantitative research example

A type I error is made by rejecting a null hypothesis that is true. This means that there was no difference but the researcher concluded that the hypothesis was true.

A type II error is made by accepting that the null hypothesis is true when, in fact, it was false. Meaning there was actually a difference but the researcher did not think their hypothesis was supported.

Hypothesis Testing Procedures : In a general sense, the overall testing of a hypothesis has a systematic methodology. Remember, a hypothesis is an educated guess about the outcome. If we guess wrong, we might set up the tests incorrectly and might get results that are invalid. Sometimes, this is super difficult to get right. The main purpose of statistics is to test a hypothesis.

  • Selecting a statistical test. Lots of factors go into this, including levels of measurement of the variables.
  • Specifying the level of significance. Usually 0.05 is chosen.
  • Computing a test statistic. Lots of software programs to help with this.
  • Determining degrees of freedom ( df ). This refers to the number of observations free to vary about a parameter. Computing this is easy (but you don’t need to know how for this course).
  • Comparing the test statistic to a theoretical value. Theoretical values exist for all test statistics, which is compared to the study statistics to help establish significance.

Some of the common inferential statistics you will see include:

Comparison tests: Comparison tests look for differences among group means. They can be used to test the effect of a categorical variable on the mean value of some other characteristic.

T-tests are used when comparing the means of precisely two groups (e.g., the average heights of men and women). ANOVA and MANOVA tests are used when comparing the means of more than two groups (e.g., the average heights of children, teenagers, and adults).

  • t -tests (compares differences in two groups) – either paired t-test (example: What is the effect of two different test prep programs on the average exam scores for students from the same class?) or independent t-test (example: What is the difference in average exam scores for students from two different schools?)
  • analysis of variance (ANOVA, which compares differences in three or more groups) (example: What is the difference in average pain levels among post-surgical patients given three different painkillers?) or MANOVA (compares differences in three or more groups, and 2 or more outcomes) (example: What is the effect of flower species on petal length, petal width, and stem length?)

Correlation tests: Correlation tests check whether variables are related without hypothesizing a cause-and-effect relationship.

  • Pearson r (measures the strength and direction of the relationship between two variables) (example: How are latitude and temperature related?)

Nonparametric tests: Non-parametric tests don’t make as many assumptions about the data, and are useful when one or more of the common statistical assumptions are violated. However, the inferences they make aren’t as strong as with parametric tests.

  • chi-squared ( X 2 ) test (measures differences in proportions). Chi-square tests are often used to test hypotheses. The chi-square statistic compares the size of any discrepancies between the expected results and the actual results, given the size of the sample and the number of variables in the relationship. For example, the results of tossing a fair coin meet these criteria. We can apply a chi-square test to determine which type of candy is most popular and make sure that our shelves are well stocked. Or maybe you’re a scientist studying the offspring of cats to determine the likelihood of certain genetic traits being passed to a litter of kittens.

Inferential Versus Descriptive Statistics Summary Table

Inferential Statistics

Descriptive Statistics

Used to make conclusions about the population by using analytical tools on the sample data.

Used to qualify the characteristics of the data.

Hypothesis testing.

Measures of central tendency and measures of dispersion are the important tools used.

Is used to make inferences about an unknown population.

Used to describe the characteristics of a known sample or population.

Measures of inferential statistics include t-tests, ANOVA, chi-squared test, etc.

Measures of descriptive statistics are variances, range, mean, median, etc.

Statistical Significance Versus Clinical Significance

Finally, when it comes to statistical significance  in hypothesis testing, the normal probability value in nursing is <0.05. A p=value (probability) is a statistical measurement used to validate a hypothesis against measured data in the study. Meaning, it measures the likelihood that the results were actually observed due to the intervention, or if the results were just due by chance. The p-value, in measuring the probability of obtaining the observed results, assumes the null hypothesis is true.

The lower the p-value, the greater the statistical significance of the observed difference.

In the example earlier about our diabetic patients receiving online diet education, let’s say we had p = 0.05. Would that be a statistically significant result?

If you answered yes, you are correct!

What if our result was p = 0.8?

Not significant. Good job!

That’s pretty straightforward, right? Below 0.05, significant. Over 0.05 not   significant.

Could we have significance clinically even if we do not have statistically significant results? Yes. Let’s explore this a bit.

Statistical hypothesis testing provides little information for interpretation purposes. It’s pretty mathematical and we can still get it wrong. Additionally, attaining statistical significance does not really state whether a finding is clinically meaningful. With a large enough sample, even a small very tiny relationship may be statistically significant. But, clinical significance  is the practical importance of research. Meaning, we need to ask what the palpable effects may be on the lives of patients or healthcare decisions.

Remember, hypothesis testing cannot prove. It also cannot tell us much other than “yeah, it’s probably likely that there would be some change with this intervention”. Hypothesis testing tells us the likelihood that the outcome was due to an intervention or influence and not just by chance. Also, as nurses and clinicians, we are not concerned with a group of people – we are concerned at the individual, holistic level. The goal of evidence-based practice is to use best evidence for decisions about specific individual needs.

data analysis quantitative research example

Additionally, begin your Discussion section. What are the implications to practice? Is there little evidence or a lot? Would you recommend additional studies? If so, what type of study would you recommend, and why?

data analysis quantitative research example

  • Were all the important results discussed?
  • Did the researchers discuss any study limitations and their possible effects on the credibility of the findings? In discussing limitations, were key threats to the study’s validity and possible biases reviewed? Did the interpretations take limitations into account?
  • What types of evidence were offered in support of the interpretation, and was that evidence persuasive? Were results interpreted in light of findings from other studies?
  • Did the researchers make any unjustifiable causal inferences? Were alternative explanations for the findings considered? Were the rationales for rejecting these alternatives convincing?
  • Did the interpretation consider the precision of the results and/or the magnitude of effects?
  • Did the researchers draw any unwarranted conclusions about the generalizability of the results?
  • Did the researchers discuss the study’s implications for clinical practice or future nursing research? Did they make specific recommendations?
  • If yes, are the stated implications appropriate, given the study’s limitations and the magnitude of the effects as well as evidence from other studies? Are there important implications that the report neglected to include?
  • Did the researchers mention or assess clinical significance? Did they make a distinction between statistical and clinical significance?
  • If clinical significance was examined, was it assessed in terms of group-level information (e.g., effect sizes) or individual-level results? How was clinical significance operationalized?

References & Attribution

“ Green check mark ” by rawpixel licensed CC0 .

“ Magnifying glass ” by rawpixel licensed CC0

“ Orange flame ” by rawpixel licensed CC0 .

Polit, D. & Beck, C. (2021).  Lippincott CoursePoint Enhanced for Polit’s Essentials of Nursing Research  (10th ed.). Wolters Kluwer Health 

Vaid, N. K. (2019) Statistical performance measures. Medium. https://neeraj-kumar-vaid.medium.com/statistical-performance-measures-12bad66694b7

Evidence-Based Practice & Research Methodologies Copyright © by Tracy Fawns is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

PW Skills | Blog

Quantitative Data Analysis: Types, Analysis & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

analysis of quantitative data

Analysis of Quantitative data enables you to transform raw data points, typically organised in spreadsheets, into actionable insights. Refer to the article to know more!

Analysis of Quantitative Data : Data, data everywhere — it’s impossible to escape it in today’s digitally connected world. With business and personal activities leaving digital footprints, vast amounts of quantitative data are being generated every second of every day. While data on its own may seem impersonal and cold, in the right hands it can be transformed into valuable insights that drive meaningful decision-making. In this article, we will discuss analysis of quantitative data types and examples!

Data Analytics Course

If you are looking to acquire hands-on experience in quantitative data analysis, look no further than Physics Wallah’s Data Analytics Course . And as a token of appreciation for reading this blog post until the end, use our exclusive coupon code “READER” to get a discount on the course fee.

Table of Contents

What is the Quantitative Analysis Method?

Quantitative Analysis refers to a mathematical approach that gathers and evaluates measurable and verifiable data. This method is utilized to assess performance and various aspects of a business or research. It involves the use of mathematical and statistical techniques to analyze data. Quantitative methods emphasize objective measurements, focusing on statistical, analytical, or numerical analysis of data. It collects data and studies it to derive insights or conclusions.

In a business context, it helps in evaluating the performance and efficiency of operations. Quantitative analysis can be applied across various domains, including finance, research, and chemistry, where data can be converted into numbers for analysis.

Also Read: Analysis vs. Analytics: How Are They Different?

What is the Best Analysis for Quantitative Data?

The “best” analysis for quantitative data largely depends on the specific research objectives, the nature of the data collected, the research questions posed, and the context in which the analysis is conducted. Quantitative data analysis encompasses a wide range of techniques, each suited for different purposes. Here are some commonly employed methods, along with scenarios where they might be considered most appropriate:

1) Descriptive Statistics:

  • When to Use: To summarize and describe the basic features of the dataset, providing simple summaries about the sample and measures of central tendency and variability.
  • Example: Calculating means, medians, standard deviations, and ranges to describe a dataset.

2) Inferential Statistics:

  • When to Use: When you want to make predictions or inferences about a population based on a sample, testing hypotheses, or determining relationships between variables.
  • Example: Conducting t-tests to compare means between two groups or performing regression analysis to understand the relationship between an independent variable and a dependent variable.

3) Correlation and Regression Analysis:

  • When to Use: To examine relationships between variables, determining the strength and direction of associations, or predicting one variable based on another.
  • Example: Assessing the correlation between customer satisfaction scores and sales revenue or predicting house prices based on variables like location, size, and amenities.

4) Factor Analysis:

  • When to Use: When dealing with a large set of variables and aiming to identify underlying relationships or latent factors that explain patterns of correlations within the data.
  • Example: Exploring underlying constructs influencing employee engagement using survey responses across multiple indicators.

5) Time Series Analysis:

  • When to Use: When analyzing data points collected or recorded at successive time intervals to identify patterns, trends, seasonality, or forecast future values.
  • Example: Analyzing monthly sales data over several years to detect seasonal trends or forecasting stock prices based on historical data patterns.

6) Cluster Analysis:

  • When to Use: To segment a dataset into distinct groups or clusters based on similarities, enabling pattern recognition, customer segmentation, or data reduction.
  • Example: Segmenting customers into distinct groups based on purchasing behavior, demographic factors, or preferences.

The “best” analysis for quantitative data is not one-size-fits-all but rather depends on the research objectives, hypotheses, data characteristics, and contextual factors. Often, a combination of analytical techniques may be employed to derive comprehensive insights and address multifaceted research questions effectively. Therefore, selecting the appropriate analysis requires careful consideration of the research goals, methodological rigor, and interpretative relevance to ensure valid, reliable, and actionable outcomes.

Analysis of Quantitative Data in Quantitative Research

Analyzing quantitative data in quantitative research involves a systematic process of examining numerical information to uncover patterns, relationships, and insights that address specific research questions or objectives. Here’s a structured overview of the analysis process:

1) Data Preparation:

  • Data Cleaning: Identify and address errors, inconsistencies, missing values, and outliers in the dataset to ensure its integrity and reliability.
  • Variable Transformation: Convert variables into appropriate formats or scales, if necessary, for analysis (e.g., normalization, standardization).

2) Descriptive Statistics:

  • Central Tendency: Calculate measures like mean, median, and mode to describe the central position of the data.
  • Variability: Assess the spread or dispersion of data using measures such as range, variance, standard deviation, and interquartile range.
  • Frequency Distribution: Create tables, histograms, or bar charts to display the distribution of values for categorical or discrete variables.

3) Exploratory Data Analysis (EDA):

  • Data Visualization: Generate graphical representations like scatter plots, box plots, histograms, or heatmaps to visualize relationships, distributions, and patterns in the data.
  • Correlation Analysis: Examine the strength and direction of relationships between variables using correlation coefficients.

4) Inferential Statistics:

  • Hypothesis Testing: Formulate null and alternative hypotheses based on research questions, selecting appropriate statistical tests (e.g., t-tests, ANOVA, chi-square tests) to assess differences, associations, or effects.
  • Confidence Intervals: Estimate population parameters using sample statistics and determine the range within which the true parameter is likely to fall.

5) Regression Analysis:

  • Linear Regression: Identify and quantify relationships between an outcome variable and one or more predictor variables, assessing the strength, direction, and significance of associations.
  • Multiple Regression: Evaluate the combined effect of multiple independent variables on a dependent variable, controlling for confounding factors.

6) Factor Analysis and Structural Equation Modeling:

  • Factor Analysis: Identify underlying dimensions or constructs that explain patterns of correlations among observed variables, reducing data complexity.
  • Structural Equation Modeling (SEM): Examine complex relationships between observed and latent variables, assessing direct and indirect effects within a hypothesized model.

7) Time Series Analysis and Forecasting:

  • Trend Analysis: Analyze patterns, trends, and seasonality in time-ordered data to understand historical patterns and predict future values.
  • Forecasting Models: Develop predictive models (e.g., ARIMA, exponential smoothing) to anticipate future trends, demand, or outcomes based on historical data patterns.

8) Interpretation and Reporting:

  • Interpret Results: Translate statistical findings into meaningful insights, discussing implications, limitations, and conclusions in the context of the research objectives.
  • Documentation: Document the analysis process, methodologies, assumptions, and findings systematically for transparency, reproducibility, and peer review.

Also Read: Learning Path to Become a Data Analyst in 2024

Analysis of Quantitative Data Examples

Analyzing quantitative data involves various statistical methods and techniques to derive meaningful insights from numerical data. Here are some examples illustrating the analysis of quantitative data across different contexts:

Descriptive Statistics Calculating mean, median, mode, range of students’ scores on a mathematics exam Educational Assessment
Exploratory Data Analysis Creating histograms to visualize monthly sales data for a retail business Business Analytics
Correlation Analysis Examining correlation between advertising expenditure and product sales revenue Marketing and Sales
Hypothesis Testing Conducting t-test to compare mean scores of control and treatment groups Scientific Research
Regression Analysis Performing linear regression to predict housing prices based on property features Real Estate Market
Factor Analysis Utilizing factor analysis to identify underlying constructs from customer survey responses Market Research
Time Series Analysis Analyzing stock market data to identify trends and forecast future stock prices Financial Analysis
Chi-Square Test Conducting chi-square test to examine relationship between gender and voting preferences Political Science
ANOVA (Analysis of Variance) Performing ANOVA to determine differences in mean scores across multiple teaching methods Educational Research
Cluster Analysis Applying K-means clustering to segment customers based on purchasing behavior Customer Segmentation and Marketing

How to Write Data Analysis in Quantitative Research Proposal?

Writing the data analysis section in a quantitative research proposal requires careful planning and organization to convey a clear, concise, and methodologically sound approach to analyzing the collected data. Here’s a step-by-step guide on how to write the data analysis section effectively:

Step 1: Begin with an Introduction

  • Contextualize : Briefly reintroduce the research objectives, questions, and the significance of the study.
  • Purpose Statement : Clearly state the purpose of the data analysis section, outlining what readers can expect in this part of the proposal.

Step 2: Describe Data Collection Methods

  • Detail Collection Techniques : Provide a concise overview of the methods used for data collection (e.g., surveys, experiments, observations).
  • Instrumentation : Mention any tools, instruments, or software employed for data gathering and its relevance.

Step 3 : Discuss Data Cleaning Procedures

  • Data Cleaning : Describe the procedures for cleaning and pre-processing the data.
  • Handling Outliers & Missing Data : Explain how outliers, missing values, and other inconsistencies will be managed to ensure data quality.

Step 4 : Present Analytical Techniques

  • Descriptive Statistics : Outline the descriptive statistics that will be calculated to summarize the data (e.g., mean, median, mode, standard deviation).
  • Inferential Statistics : Specify the inferential statistical tests or models planned for deeper analysis (e.g., t-tests, ANOVA, regression).

Step 5: State Hypotheses & Testing Procedures

  • Hypothesis Formulation : Clearly state the null and alternative hypotheses based on the research questions or objectives.
  • Testing Strategy : Detail the procedures for hypothesis testing, including the chosen significance level (e.g., α = 0.05) and statistical criteria.

Step 6 : Provide a Sample Analysis Plan

  • Step-by-Step Plan : Offer a sample plan detailing the sequence of steps involved in the data analysis process.
  • Software & Tools : Mention any specific statistical software or tools that will be utilized for analysis.

Step 7 : Address Validity & Reliability

  • Validity : Discuss how you will ensure the validity of the data analysis methods and results.
  • Reliability : Explain measures taken to enhance the reliability and replicability of the study findings.

Step 8 : Discuss Ethical Considerations

  • Ethical Compliance : Address ethical considerations related to data privacy, confidentiality, and informed consent.
  • Compliance with Guidelines : Ensure that your data analysis methods align with ethical guidelines and institutional policies.

Step 9 : Acknowledge Limitations

  • Limitations : Acknowledge potential limitations in the data analysis methods or data set.
  • Mitigation Strategies : Offer strategies or alternative approaches to mitigate identified limitations.

Step 10 : Conclude the Section

  • Summary : Summarize the key points discussed in the data analysis section.
  • Transition : Provide a smooth transition to subsequent sections of the research proposal, such as the conclusion or references.

Step 11 : Proofread & Revise

  • Review : Carefully review the data analysis section for clarity, coherence, and consistency.
  • Feedback : Seek feedback from peers, advisors, or mentors to refine your approach and ensure methodological rigor.

What are the 4 Types of Quantitative Analysis?

Quantitative analysis encompasses various methods to evaluate and interpret numerical data. While the specific categorization can vary based on context, here are four broad types of quantitative analysis commonly recognized:

  • Descriptive Analysis: This involves summarizing and presenting data to describe its main features, such as mean, median, mode, standard deviation, and range. Descriptive statistics provide a straightforward overview of the dataset’s characteristics.
  • Inferential Analysis: This type of analysis uses sample data to make predictions or inferences about a larger population. Techniques like hypothesis testing, regression analysis, and confidence intervals fall under this category. The goal is to draw conclusions that extend beyond the immediate data collected.
  • Time-Series Analysis: In this method, data points are collected, recorded, and analyzed over successive time intervals. Time-series analysis helps identify patterns, trends, and seasonal variations within the data. It’s particularly useful in forecasting future values based on historical trends.
  • Causal or Experimental Research: This involves establishing a cause-and-effect relationship between variables. Through experimental designs, researchers manipulate one variable to observe the effect on another variable while controlling for external factors. Randomized controlled trials are a common method within this type of quantitative analysis.

Each type of quantitative analysis serves specific purposes and is applied based on the nature of the data and the research objectives.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Steps to Effective Quantitative Data Analysis 

Quantitative data analysis need not be daunting; it’s a systematic process that anyone can master. To harness actionable insights from your company’s data, follow these structured steps:

Step 1 : Gather Data Strategically

Initiating the analysis journey requires a foundation of relevant data. Employ quantitative research methods to accumulate numerical insights from diverse channels such as:

  • Interviews or Focus Groups: Engage directly with stakeholders or customers to gather specific numerical feedback.
  • Digital Analytics: Utilize tools like Google Analytics to extract metrics related to website traffic, user behavior, and conversions.
  • Observational Tools: Leverage heatmaps, click-through rates, or session recordings to capture user interactions and preferences.
  • Structured Questionnaires: Deploy surveys or feedback mechanisms that employ close-ended questions for precise responses.

Ensure that your data collection methods align with your research objectives, focusing on granularity and accuracy.

Step 2 : Refine and Cleanse Your Data

Raw data often comes with imperfections. Scrutinize your dataset to identify and rectify:

  • Errors and Inconsistencies: Address any inaccuracies or discrepancies that could mislead your analysis.
  • Duplicates: Eliminate repeated data points that can skew results.
  • Outliers: Identify and assess outliers, determining whether they should be adjusted or excluded based on contextual relevance.

Cleaning your dataset ensures that subsequent analyses are based on reliable and consistent information, enhancing the credibility of your findings.

Step 3 : Delve into Analysis with Precision

With a refined dataset at your disposal, transition into the analytical phase. Employ both descriptive and inferential analysis techniques:

  • Descriptive Analysis: Summarize key attributes of your dataset, computing metrics like averages, distributions, and frequencies.
  • Inferential Analysis: Leverage statistical methodologies to derive insights, explore relationships between variables, or formulate predictions.

The objective is not just number crunching but deriving actionable insights. Interpret your findings to discern underlying patterns, correlations, or trends that inform strategic decision-making. For instance, if data indicates a notable relationship between user engagement metrics and specific website features, consider optimizing those features for enhanced user experience.

Step 4 : Visual Representation and Communication

Transforming your analytical outcomes into comprehensible narratives is crucial for organizational alignment and decision-making. Leverage visualization tools and techniques to:

  • Craft Engaging Visuals: Develop charts, graphs, or dashboards that encapsulate key findings and insights.
  • Highlight Insights: Use visual elements to emphasize critical data points, trends, or comparative metrics effectively.
  • Facilitate Stakeholder Engagement: Share your visual representations with relevant stakeholders, ensuring clarity and fostering informed discussions.

Tools like Tableau, Power BI, or specialized platforms like Hotjar can simplify the visualization process, enabling seamless representation and dissemination of your quantitative insights.

Also Read: Top 10 Must Use AI Tools for Data Analysis [2024 Edition]

Statistical Analysis in Quantitative Research

Statistical analysis is a cornerstone of quantitative research, providing the tools and techniques to interpret numerical data systematically. By applying statistical methods, researchers can identify patterns, relationships, and trends within datasets, enabling evidence-based conclusions and informed decision-making. Here’s an overview of the key aspects and methodologies involved in statistical analysis within quantitative research:

  • Mean, Median, Mode: Measures of central tendency that summarize the average, middle, and most frequent values in a dataset, respectively.
  • Standard Deviation, Variance: Indicators of data dispersion or variability around the mean.
  • Frequency Distributions: Tabular or graphical representations that display the distribution of data values or categories.
  • Hypothesis Testing: Formal methodologies to test hypotheses or assumptions about population parameters using sample data. Common tests include t-tests, chi-square tests, ANOVA, and regression analysis.
  • Confidence Intervals: Estimation techniques that provide a range of values within which a population parameter is likely to lie, based on sample data.
  • Correlation and Regression Analysis: Techniques to explore relationships between variables, determining the strength and direction of associations. Regression analysis further enables prediction and modeling based on observed data patterns.

3) Probability Distributions:

  • Normal Distribution: A bell-shaped distribution often observed in naturally occurring phenomena, forming the basis for many statistical tests.
  • Binomial, Poisson, and Exponential Distributions: Specific probability distributions applicable to discrete or continuous random variables, depending on the nature of the research data.

4) Multivariate Analysis:

  • Factor Analysis: A technique to identify underlying relationships between observed variables, often used in survey research or data reduction scenarios.
  • Cluster Analysis: Methodologies that group similar objects or individuals based on predefined criteria, enabling segmentation or pattern recognition within datasets.
  • Multivariate Regression: Extending regression analysis to multiple independent variables, assessing their collective impact on a dependent variable.

5) Data Modeling and Forecasting:

  • Time Series Analysis: Analyzing data points collected or recorded at specific time intervals to identify patterns, trends, or seasonality.
  • Predictive Analytics: Leveraging statistical models and machine learning algorithms to forecast future trends, outcomes, or behaviors based on historical data.

If this blog post has piqued your interest in the field of data analytics, then we highly recommend checking out Physics Wallah’s Data Analytics Course . This course covers all the fundamental concepts of quantitative data analysis and provides hands-on training for various tools and software used in the industry.

With a team of experienced instructors from different backgrounds and industries, you will gain a comprehensive understanding of a wide range of topics related to data analytics. And as an added bonus for being one of our dedicated readers, use the coupon code “ READER ” to get an exclusive discount on this course!

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Analysis of Quantitative Data FAQs

What is quantitative data analysis.

Quantitative data analysis involves the systematic process of collecting, cleaning, interpreting, and presenting numerical data to identify patterns, trends, and relationships through statistical methods and mathematical calculations.

What are the main steps involved in quantitative data analysis?

The primary steps include data collection, data cleaning, statistical analysis (descriptive and inferential), interpretation of results, and visualization of findings using graphs or charts.

What is the difference between descriptive and inferential analysis?

Descriptive analysis summarizes and describes the main aspects of the dataset (e.g., mean, median, mode), while inferential analysis draws conclusions or predictions about a population based on a sample, using statistical tests and models.

How do I handle outliers in my quantitative data?

Outliers can be managed by identifying them through statistical methods, understanding their nature (error or valid data), and deciding whether to remove them, transform them, or conduct separate analyses to understand their impact.

Which statistical tests should I use for my quantitative research?

The choice of statistical tests depends on your research design, data type, and research questions. Common tests include t-tests, ANOVA, regression analysis, chi-square tests, and correlation analysis, among others.

card-img

  • 6 Benefits of Data Analytics That Will Blow Your Mind!

data analysis quantitative research example

Benefits of Data Analytics: In today’s fast-paced and interconnected world, the sheer volume of data generated on a daily basis…

  • 10 Most Popular Big Data Analytics Software

big data analytics software

Best Big Data Analytics Software: In the rapidly evolving realm of commerce, the capacity to harness the potential of data…

  • What Is Business Analytics Business Intelligence?

business analytics business intelligence

Want to learn what Business analytics business intelligence is? Reading this article will help you to understand all topics clearly,…

right adv

Related Articles

  • Data Science vs Data Analytics: Definition, Process, Role and Skills Required
  • 5 Challenges of Data Analytics Every Data Analyst Faces!
  • Data Analysis Techniques in Research – Methods, Tools & Examples
  • What is ACL in Data Analytics? Types, Components, Roles, Benefits
  • Top 20 Big Data Tools Used By Professionals
  • What is OLAP (Online Analytical Processing)?
  • What Is Big Data Analytics? Definition, Benefits, and More

bottom banner

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

data analysis quantitative research example

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

Employee listening strategy

Employee Listening Strategy: What it is & How to Build One

Jul 17, 2024

As your relationships grow, you’ll find that people will come to you for a different perspective or creative way to solve a problem, and it spirals from there.

Winning the Internal CX Battles — Tuesday CX Thoughts

Jul 16, 2024

Knowledge Management

Knowledge Management: What it is, Types, and Use Cases

Jul 12, 2024

Response Weighting: Enhancing Accuracy in Your Surveys

Response Weighting: Enhancing Accuracy in Your Surveys

Jul 11, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Qualitative vs Quantitative Research Methods & Data Analysis

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

What is the difference between quantitative and qualitative?

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed in numerical terms. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.

Qualitative research , on the other hand, collects non-numerical data such as words, images, and sounds. The focus is on exploring subjective experiences, opinions, and attitudes, often through observation and interviews.

Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography.

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis .

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Mixed methods research
  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

Are you an agency specialized in UX, digital marketing, or growth? Join our Partner Program

Learn / Guides / Quantitative data analysis guide

Back to guides

The ultimate guide to quantitative data analysis

Numbers help us make sense of the world. We collect quantitative data on our speed and distance as we drive, the number of hours we spend on our cell phones, and how much we save at the grocery store.

Our businesses run on numbers, too. We spend hours poring over key performance indicators (KPIs) like lead-to-client conversions, net profit margins, and bounce and churn rates.

But all of this quantitative data can feel overwhelming and confusing. Lists and spreadsheets of numbers don’t tell you much on their own—you have to conduct quantitative data analysis to understand them and make informed decisions.

Last updated

Reading time.

data analysis quantitative research example

This guide explains what quantitative data analysis is and why it’s important, and gives you a four-step process to conduct a quantitative data analysis, so you know exactly what’s happening in your business and what your users need .

Collect quantitative customer data with Hotjar

Use Hotjar’s tools to gather the customer insights you need to make quantitative data analysis a breeze.

What is quantitative data analysis? 

Quantitative data analysis is the process of analyzing and interpreting numerical data. It helps you make sense of information by identifying patterns, trends, and relationships between variables through mathematical calculations and statistical tests. 

With quantitative data analysis, you turn spreadsheets of individual data points into meaningful insights to drive informed decisions. Columns of numbers from an experiment or survey transform into useful insights—like which marketing campaign asset your average customer prefers or which website factors are most closely connected to your bounce rate. 

Without analytics, data is just noise. Analyzing data helps you make decisions which are informed and free from bias.

What quantitative data analysis is not

But as powerful as quantitative data analysis is, it’s not without its limitations. It only gives you the what, not the why . For example, it can tell you how many website visitors or conversions you have on an average day, but it can’t tell you why users visited your site or made a purchase.

For the why behind user behavior, you need qualitative data analysis , a process for making sense of qualitative research like open-ended survey responses, interview clips, or behavioral observations. By analyzing non-numerical data, you gain useful contextual insights to shape your strategy, product, and messaging. 

Quantitative data analysis vs. qualitative data analysis 

Let’s take an even deeper dive into the differences between quantitative data analysis and qualitative data analysis to explore what they do and when you need them.

data analysis quantitative research example

The bottom line: quantitative data analysis and qualitative data analysis are complementary processes. They work hand-in-hand to tell you what’s happening in your business and why.  

💡 Pro tip: easily toggle between quantitative and qualitative data analysis with Hotjar Funnels . 

The Funnels tool helps you visualize quantitative metrics like drop-off and conversion rates in your sales or conversion funnel to understand when and where users leave your website. You can break down your data even further to compare conversion performance by user segment.

Spot a potential issue? A single click takes you to relevant session recordings , where you see user behaviors like mouse movements, scrolls, and clicks. With this qualitative data to provide context, you'll better understand what you need to optimize to streamline the user experience (UX) and increase conversions .

Hotjar Funnels lets you quickly explore the story behind the quantitative data

4 benefits of quantitative data analysis

There’s a reason product, web design, and marketing teams take time to analyze metrics: the process pays off big time. 

Four major benefits of quantitative data analysis include:

1. Make confident decisions 

With quantitative data analysis, you know you’ve got data-driven insights to back up your decisions . For example, if you launch a concept testing survey to gauge user reactions to a new logo design, and 92% of users rate it ‘very good’—you'll feel certain when you give the designer the green light. 

Since you’re relying less on intuition and more on facts, you reduce the risks of making the wrong decision. (You’ll also find it way easier to get buy-in from team members and stakeholders for your next proposed project. 🙌)

2. Reduce costs

By crunching the numbers, you can spot opportunities to reduce spend . For example, if an ad campaign has lower-than-average click-through rates , you might decide to cut your losses and invest your budget elsewhere. 

Or, by analyzing ecommerce metrics , like website traffic by source, you may find you’re getting very little return on investment from a certain social media channel—and scale back spending in that area.

3. Personalize the user experience

Quantitative data analysis helps you map the customer journey , so you get a better sense of customers’ demographics, what page elements they interact with on your site, and where they drop off or convert . 

These insights let you better personalize your website, product, or communication, so you can segment ads, emails, and website content for specific user personas or target groups.

4. Improve user satisfaction and delight

Quantitative data analysis lets you see where your website or product is doing well—and where it falls short for your users . For example, you might see stellar results from KPIs like time on page, but conversion rates for that page are low. 

These quantitative insights encourage you to dive deeper into qualitative data to see why that’s happening—looking for moments of confusion or frustration on session recordings, for example—so you can make adjustments and optimize your conversions by improving customer satisfaction and delight.

💡Pro tip: use Net Promoter Score® (NPS) surveys to capture quantifiable customer satisfaction data that’s easy for you to analyze and interpret. 

With an NPS tool like Hotjar, you can create an on-page survey to ask users how likely they are to recommend you to others on a scale from 0 to 10. (And for added context, you can ask follow-up questions about why customers selected the rating they did—rich qualitative data is always a bonus!)

data analysis quantitative research example

Hotjar graphs your quantitative NPS data to show changes over time

4 steps to effective quantitative data analysis 

Quantitative data analysis sounds way more intimidating than it actually is. Here’s how to make sense of your company’s numbers in just four steps:

1. Collect data

Before you can actually start the analysis process, you need data to analyze. This involves conducting quantitative research and collecting numerical data from various sources, including: 

Interviews or focus groups 

Website analytics

Observations, from tools like heatmaps or session recordings

Questionnaires, like surveys or on-page feedback widgets

Just ensure the questions you ask in your surveys are close-ended questions—providing respondents with select choices to choose from instead of open-ended questions that allow for free responses.

data analysis quantitative research example

Hotjar’s pricing plans survey template provides close-ended questions

 2. Clean data

Once you’ve collected your data, it’s time to clean it up. Look through your results to find errors, duplicates, and omissions. Keep an eye out for outliers, too. Outliers are data points that differ significantly from the rest of the set—and they can skew your results if you don’t remove them.

By taking the time to clean your data set, you ensure your data is accurate, consistent, and relevant before it’s time to analyze. 

3. Analyze and interpret data

At this point, your data’s all cleaned up and ready for the main event. This step involves crunching the numbers to find patterns and trends via mathematical and statistical methods. 

Two main branches of quantitative data analysis exist: 

Descriptive analysis : methods to summarize or describe attributes of your data set. For example, you may calculate key stats like distribution and frequency, or mean, median, and mode.

Inferential analysis : methods that let you draw conclusions from statistics—like analyzing the relationship between variables or making predictions. These methods include t-tests, cross-tabulation, and factor analysis. (For more detailed explanations and how-tos, head to our guide on quantitative data analysis methods.)

Then, interpret your data to determine the best course of action. What does the data suggest you do ? For example, if your analysis shows a strong correlation between email open rate and time sent, you may explore optimal send times for each user segment.

4. Visualize and share data

Once you’ve analyzed and interpreted your data, create easy-to-read, engaging data visualizations—like charts, graphs, and tables—to present your results to team members and stakeholders. Data visualizations highlight similarities and differences between data sets and show the relationships between variables.

Software can do this part for you. For example, the Hotjar Dashboard shows all of your key metrics in one place—and automatically creates bar graphs to show how your top pages’ performance compares. And with just one click, you can navigate to the Trends tool to analyze product metrics for different segments on a single chart. 

Hotjar Trends lets you compare metrics across segments

Discover rich user insights with quantitative data analysis

Conducting quantitative data analysis takes a little bit of time and know-how, but it’s much more manageable than you might think. 

By choosing the right methods and following clear steps, you gain insights into product performance and customer experience —and you’ll be well on your way to making better decisions and creating more customer satisfaction and loyalty.

FAQs about quantitative data analysis

What is quantitative data analysis.

Quantitative data analysis is the process of making sense of numerical data through mathematical calculations and statistical tests. It helps you identify patterns, relationships, and trends to make better decisions.

How is quantitative data analysis different from qualitative data analysis?

Quantitative and qualitative data analysis are both essential processes for making sense of quantitative and qualitative research .

Quantitative data analysis helps you summarize and interpret numerical results from close-ended questions to understand what is happening. Qualitative data analysis helps you summarize and interpret non-numerical results, like opinions or behavior, to understand why the numbers look like they do.

 If you want to make strong data-driven decisions, you need both.

What are some benefits of quantitative data analysis?

Quantitative data analysis turns numbers into rich insights. Some benefits of this process include: 

Making more confident decisions

Identifying ways to cut costs

Personalizing the user experience

Improving customer satisfaction

What methods can I use to analyze quantitative data?

Quantitative data analysis has two branches: descriptive statistics and inferential statistics. 

Descriptive statistics provide a snapshot of the data’s features by calculating measures like mean, median, and mode. 

Inferential statistics , as the name implies, involves making inferences about what the data means. Dozens of methods exist for this branch of quantitative data analysis, but three commonly used techniques are: 

Cross tabulation

Factor analysis

APA Acredited Statistics Training

Quantitative Research: Examples of Research Questions and Solutions

Are you ready to embark on a journey into the world of quantitative research? Whether you’re a seasoned researcher or just beginning your academic journey, understanding how to formulate effective research questions is essential for conducting meaningful studies. In this blog post, we’ll explore examples of quantitative research questions across various disciplines and discuss how StatsCamp.org courses can provide the tools and support you need to overcome any challenges you may encounter along the way.

Understanding Quantitative Research Questions

Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let’s explore some examples of quantitative research questions across different fields:

Examples of quantitative research questions

  • What is the relationship between class size and student academic performance?
  • Does the use of technology in the classroom improve learning outcomes?
  • How does parental involvement affect student achievement?
  • What is the effect of a new drug treatment on reducing blood pressure?
  • Is there a correlation between physical activity levels and the risk of cardiovascular disease?
  • How does socioeconomic status influence access to healthcare services?
  • What factors influence consumer purchasing behavior?
  • Is there a relationship between advertising expenditure and sales revenue?
  • How do demographic variables affect brand loyalty?

Stats Camp: Your Solution to Mastering Quantitative Research Methodologies

At StatsCamp.org, we understand that navigating the complexities of quantitative research can be daunting. That’s why we offer a range of courses designed to equip you with the knowledge and skills you need to excel in your research endeavors. Whether you’re interested in learning about regression analysis, experimental design, or structural equation modeling, our experienced instructors are here to guide you every step of the way.

Bringing Your Own Data

One of the unique features of StatsCamp.org is the opportunity to bring your own data to the learning process. Our instructors provide personalized guidance and support to help you analyze your data effectively and overcome any roadblocks you may encounter. Whether you’re struggling with data cleaning, model specification, or interpretation of results, our team is here to help you succeed.

Courses Offered at StatsCamp.org

  • Latent Profile Analysis Course : Learn how to identify subgroups, or profiles, within a heterogeneous population based on patterns of responses to multiple observed variables.
  • Bayesian Statistics Course : A comprehensive introduction to Bayesian data analysis, a powerful statistical approach for inference and decision-making. Through a series of engaging lectures and hands-on exercises, participants will learn how to apply Bayesian methods to a wide range of research questions and data types.
  • Structural Equation Modeling (SEM) Course : Dive into advanced statistical techniques for modeling complex relationships among variables.
  • Multilevel Modeling Course : A in-depth exploration of this advanced statistical technique, designed to analyze data with nested structures or hierarchies. Whether you’re studying individuals within groups, schools within districts, or any other nested data structure, multilevel modeling provides the tools to account for the dependencies inherent in such data.

As you embark on your journey into quantitative research, remember that StatsCamp.org is here to support you every step of the way. Whether you’re formulating research questions, analyzing data, or interpreting results, our courses provide the knowledge and expertise you need to succeed. Join us today and unlock the power of quantitative research!

Follow Us On Social! Facebook | Instagram | X

Stats Camp Statistical Methods Training

933 San Mateo Blvd NE #500, Albuquerque, NM 87108

4414 82 nd Street #212-121 Lubbock, TX 79424

Monday – Friday: 9:00 AM – 5:00 PM

© Copyright 2003 - 2024 | All Rights Reserved Stats Camp Foundation 501(c)(3) Non-Profit Organization.

Logo for Rhode Island College Digital Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Quantitative Data Analysis

9 Presenting the Results of Quantitative Analysis

Mikaila Mariel Lemonik Arthur

This chapter provides an overview of how to present the results of quantitative analysis, in particular how to create effective tables for displaying quantitative results and how to write quantitative research papers that effectively communicate the methods used and findings of quantitative analysis.

Writing the Quantitative Paper

Standard quantitative social science papers follow a specific format. They begin with a title page that includes a descriptive title, the author(s)’ name(s), and a 100 to 200 word abstract that summarizes the paper. Next is an introduction that makes clear the paper’s research question, details why this question is important, and previews what the paper will do. After that comes a literature review, which ends with a summary of the research question(s) and/or hypotheses. A methods section, which explains the source of data, sample, and variables and quantitative techniques used, follows. Many analysts will include a short discussion of their descriptive statistics in the methods section. A findings section details the findings of the analysis, supported by a variety of tables, and in some cases graphs, all of which are explained in the text. Some quantitative papers, especially those using more complex techniques, will include equations. Many papers follow the findings section with a discussion section, which provides an interpretation of the results in light of both the prior literature and theory presented in the literature review and the research questions/hypotheses. A conclusion ends the body of the paper. This conclusion should summarize the findings, answering the research questions and stating whether any hypotheses were supported, partially supported, or not supported. Limitations of the research are detailed. Papers typically include suggestions for future research, and where relevant, some papers include policy implications. After the body of the paper comes the works cited; some papers also have an Appendix that includes additional tables and figures that did not fit into the body of the paper or additional methodological details. While this basic format is similar for papers regardless of the type of data they utilize, there are specific concerns relating to quantitative research in terms of the methods and findings that will be discussed here.

In the methods section, researchers clearly describe the methods they used to obtain and analyze the data for their research. When relying on data collected specifically for a given paper, researchers will need to discuss the sample and data collection; in most cases, though, quantitative research relies on pre-existing datasets. In these cases, researchers need to provide information about the dataset, including the source of the data, the time it was collected, the population, and the sample size. Regardless of the source of the data, researchers need to be clear about which variables they are using in their research and any transformations or manipulations of those variables. They also need to explain the specific quantitative techniques that they are using in their analysis; if different techniques are used to test different hypotheses, this should be made clear. In some cases, publications will require that papers be submitted along with any code that was used to produce the analysis (in SPSS terms, the syntax files), which more advanced researchers will usually have on hand. In many cases, basic descriptive statistics are presented in tabular form and explained within the methods section.

The findings sections of quantitative papers are organized around explaining the results as shown in tables and figures. Not all results are depicted in tables and figures—some minor or null findings will simply be referenced—but tables and figures should be produced for all findings to be discussed at any length. If there are too many tables and figures, some can be moved to an appendix after the body of the text and referred to in the text (e.g. “See Table 12 in Appendix A”).

Discussions of the findings should not simply restate the contents of the table. Rather, they should explain and interpret it for readers, and they should do so in light of the hypothesis or hypotheses that are being tested. Conclusions—discussions of whether the hypothesis or hypotheses are supported or not supported—should wait for the conclusion of the paper.

Creating Effective Tables

When creating tables to display the results of quantitative analysis, the most important goals are to create tables that are clear and concise but that also meet standard conventions in the field. This means, first of all, paring down the volume of information produced in the statistical output to just include the information most necessary for interpreting the results, but doing so in keeping with standard table conventions. It also means making tables that are well-formatted and designed, so that readers can understand what the tables are saying without struggling to find information. For example, tables (as well as figures such as graphs) need clear captions; they are typically numbered and referred to by number in the text. Columns and rows should have clear headings. Depending on the content of the table, formatting tools may need to be used to set off header rows/columns and/or total rows/columns; cell-merging tools may be necessary; and shading may be important in tables with many rows or columns.

Here, you will find some instructions for creating tables of results from descriptive, crosstabulation, correlation, and regression analysis that are clear, concise, and meet normal standards for data display in social science. In addition, after the instructions for creating tables, you will find an example of how a paper incorporating each table might describe that table in the text.

Descriptive Statistics

When presenting the results of descriptive statistics, we create one table with columns for each type of descriptive statistic and rows for each variable. Note, of course, that depending on level of measurement only certain descriptive statistics are appropriate for a given variable, so there may be many cells in the table marked with an — to show that this statistic is not calculated for this variable. So, consider the set of descriptive statistics below, for occupational prestige, age, highest degree earned, and whether the respondent was born in this country.

Table 1. SPSS Ouput: Selected Descriptive Statistics
Statistics
R’s occupational prestige score (2010) Age of respondent
N Valid 3873 3699
Missing 159 333
Mean 46.54 52.16
Median 47.00 53.00
Std. Deviation 13.811 17.233
Variance 190.745 296.988
Skewness .141 .018
Std. Error of Skewness .039 .040
Kurtosis -.809 -1.018
Std. Error of Kurtosis .079 .080
Range 64 71
Minimum 16 18
Maximum 80 89
Percentiles 25 35.00 37.00
50 47.00 53.00
75 59.00 66.00
Statistics
R’s highest degree
N Valid 4009
Missing 23
Median 2.00
Mode 1
Range 4
Minimum 0
Maximum 4
R’s highest degree
Frequency Percent Valid Percent Cumulative Percent
Valid less than high school 246 6.1 6.1 6.1
high school 1597 39.6 39.8 46.0
associate/junior college 370 9.2 9.2 55.2
bachelor’s 1036 25.7 25.8 81.0
graduate 760 18.8 19.0 100.0
Total 4009 99.4 100.0
Missing System 23 .6
Total 4032 100.0
Statistics
Was r born in this country
N Valid 3960
Missing 72
Mean 1.11
Mode 1
Was r born in this country
Frequency Percent Valid Percent Cumulative Percent
Valid yes 3516 87.2 88.8 88.8
no 444 11.0 11.2 100.0
Total 3960 98.2 100.0
Missing System 72 1.8
Total 4032 100.0

To display these descriptive statistics in a paper, one might create a table like Table 2. Note that for discrete variables, we use the value label in the table, not the value.

Table 2. Descriptive Statistics
46.54 52.16 1.11
47 53 1: Associates (9.2%) 1: Yes (88.8%)
2: High School (39.8%)
13.811 17.233
190.745 296.988
0.141 0.018
-0.809 -1.018
64 (16-80) 71 (18-89) Less than High School (0) –  Graduate (4)
35-59 37-66
3873 3699 4009 3960

If we were then to discuss our descriptive statistics in a quantitative paper, we might write something like this (note that we do not need to repeat every single detail from the table, as readers can peruse the table themselves):

This analysis relies on four variables from the 2021 General Social Survey: occupational prestige score, age, highest degree earned, and whether the respondent was born in the United States. Descriptive statistics for all four variables are shown in Table 2. The median occupational prestige score is 47, with a range from 16 to 80. 50% of respondents had occupational prestige scores scores between 35 and 59. The median age of respondents is 53, with a range from 18 to 89. 50% of respondents are between ages 37 and 66. Both variables have little skew. Highest degree earned ranges from less than high school to a graduate degree; the median respondent has earned an associate’s degree, while the modal response (given by 39.8% of the respondents) is a high school degree. 88.8% of respondents were born in the United States.

Crosstabulation

When presenting the results of a crosstabulation, we simplify the table so that it highlights the most important information—the column percentages—and include the significance and association below the table. Consider the SPSS output below.

Table 3. R’s highest degree * R’s subjective class identification Crosstabulation
R’s subjective class identification Total
lower class working class middle class upper class
R’s highest degree less than high school Count 65 106 68 7 246
% within R’s subjective class identification 18.8% 7.1% 3.4% 4.2% 6.2%
high school Count 217 800 551 23 1591
% within R’s subjective class identification 62.9% 53.7% 27.6% 13.9% 39.8%
associate/junior college Count 30 191 144 3 368
% within R’s subjective class identification 8.7% 12.8% 7.2% 1.8% 9.2%
bachelor’s Count 27 269 686 49 1031
% within R’s subjective class identification 7.8% 18.1% 34.4% 29.5% 25.8%
graduate Count 6 123 546 84 759
% within R’s subjective class identification 1.7% 8.3% 27.4% 50.6% 19.0%
Total Count 345 1489 1995 166 3995
% within R’s subjective class identification 100.0% 100.0% 100.0% 100.0% 100.0%
Chi-Square Tests
Value df Asymptotic Significance (2-sided)
Pearson Chi-Square 819.579 12 <.001
Likelihood Ratio 839.200 12 <.001
Linear-by-Linear Association 700.351 1 <.001
N of Valid Cases 3995
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.22.
Symmetric Measures
Value Asymptotic Standard Error Approximate T Approximate Significance
Interval by Interval Pearson’s R .419 .013 29.139 <.001
Ordinal by Ordinal Spearman Correlation .419 .013 29.158 <.001
N of Valid Cases 3995
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Table 4 shows how a table suitable for include in a paper might look if created from the SPSS output in Table 3. Note that we use asterisks to indicate the significance level of the results: * means p < 0.05; ** means p < 0.01; *** means p < 0.001; and no stars mean p > 0.05 (and thus that the result is not significant). Also note than N is the abbreviation for the number of respondents.

 
18.8% 7.1% 3.4% 4.2% 6.2%
62.9% 53.7% 27.6% 13.9% 39.8%
8.7% 12.8% 7.2% 1.8% 9.2%
7.8% 18.1% 34.4% 29.5% 25.8%
1.7% 8.3% 27.4% 50.6% 19.0%
N: 3995 Spearman Correlation 0.419***

If we were going to discuss the results of this crosstabulation in a quantitative research paper, the discussion might look like this:

A crosstabulation of respondent’s class identification and their highest degree earned, with class identification as the independent variable, is significant, with a Spearman correlation of 0.419, as shown in Table 4. Among lower class and working class respondents, more than 50% had earned a high school degree. Less than 20% of poor respondents and less than 40% of working-class respondents had earned more than a high school degree. In contrast, the majority of middle class and upper class respondents had earned at least a bachelor’s degree. In fact, 50% of upper class respondents had earned a graduate degree.

Correlation

When presenting a correlating matrix, one of the most important things to note is that we only present half the table so as not to include duplicated results. Think of the line through the table where empty cells exist to represent the correlation between a variable and itself, and include only the triangle of data either above or below that line of cells. Consider the output in Table 5.

Table 5. SPSS Output: Correlations
Age of respondent R’s occupational prestige score (2010) Highest year of school R completed R’s family income in 1986 dollars
Age of respondent Pearson Correlation 1 .087 .014 .017
Sig. (2-tailed) <.001 .391 .314
N 3699 3571 3683 3336
R’s occupational prestige score (2010) Pearson Correlation .087 1 .504 .316
Sig. (2-tailed) <.001 <.001 <.001
N 3571 3873 3817 3399
Highest year of school R completed Pearson Correlation .014 .504 1 .360
Sig. (2-tailed) .391 <.001 <.001
N 3683 3817 3966 3497
R’s family income in 1986 dollars Pearson Correlation .017 .316 .360 1
Sig. (2-tailed) .314 <.001 <.001
N 3336 3399 3497 3509
**. Correlation is significant at the 0.01 level (2-tailed).

Table 6 shows what the contents of Table 5 might look like when a table is constructed in a fashion suitable for publication.

Table 6. Correlation Matrix
1
0.087*** 1
0.014 0.504*** 1
0.017 0.316*** 0.360*** 1

If we were to discuss the results of this bivariate correlation analysis in a quantitative paper, the discussion might look like this:

Bivariate correlations were run among variables measuring age, occupational prestige, the highest year of school respondents completed, and family income in constant 1986 dollars, as shown in Table 6. Correlations between age and highest year of school completed and between age and family income are not significant. All other correlations are positive and significant at the p<0.001 level. The correlation between age and occupational prestige is weak; the correlations between income and occupational prestige and between income and educational attainment are moderate, and the correlation between education and occupational prestige is strong.

To present the results of a regression, we create one table that includes all of the key information from the multiple tables of SPSS output. This includes the R 2 and significance of the regression, either the B or the beta values (different analysts have different preferences here) for each variable, and the standard error and significance of each variable. Consider the SPSS output in Table 7.

Table 7. SPSS Output: Regression
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .395 .156 .155 36729.04841
a. Predictors: (Constant), Highest year of school R completed, Age of respondent, R’s occupational prestige score (2010)
ANOVA
Model Sum of Squares df Mean Square F Sig.
1 Regression 805156927306.583 3 268385642435.528 198.948 <.001
Residual 4351948187487.015 3226 1349022996.741
Total 5157105114793.598 3229
a. Dependent Variable: R’s family income in 1986 dollars
b. Predictors: (Constant), Highest year of school R completed, Age of respondent, R’s occupational prestige score (2010)
Coefficients
Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics
B Std. Error Beta Tolerance VIF
1 (Constant) -44403.902 4166.576 -10.657 <.001
Age of respondent 9.547 38.733 .004 .246 .805 .993 1.007
R’s occupational prestige score (2010) 522.887 54.327 .181 9.625 <.001 .744 1.345
Highest year of school R completed 3988.545 274.039 .272 14.555 <.001 .747 1.339
a. Dependent Variable: R’s family income in 1986 dollars

The regression output in shown in Table 7 contains a lot of information. We do not include all of this information when making tables suitable for publication. As can be seen in Table 8, we include the Beta (or the B), the standard error, and the significance asterisk for each variable; the R 2 and significance for the overall regression; the degrees of freedom (which tells readers the sample size or N); and the constant; along with the key to p/significance values.

Table 8. Regression Results for Dependent Variable Family Income in 1986 Dollars
Age 0.004
(38.733)
Occupational Prestige Score 0.181***
(54.327)
Highest Year of School Completed 0.272***
(274.039)
Degrees of Freedom 3229
Constant -44,403.902

If we were to discuss the results of this regression in a quantitative paper, the results might look like this:

Table 8 shows the results of a regression in which age, occupational prestige, and highest year of school completed are the independent variables and family income is the dependent variable. The regression results are significant, and all of the independent variables taken together explain 15.6% of the variance in family income. Age is not a significant predictor of income, while occupational prestige and educational attainment are. Educational attainment has a larger effect on family income than does occupational prestige. For every year of additional education attained, family income goes up on average by $3,988.545; for every one-unit increase in occupational prestige score, family income goes up on average by $522.887. [1]
  • Choose two discrete variables and three continuous variables from a dataset of your choice. Produce appropriate descriptive statistics on all five of the variables and create a table of the results suitable for inclusion in a paper.
  • Using the two discrete variables you have chosen, produce an appropriate crosstabulation, with significance and measure of association. Create a table of the results suitable for inclusion in a paper.
  • Using the three continuous variables you have chosen, produce a correlation matrix. Create a table of the results suitable for inclusion in a paper.
  • Using the three continuous variables you have chosen, produce a multivariate linear regression. Create a table of the results suitable for inclusion in a paper.
  • Write a methods section describing the dataset, analytical methods, and variables you utilized in questions 1, 2, 3, and 4 and explaining the results of your descriptive analysis.
  • Write a findings section explaining the results of the analyses you performed in questions 2, 3, and 4.
  • Note that the actual numberical increase comes from the B values, which are shown in the SPSS output in Table 7 but not in the reformatted Table 8. ↵

Social Data Analysis Copyright © 2021 by Mikaila Mariel Lemonik Arthur is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Examples

Data Analysis in Research

Ai generator.

data analysis quantitative research example

Data analysis in research involves systematically applying statistical and logical techniques to describe, illustrate, condense, and evaluate data. It is a crucial step that enables researchers to identify patterns, relationships, and trends within the data, transforming raw information into valuable insights. Through methods such as descriptive statistics, inferential statistics, and qualitative analysis, researchers can interpret their findings, draw conclusions, and support decision-making processes. An effective data analysis plan and robust methodology ensure the accuracy and reliability of research outcomes, ultimately contributing to the advancement of knowledge across various fields.

What is Data Analysis in Research?

Data analysis in research involves using statistical and logical techniques to describe, summarize, and compare collected data. This includes inspecting, cleaning, transforming, and modeling data to find useful information and support decision-making. Quantitative data provides measurable insights, and a solid research design ensures accuracy and reliability. This process helps validate hypotheses, identify patterns, and make informed conclusions, making it a crucial step in the scientific method.

Examples of Data analysis in Research

  • Survey Analysis : Researchers collect survey responses from a sample population to gauge opinions, behaviors, or characteristics. Using descriptive statistics, they summarize the data through means, medians, and modes, and then inferential statistics to generalize findings to a larger population.
  • Experimental Analysis : In scientific experiments, researchers manipulate one or more variables to observe the effect on a dependent variable. Data is analyzed using methods such as ANOVA or regression analysis to determine if changes in the independent variable(s) significantly affect the dependent variable.
  • Content Analysis : Qualitative research often involves analyzing textual data, such as interview transcripts or open-ended survey responses. Researchers code the data to identify recurring themes, patterns, and categories, providing a deeper understanding of the subject matter.
  • Correlation Studies : Researchers explore the relationship between two or more variables using correlation coefficients. For example, a study might examine the correlation between hours of study and academic performance to identify if there is a significant positive relationship.
  • Longitudinal Analysis : This type of analysis involves collecting data from the same subjects over a period of time. Researchers analyze this data to observe changes and developments, such as studying the long-term effects of a specific educational intervention on student achievement.
  • Meta-Analysis : By combining data from multiple studies, researchers perform a meta-analysis to increase the overall sample size and enhance the reliability of findings. This method helps in synthesizing research results to draw broader conclusions about a particular topic or intervention.

Data analysis in Qualitative Research

Data analysis in qualitative research involves systematically examining non-numeric data, such as interviews, observations, and textual materials, to identify patterns, themes, and meanings. Here are some key steps and methods used in qualitative data analysis:

  • Coding : Researchers categorize the data by assigning labels or codes to specific segments of the text. These codes represent themes or concepts relevant to the research question.
  • Thematic Analysis : This method involves identifying and analyzing patterns or themes within the data. Researchers review coded data to find recurring topics and construct a coherent narrative around these themes.
  • Content Analysis : A systematic approach to categorize verbal or behavioral data to classify, summarize, and tabulate the data. This method often involves counting the frequency of specific words or phrases.
  • Narrative Analysis : Researchers focus on the stories and experiences shared by participants, analyzing the structure, content, and context of the narratives to understand how individuals make sense of their experiences.
  • Grounded Theory : This method involves generating a theory based on the data collected. Researchers collect and analyze data simultaneously, continually refining and adjusting their theoretical framework as new data emerges.
  • Discourse Analysis : Examining language use and communication patterns within the data, researchers analyze how language constructs social realities and power relationships.
  • Case Study Analysis : An in-depth analysis of a single case or multiple cases, exploring the complexities and unique aspects of each case to gain a deeper understanding of the phenomenon under study.

Data analysis in Quantitative Research

Data analysis in quantitative research involves the systematic application of statistical techniques to numerical data to identify patterns, relationships, and trends. Here are some common methods used in quantitative data analysis:

  • Descriptive Statistics : This includes measures such as mean, median, mode, standard deviation, and range, which summarize and describe the main features of a data set.
  • Inferential Statistics : Techniques like t-tests, chi-square tests, and ANOVA (Analysis of Variance) are used to make inferences or generalizations about a population based on a sample.
  • Regression Analysis : This method examines the relationship between dependent and independent variables. Simple linear regression analyzes the relationship between two variables, while multiple regression examines the relationship between one dependent variable and several independent variables.
  • Correlation Analysis : Researchers use correlation coefficients to measure the strength and direction of the relationship between two variables.
  • Factor Analysis : This technique is used to identify underlying relationships between variables by grouping them into factors based on their correlations.
  • Cluster Analysis : A method used to group a set of objects or cases into clusters, where objects in the same cluster are more similar to each other than to those in other clusters.
  • Hypothesis Testing : This involves testing an assumption or hypothesis about a population parameter. Common tests include z-tests, t-tests, and chi-square tests, which help determine if there is enough evidence to reject the null hypothesis.
  • Time Series Analysis : This method analyzes data points collected or recorded at specific time intervals to identify trends, cycles, and seasonal variations.
  • Multivariate Analysis : Techniques like MANOVA (Multivariate Analysis of Variance) and PCA (Principal Component Analysis) are used to analyze data that involves multiple variables to understand their effect and relationships.
  • Structural Equation Modeling (SEM) : A multivariate statistical analysis technique that is used to analyze structural relationships. This method is a combination of factor analysis and multiple regression analysis and is used to analyze the structural relationship between measured variables and latent constructs.

Data analysis in Research Methodology

Data analysis in research methodology involves the process of systematically applying statistical and logical techniques to describe, condense, recap, and evaluate data. Here are the key components and methods involved:

  • Data Preparation : This step includes collecting, cleaning, and organizing raw data. Researchers ensure data quality by handling missing values, removing duplicates, and correcting errors.
  • Descriptive Analysis : Researchers use descriptive statistics to summarize the basic features of the data. This includes measures such as mean, median, mode, standard deviation, and graphical representations like histograms and pie charts.
  • Inferential Analysis : This involves using statistical tests to make inferences about the population from which the sample was drawn. Common techniques include t-tests, chi-square tests, ANOVA, and regression analysis.
  • Qualitative Data Analysis : For non-numeric data, researchers employ methods like coding, thematic analysis, content analysis, narrative analysis, and discourse analysis to identify patterns and themes.
  • Quantitative Data Analysis : For numeric data, researchers apply statistical methods such as correlation, regression, factor analysis, cluster analysis, and time series analysis to identify relationships and trends.
  • Hypothesis Testing : Researchers test hypotheses using statistical methods to determine whether there is enough evidence to reject the null hypothesis. This involves calculating p-values and confidence intervals.
  • Data Interpretation : This step involves interpreting the results of the data analysis. Researchers draw conclusions based on the statistical findings and relate them back to the research questions and objectives.
  • Validation and Reliability : Ensuring the validity and reliability of the analysis is crucial. Researchers check for consistency in the results and use methods like cross-validation and reliability testing to confirm their findings.
  • Visualization : Effective data visualization techniques, such as charts, graphs, and plots, are used to present the data in a clear and understandable manner, aiding in the interpretation and communication of results.
  • Reporting : The final step involves reporting the results in a structured format, often including an introduction, methodology, results, discussion, and conclusion. This report should clearly convey the findings and their implications for the research question.

Types of Data analysis in Research

Types of Data analysis in Research

  • Purpose : To summarize and describe the main features of a dataset.
  • Methods : Mean, median, mode, standard deviation, frequency distributions, and graphical representations like histograms and pie charts.
  • Example : Calculating the average test scores of students in a class.
  • Purpose : To make inferences or generalizations about a population based on a sample.
  • Methods : T-tests, chi-square tests, ANOVA (Analysis of Variance), regression analysis, and confidence intervals.
  • Example : Testing whether a new teaching method significantly affects student performance compared to a traditional method.
  • Purpose : To analyze data sets to find patterns, anomalies, and test hypotheses.
  • Methods : Visualization techniques like box plots, scatter plots, and heat maps; summary statistics.
  • Example : Visualizing the relationship between hours of study and exam scores using a scatter plot.
  • Purpose : To make predictions about future outcomes based on historical data.
  • Methods : Regression analysis, machine learning algorithms (e.g., decision trees, neural networks), and time series analysis.
  • Example : Predicting student graduation rates based on their academic performance and demographic data.
  • Purpose : To provide recommendations for decision-making based on data analysis.
  • Methods : Optimization algorithms, simulation, and decision analysis.
  • Example : Suggesting the best course of action for improving student retention rates based on various predictive factors.
  • Purpose : To identify and understand cause-and-effect relationships.
  • Methods : Controlled experiments, regression analysis, path analysis, and structural equation modeling (SEM).
  • Example : Determining the impact of a specific intervention, like a new curriculum, on student learning outcomes.
  • Purpose : To understand the specific mechanisms through which variables affect one another.
  • Methods : Detailed modeling and simulation, often used in scientific research to understand biological or physical processes.
  • Example : Studying how a specific drug interacts with biological pathways to affect patient health.

How to write Data analysis in Research

Data analysis is crucial for interpreting collected data and drawing meaningful conclusions. Follow these steps to write an effective data analysis section in your research.

1. Prepare Your Data

Ensure your data is clean and organized:

  • Remove duplicates and irrelevant data.
  • Check for errors and correct them.
  • Categorize data if necessary.

2. Choose the Right Analysis Method

Select a method that fits your data type and research question:

  • Quantitative Data : Use statistical analysis such as t-tests, ANOVA, regression analysis.
  • Qualitative Data : Use thematic analysis, content analysis, or narrative analysis.

3. Describe Your Analytical Techniques

Clearly explain the methods you used:

  • Software and Tools : Mention any software (e.g., SPSS, NVivo) used.
  • Statistical Tests : Detail the statistical tests applied, such as chi-square tests or correlation analysis.
  • Qualitative Techniques : Describe coding and theme identification processes.

4. Present Your Findings

Organize your findings logically:

  • Use Tables and Figures : Display data in tables, graphs, and charts for clarity.
  • Summarize Key Results : Highlight the most significant findings.
  • Include Relevant Statistics : Report p-values, confidence intervals, means, and standard deviations.

5. Interpret the Results

Explain what your findings mean in the context of your research:

  • Compare with Hypotheses : State whether the results support your hypotheses.
  • Relate to Literature : Compare your results with previous studies.
  • Discuss Implications : Explain the significance of your findings.

6. Discuss Limitations

Acknowledge any limitations in your data or analysis:

  • Sample Size : Note if the sample size was small.
  • Biases : Mention any potential biases in data collection.
  • External Factors : Discuss any factors that might have influenced the results.

7. Conclude with a Summary

Wrap up your data analysis section:

  • Restate Key Findings : Briefly summarize the main results.
  • Future Research : Suggest areas for further investigation.

Importance of Data analysis in Research

Data analysis is a fundamental component of the research process. Here are five key points highlighting its importance:

  • Enhances Accuracy and Reliability Data analysis ensures that research findings are accurate and reliable. By using statistical techniques, researchers can minimize errors and biases, ensuring that the results are dependable.
  • Facilitates Informed Decision-Making Through data analysis, researchers can make informed decisions based on empirical evidence. This is crucial in fields like healthcare, business, and social sciences, where decisions impact policies, strategies, and outcomes.
  • Identifies Trends and Patterns Analyzing data helps researchers uncover trends and patterns that might not be immediately visible. These insights can lead to new hypotheses and areas of study, advancing knowledge in the field.
  • Supports Hypothesis Testing Data analysis is vital for testing hypotheses. Researchers can use statistical methods to determine whether their hypotheses are supported or refuted, which is essential for validating theories and advancing scientific understanding.
  • Provides a Basis for Predictions By analyzing current and historical data, researchers can develop models that predict future outcomes. This predictive capability is valuable in numerous fields, including economics, climate science, and public health.

FAQ’s

What is the difference between qualitative and quantitative data analysis.

Qualitative analysis focuses on non-numerical data to understand concepts, while quantitative analysis deals with numerical data to identify patterns and relationships.

What is descriptive statistics?

Descriptive statistics summarize and describe the features of a data set, including measures like mean, median, mode, and standard deviation.

What is inferential statistics?

Inferential statistics use sample data to make generalizations about a larger population, often through hypothesis testing and confidence intervals.

What is regression analysis?

Regression analysis examines the relationship between dependent and independent variables, helping to predict outcomes and understand variable impacts.

What is the role of software in data analysis?

Software like SPSS, R, and Excel facilitate data analysis by providing tools for statistical calculations, visualization, and data management.

What are data visualization techniques?

Data visualization techniques include charts, graphs, and maps, which help in presenting data insights clearly and effectively.

What is data cleaning?

Data cleaning involves removing errors, inconsistencies, and missing values from a data set to ensure accuracy and reliability in analysis.

What is the significance of sample size in data analysis?

Sample size affects the accuracy and generalizability of results; larger samples generally provide more reliable insights.

How does correlation differ from causation?

Correlation indicates a relationship between variables, while causation implies one variable directly affects the other.

What are the ethical considerations in data analysis?

Ethical considerations include ensuring data privacy, obtaining informed consent, and avoiding data manipulation or misrepresentation.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Quantitative vs. Qualitative Research Design: Understanding the Differences

data analysis quantitative research example

As a future professional in the social and education landscape, research design is one of the most critical strategies that you will master to identify challenges, ask questions and form data-driven solutions to address problems specific to your industry. 

Many approaches to research design exist, and not all work in every circumstance. While all data-focused research methods are valid in their own right, certain research design methods are more appropriate for specific study objectives.

Unlock our resource to learn more about jump starting a career in research design — Research Design and Data Analysis for the Social Good .

We will discuss the differences between quantitative (numerical and statistics-focused) and qualitative (non-numerical and human-focused) research design methods so that you can determine which approach is most strategic given your specific area of graduate-level study. 

Understanding Social Phenomena: Qualitative Research Design

Qualitative research focuses on understanding a phenomenon based on human experience and individual perception. It is a non-numerical methodology relying on interpreting a process or result. Qualitative research also paves the way for uncovering other hypotheses related to social phenomena. 

In its most basic form, qualitative research is exploratory in nature and seeks to understand the subjective experience of individuals based on social reality.

Qualitative data is…

  • often used in fields related to education, sociology and anthropology; 
  • designed to arrive at conclusions regarding social phenomena; 
  • focused on data-gathering techniques like interviews, focus groups or case studies; 
  • dedicated to perpetuating a flexible, adaptive approach to data gathering;
  • known to lead professionals to deeper insights within the overall research study.

You want to use qualitative data research design if:

  • you work in a field concerned with enhancing humankind through the lens of social change;
  • your research focuses on understanding complex social trends and individual perceptions of those trends;
  • you have interests related to human development and interpersonal relationships.

Examples of Qualitative Research Design in Education

Here are just a few examples of how qualitative research design methods can impact education:

Example 1: Former educators participate in in-depth interviews to help determine why a specific school is experiencing a higher-than-average turnover rate compared to other schools in the region. These interviews help determine the types of resources that will make a difference in teacher retention. 

Example 2: Focus group discussions occur to understand the challenges that neurodivergent students experience in the classroom daily. These discussions prepare administrators, staff, teachers and parents to understand the kinds of support that will augment and improve student outcomes.

Example 3: Case studies examine the impacts of a new education policy that limits the number of teacher aids required in a special needs classroom. These findings help policymakers determine whether the new policy affects the learning outcomes of a particular class of students.

Interpreting the Numbers: Quantitative Research Design

Quantitative research tests hypotheses and measures connections between variables. It relies on insights derived from numbers — countable, measurable and statistically sound data. Quantitative research is a strategic research design used when basing critical decisions on statistical conclusions and quantifiable data.

Quantitative research provides numerical-backed quantifiable data that may approve or discount a theory or hypothesis.

Quantitative data is…

  • often used in fields related to education, data analysis and healthcare; 
  • designed to arrive at numerical, statistical conclusions based on objective facts;
  • focused on data-gathering techniques like experiments, surveys or observations;
  • dedicated to using mathematical principles to arrive at conclusions;
  • known to lead professionals to indisputable observations within the overall research study.

You want to use quantitative data research design if:

  • you work in a field concerned with analyzing data to inform decisions;
  • your research focuses on studying relationships between variables to form data-driven conclusions;
  • you have interests related to mathematics, statistical analysis and data science.

Examples of Quantitative Research Design in Education

Here are just a few examples of how quantitative research design methods may impact education:

Example 1: Researchers compile data to understand the connection between class sizes and standardized test scores. Researchers can determine if and what the relationship is between smaller, intimate class sizes and higher test scores for grade-school children using statistical and data analysis.

Example 2: Professionals conduct an experiment in which a group of high school students must complete a certain number of community service hours before graduation. Researchers compare those students to another group of students who did not complete service hours — using statistical analysis to determine if the requirement increased college acceptance rates.

Example 3: Teachers take a survey to examine an education policy that restricts the number of extracurricular activities offered at a particular academic institution. The findings help better understand the far-reaching impacts of extracurricular opportunities on academic performance.

Making the Most of Research Design Methods for Good: Vanderbilt University’s Peabody College

Vanderbilt University's Peabody College of Education and Human Development offers a variety of respected, nationally-recognized graduate programs designed with future agents of social change in mind. We foster a culture of excellence and compassion and guide you to become the best you can be — both in the classroom and beyond.

At Peabody College, you will experience

  • an inclusive, welcoming community of like-minded professionals;
  • the guidance of expert faculty with real-world industry experience;
  • opportunities for valuable, hands-on learning experiences,
  • the option of specializing depending on your specific area of interest.

Explore our monthly publication — Ideas in Action — for an inside look at how Peabody College translates discoveries into action.

Please click below to explore a few of the graduate degrees offered at Peabody College:

  • Child Studies M.Ed. — a rigorous Master of Education degree that prepares students to examine the developmental, learning and social issues concerning children and that allows students to choose from one of two tracks (the Clinical and Developmental Research Track or the Applied Professional Track).
  • Cognitive Psychology in Context M.S. — an impactful Master of Science program that emphasizes research design and statistical analysis to understand cognitive processes and real-world applications best, making it perfect for those interested in pursuing doctoral studies in cognitive science.
  • Education Policy M.P.P — an analysis-focused Master of Public Policy program designed for future leaders in education policy and practice, allowing students to specialize in either K-12 Education Policy, Higher Education Policy or Quantitative Methods in Education Policy. 
  • Quantitative Methods M.Ed. — a data-driven Master of Education degree that teaches the theory and application of quantitative analysis in behavioral, social and educational sciences.

Connect with the Community of Professionals Seeking to Enhance Humankind at Peabody College

At Peabody College, we equip you with the marketable, transferable skills needed to secure a valuable career in education and beyond. You will emerge from the graduate program of your choice ready to enhance humankind in more meaningful ways than you could have imagined.

If you want to develop the sought-after skills needed to be a force for change in the social and educational spaces, you are in the right place .

We invite you to request more information ; we will connect you with an admissions professional who can answer all your questions about choosing one of these transformative graduate degrees at Peabody College. You may also take this opportunity to review our admissions requirements and start your online application today. 

A young boy is sitting at a table with his parents.

Subscribe to the Blog

← All Posts

Media Inquiries

615-322-6397 Email

Latest Stories

7 quantitative data careers in education that can make a difference, the rewarding outcomes of being a special education teacher, should i earn an m.p.p. degree in education policy 4 questions to ask, keep reading.

data analysis quantitative research example

Explore Stories by Topic

  • M.Ed. Degrees
  • Research Design

Examples of qualitative data.

What is qualitative data? How to understand, collect, and analyze it

A comprehensive guide to qualitative data, how it differs from quantitative data, and why it's a valuable tool for solving problems.

What is qualitative research?

Importance of qualitative data.

  • Differences between qualitative and quantitative data

Characteristics of qualitative data

Types of qualitative data.

  • Pros and cons
  • Collection methods

Everything that’s done digitally—from surfing the web to conducting a transaction—creates a data trail. And data analysts are constantly exploring and examining that trail, trying to find out ways to use data to make better decisions.

Different types of data define more and more of our interactions online—one of the most common and well-known being qualitative data or data that can be expressed in descriptions and feelings. 

This guide takes a deep look at what qualitative data is, what it can be used for, how it’s collected, and how it’s important to you. 

Key takeaways: 

Qualitative data gives insights into people's thoughts and feelings through detailed descriptions from interviews, observations, and visual materials.

The three main types of qualitative data are binary, nominal, and ordinal.

There are many different types of qualitative data, like data in research, work, and statistics. 

Both qualitative and quantitative research are conducted through surveys and interviews, among other methods. 

What is qualitative data?

Qualitative data is descriptive information that captures observable qualities and characteristics not quantifiable by numbers. It is collected from interviews, focus groups, observations, and documents offering insights into experiences, perceptions, and behaviors.

Qualitative data analysis cannot be counted or measured because it describes the data. It refers to the words or labels used to describe certain characteristics or traits.

This type of data answers the "why" or "how" behind the analysis . It’s often used to conduct open-ended studies, allowing those partaking to show their true feelings and actions without direction.

Think of qualitative data as the type of data you’d get if you were to ask someone why they did something—what was their reasoning? 

Qualitative research not only helps to collect data, it also gives the researcher a chance to understand the trends and meanings of natural actions. 

This type of data research focuses on the qualities of users—the actions behind the numbers. Qualitative research is the descriptive and subjective research that helps bring context to quantitative data. 

It’s flexible and iterative. For example: 

The music had a light tone that filled the kitchen.

Every blue button had white lettering, while the red buttons had yellow. 

The little girl had red hair with a white hat.

Qualitative data is important in determining the frequency of traits or characteristics. 

Understanding your data can help you understand your customers, users, or visitors better. And, when you understand your audience better, you can make them happier.  First-party data , which is collected directly from your own audience, is especially valuable as it provides the most accurate and relevant insights for your specific needs.

Qualitative data helps the market researcher answer questions like what issues or problems they are facing, what motivates them, and what improvements can be made.

Examples of qualitative data

You’ve most likely used qualitative data today. This type of data is found in your everyday work and in statistics all over the web. Here are some examples of qualitative data in descriptions, research, work, and statistics. 

Qualitative data in descriptions

Analysis of qualitative data requires descriptive context in order to support its theories and hypothesis. Here are some core examples of descriptive qualitative data:

The extremely short woman has curly hair and brilliant blue eyes.

A bright white light pierced the small dark space. 

The plump fish jumped out of crystal-clear waters. 

The fluffy brown dog jumped over the tall white fence. 

A soft cloud floated by an otherwise bright blue sky.

Qualitative data in research

Qualitative data research methods allow analysts to use contextual information to create theories and models. These open- and closed-ended questions can be helpful to understand the reasoning behind motivations, frustrations, and actions —in any type of case. 

Some examples of qualitative data collection in research:

What country do you work in? 

What is your most recent job title? 

How do you rank in the search engines? 

How do you rate your purchase: good, bad, or exceptional?

Qualitative data at work

Professionals in various industries use qualitative observations in their work and research. Examples of this type of data in the workforce include:

A manager gives an employee constructive criticism on their skills. "Your efforts are solid and you understand the product knowledge well, just have patience."

A judge shares the verdict with the courtroom. "The man was found not guilty and is free to go."

A sales associate collects feedback from customers. "The customer said the check-out button did not work.”

A teacher gives feedback to their student. "I gave you an A on this project because of your dedication and commitment to the cause."

A digital marketer watches a session replay to get an understand of how users use their platform.

Qualitative data in statistics

Qualitative data can provide important statistics about any industry, any group of users, and any products. Here are some examples of qualitative data set collections in statistics:

The age, weight, and height of a group of body types to determine clothing size charts. 

The origin, gender, and location for a census reading.

The name, title, and profession of people attending a conference to aid in follow-up emails.

Difference between qualitative and quantitative data

Qualitative and quantitative data are much different, but bring equal value to any data analysis. When it comes to understanding data research, there are different analysis methods, collection types and uses. 

Here are the differences between qualitative and quantitative data :

Qualitative data is individualized, descriptive, and relating to emotions.

Quantitative data is countable, measurable and relating to numbers.

Qualitative data helps us understand why, or how something occurred behind certain behaviors .

Quantitative data helps us understand how many, how much, or how often something occurred. 

Qualitative data is subjective and personalized.

Quantitative data is fixed and ubiquitous.

Qualitative research methods are conducted through observations or in-depth interviews.

Quantitative research methods are conducted through surveys and factual measuring. 

Qualitative data is analyzed by grouping the data into classifications and topics. 

Quantitative data is analyzed using statistical analysis.

Both provide a ton of value for any data collection and are key to truly understanding trending use cases and patterns in behavior . Dig deeper into quantitative data examples .

Qualtitative vs quantitative examples

The characteristics of qualitative data are vast. There are a few traits that stand out amongst other data that should be understood for successful data analysis. 

Descriptive : describing or classifying in an objective and nonjudgmental way.

Detailed : to give an account in words with full particulars.

Open-ended : having no determined limit or boundary.

Non-numerical : not containing numbers. 

Subjective : based on or influenced by personal feelings, tastes, or opinions.

With qualitative data samples, these traits can help you understand the meaning behind the equation—or for lack of a better term, what’s behind the results. 

As we narrow down the importance of qualitative data, you should understand that there are different data types. Data analysts often categorize qualitative data into three types:

1. Binary data

Binary data is numerically represented by a combination of zeros and ones. Binary data is the only category of data that can be directly understood and executed by a computer.

Data analysts use binary data to create statistical models that predict how often the study subject is likely to be positive or negative, up or down, right or wrong—based on a zero scale.

2. Nominal data

Nominal data , also referred to as “named, labeled data” or “nominal scaled data,” is any type of data used to label something without giving it a numerical value. 

Data analysts use nominal data to determine statistically significant differences between sets of qualitative data. 

For example, a multiple-choice test to profile participants’ skills in a study.

3. Ordinal data

Ordinal data is qualitative data categorized in a particular order or on a ranging scale. When researchers use ordinal data, the order of the qualitative information matters more than the difference between each category. Data analysts might use ordinal data when creating charts, while researchers might use it to classify groups, such as age, gender, or class.

For example, a Net Promoter Score ( NPS ) survey has results that are on a 0-10 satisfaction scale. 

When should you use qualitative research?

One of the important things to learn about qualitative data is when to use it. 

Qualitative data is used when you need to determine the particular trends of traits or characteristics or to form parameters for larger data sets to be observed. Qualitative data provides the means by which analysts can quantify the world around them.

You would use qualitative data to help answer questions like who your customers are, what issues or problems they’re facing, and where they need to focus their attention, so you can better solve those issues.

Qualitative data is widely used to understand language consumers speak—so apply it where necessary. 

Pros and cons of qualitative data

Qualitative data is a detailed, deep understanding of a topic through observing and interviewing a sample of people. There are both benefits and drawbacks to this type of data. 

Pros of qualitative data

Qualitative research is affordable and requires a small sample size.

Qualitative data provides a predictive element and provides specific insight into development.

Qualitative research focuses on the details of personal choice and uses these individual choices as workable data.

Qualitative research works to remove bias from its collected data by using an open-ended response process.

Qualitative data research provides useful content in any thematic analysis.

Cons of qualitative data 

Qualitative data can be time-consuming to collect and can be difficult to scale out to a larger population.

Qualitative research creates subjective information points.

Qualitative research can involve significant levels of repetition and is often difficult to replicate.

Qualitative research relies on the knowledge of the researchers.

Qualitative research does not offer statistical analysis, for that, you have to turn to quantitative data.

Qualitative data collection methods

Here are the main approaches and collection methods of qualitative studies and data: 

1. Interviews

Personal interviews are one of the most commonly used deductive data collection methods for qualitative research, because of its personal approach.

The interview may be informal and unstructured and is often conversational in nature. The interviewer or the researcher collects data directly from the interviewee one-to-one. Mostly the open-ended questions are asked spontaneously, with the interviewer allowing the flow of the interview to dictate the questions and answers.

The point of the interview is to obtain how the interviewee feels about the subject. 

2. Focus groups

Focus groups are held in a discussion-style setting with 6 to 10 people. The moderator is assigned to monitor and dictate the discussion based on focus questions.

Depending on the qualitative data that is needed, the members of the group may have something in common. For example, a researcher conducting a study on dog sled runners understands dogs, sleds, and snow and would have sufficient knowledge of the subject matter.

3. Data records 

Data doesn’t start with your collection, it has most likely been obtained in the past. 

Using already existing reliable data and similar sources of information as the data source is a surefire way to obtain qualitative research. Much like going to a library, you can review books and other reference material to collect relevant data that can be used in the research.

For example, if you were to study the trends of dictionaries, you would want to know the past history of every dictionary made, starting with the very first one. 

4. Observation

Observation is a longstanding qualitative data collection method, where the researcher simply observes behaviors in a participant's natural setting. They keep a keen eye on the participants and take down transcript notes to find out innate responses and reactions without prompting. 

Typically observation is an inductive approach, which is used when a researcher has very little or no idea of the research phenomenon. 

Other documentation methods, such as video recordings, audio recordings, and photo imagery, may be used to obtain qualitative data.

Further reading: Site observations through heatmaps

5. Case studies

Case studies are an intensive analysis of an individual person or community with a stress on developmental factors in relation to the environment. 

In this method, data is gathered by an in-depth analysis and is used to understand both simple and complex subjects. The goal of a case study is to see how using a product or service has positively impacted the subject, showcasing a solution to a problem or the like. 

6. Longitudinal studies

A longitudinal study is where people who share a single characteristic are studied over a period of time. 

This data collection method is performed on the same subject repeatedly over an extended period. It is an observational research method that goes on for a few years and, in some cases, decades. The goal is to find correlations of subjects with common traits.

For example, medical researchers conduct longitudinal studies to ascertain the effects of a drug or the symptoms related.

Qualitative data analysis tools

And, as with anything—you aren’t able to be successful without the right tools. Here are a few qualitative data analysis tools to have in your toolbox: 

MAXQDA —A qualitative and mixed-method data analysis software 

Fullstory —A behavioral data and analysis platform

ATLAS.ti —A powerful qualitative data tool that offers AI-based functions 

Quirkos —Qualitative data analysis software for the simple learner

Dedoose —A project management and analysis tool for collaboration and teamwork

Taguette —A free, open-source, data analysis and organization platform 

MonkeyLearn —AI-powered, qualitative text analysis, and visualization tool 

Qualtrics —Experience management software

Frequently asked questions about qualitative data

Is qualitative data subjective.

Yes, categorical data or qualitative data is information that cannot generally be proven. For instance, the statement “the chair is too small” depends on what it is used for and by whom it is being used.

Who uses qualitative data?

If you’re interested in the following, you should use qualitative data:

Understand emotional connections to your brand

Identify obstacles in any funnel, for example with session replay

Uncover confusion about your messaging

Locate product feature gaps 

Improve usability of your website, app, or experience

Observe how people talk, think, and feel about your brand

Learn how an organization selects vendors and partners

What are the steps for qualitative data?

1. Transcribe your data : Once you’ve collected all the data, you need to transcribe it. The first step in analyzing your data is arranging it systematically. Arranging data means converting all the data into a text format. 

2. Organize your data : Go back to your research objectives and organize the data based on the questions asked. Arrange your research objective in a table, so it appears visually clear. Avoid working with unorganized data, there will be no conclusive results obtained.

3. Categorize and assign the data : The coding process of qualitative data means categorizing and assigning variables, properties, and patterns. Coding is an important step in qualitative data analysis, as you can derive theories from relevant research findings. You can then begin to gain in-depth insight into the data that help make informed decisions.

4. Validate your data : Data validation is a recurring step that should be followed throughout the research process. There are two sides to validating data: the accuracy and reliability of your research methods, which is the extent to which the methods produce accurate data consistently. 

5. Conclude the data analysis : Present your data in a report that shares the method used to conduct the research studies, the outcomes, and the projected hypothesis of your findings in any related areas.

Is qualitative data better than quantitative data?

One is not better than the other, rather they work cohesively to create a better overall data analysis experience. Understanding the importance of both qualitative and quantitative data is going to produce the best possible data content analysis outcome for any study. 

Further reading : Qualitative vs. quantitative data — what's the difference?

Related posts

data analysis quantitative research example

Learn how to analyze qualitative data. We show examples of how to collect, organize, and analyze qualitative data to gain insights.

Here's how you can quantitatively analyze your qualitative digital experience data to unlock an entirely new workflow.

A number sign

Quantitative data is used for calculations or obtaining numerical results. Learn about the different types of quantitative data uses cases and more.

A person next to a chart graph

Qualitative and quantitative data differ on what they emphasize—qualitative focuses on meaning, and quantitative emphasizes statistical analysis.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Research Briefing
  • Published: 16 July 2024

Generation and analysis of the rice proteome reveals a role for m 6 A in posttranscriptional regulation

Nature Plants ( 2024 ) Cite this article

107 Accesses

Metrics details

  • Biological techniques
  • Plant biotechnology

We present a comprehensive quantitative analysis of the proteome across 14 major rice tissues, which reveals that N 6 -methyladenosine (m 6 A) is negatively correlated with protein abundance. This finding provides insight into the longstanding discrepancy observed between RNA and protein levels in plants.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

111,21 € per year

only 9,27 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

data analysis quantitative research example

Mergner, J. et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579 , 409–414 (2020). This paper reports a comprehensive A. thaliana proteome.

Article   CAS   PubMed   Google Scholar  

Jiang, L. et al. A quantitative proteome map of the human body. Cell 183 , 269–283 (2020). This paper reports a comprehensive human proteome across tissues using tandem mass tag labelling technology.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Giansanti, P. et al. Mass spectrometry-based draft of the mouse proteome. Nat. Methods 19 , 803–811 (2022). This paper reports a comprehensive mouse proteome.

Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17 , 399–404 (2020). This paper reports the 16-plex tandem mass tag reagent for highly multiplex and accurate quantitative proteomics.

Dierks, D. et al. Multiplexed profiling facilitates robust m 6 A quantification at site, gene and sample resolution. Nat. Methods 18 , 1060–1067 (2021). This paper reports a cost-effective method for profiling the m 6 A methylome from multiple samples simultaneously.

Download references

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a summary of: Li, S.-T. et al. Mass spectrometry-based proteomic landscape of rice reveals a posttranscriptional regulatory role of N 6 -methyladenosine. Nat. Plants https://doi.org/10.1038/s41477-024-01745-5 (2024).

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Generation and analysis of the rice proteome reveals a role for m 6 A in posttranscriptional regulation. Nat. Plants (2024). https://doi.org/10.1038/s41477-024-01748-2

Download citation

Published : 16 July 2024

DOI : https://doi.org/10.1038/s41477-024-01748-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

data analysis quantitative research example

IMAGES

  1. Quantitative Analysis

    data analysis quantitative research example

  2. Quantitative Analysis

    data analysis quantitative research example

  3. Data Analysis Plan for Quantitative Research Analysis

    data analysis quantitative research example

  4. What Is Quantitative Data? [Overview, Examples, and Uses]

    data analysis quantitative research example

  5. PPT

    data analysis quantitative research example

  6. FREE 10+ Sample Data Analysis Templates in PDF

    data analysis quantitative research example

VIDEO

  1. Business research methods : Quantitative Data Analysis Hypothesis Testing

  2. Business research methods _ Quantitative Data Analysis

  3. DATA ANALYSIS

  4. Day-5 Application of SPSS for Data Analysis (Quantitative Data Analysis)

  5. Standard Multiple Regression in SPSS

  6. Linear Regression Analysis in SPSS

COMMENTS

  1. Quantitative Data Analysis: A Comprehensive Guide

    Below are the steps to prepare a data before quantitative research analysis: Step 1: Data Collection. Before beginning the analysis process, you need data. Data can be collected through rigorous quantitative research, which includes methods such as interviews, focus groups, surveys, and questionnaires. Step 2: Data Cleaning.

  2. A Really Simple Guide to Quantitative Data Analysis

    The research uses a quantitative approach, mainly quantitative descriptive. [7] For quantitative descriptive data analysis, it begins by entering data into raw data. They are then analyzed based ...

  3. What Is Quantitative Research?

    Learn what quantitative research is, how to collect and analyze numerical data, and what methods and advantages it has. See examples of quantitative research questions, methods and statistics.

  4. Quantitative Data Analysis Methods & Techniques 101

    Learn the basics of quantitative data analysis, including descriptive and inferential statistics, with examples and explanations. Find out when and how to use quantitative methods for your research.

  5. Quantitative Data

    Here is a basic guide for gathering quantitative data: Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.

  6. The Beginner's Guide to Statistical Analysis

    Learn how to plan, collect, and analyze quantitative data for research using five steps and two examples. Find out how to write hypotheses, choose a research design, measure variables, and interpret results.

  7. Quantitative Data: Types, Methods & Examples

    In the world of market research, quantitative data is the lifeblood that fuels strategic decision-making, product innovation and competitive analysis.. This type of numerical data is a vital part of any market research professional's toolkit because it provides measurable and objective evidence for the effectiveness of market and consumer behavioral insights.

  8. (PDF) Quantitative Analysis: the guide for beginners

    quantitative (numbers) and qualitative (words or images) data. The combination of. quantitative and qualitative research methods is called mixed methods. For example, first, numerical data are ...

  9. Quantitative Research

    Quantitative Research. Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions.This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected.

  10. Data Analysis in Quantitative Research

    Literally, inferential analysis infers from the sample data of the population, the entire pool from which a statistical sample is drawn. Usually, quantitative research deals with the sample data except for the Census and tries to estimate the parameters, a measurable characteristic of a population, from the sample statistics.

  11. Part II: Data Analysis Methods in Quantitative Research

    Learn about descriptive statistics and frequency distributions to summarize and describe data sets. See examples of central tendency, variability, skew, and normal distribution.

  12. PDF Developing a Quantitative Data Analysis Plan

    A Data Analysis Plan (DAP) is about putting thoughts into a plan of action. Research questions are often framed broadly and need to be clarified and funnelled down into testable hypotheses and action steps. The DAP provides an opportunity for input from collaborators and provides a platform for training. Having a clear plan of action is also ...

  13. Quantitative Data: What It Is, Types & Examples

    Quantitative data is integral to the research process, providing valuable insights into various phenomena. ... SWOT analysis, is a quantitative data analysis methods that assigns numerical values to indicate strength, weaknesses, opportunities and threats of an organization or product or service which in turn provides a holistic picture about ...

  14. Data Analysis Techniques In Research

    By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms. Also Read: Learning Path to Become a Data Analyst in 2024. Data Analysis Techniques in Quantitative Research

  15. (PDF) Quantitative Data Analysis

    Quantitative data analysis is a systematic process of both collecting and evaluating measurable. and verifiable data. It contains a statistical mechanism of assessing or analyzing quantitative ...

  16. Quantitative Data Analysis: Types, Analysis & Examples

    Analysis of Quantitative Data Examples: Statistical Technique: Example: Application Context: ... Statistical Analysis in Quantitative Research. Statistical analysis is a cornerstone of quantitative research, providing the tools and techniques to interpret numerical data systematically. By applying statistical methods, researchers can identify ...

  17. Data Analysis in Research: Types & Methods

    Methods used for data analysis in quantitative research. ... Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter. Hypothesis test: I t's about sampling research data to answer the survey research questions. For example, researchers might be interested to understand ...

  18. What is Quantitative Research? Definition, Examples, Key ...

    Quantitative research is a type of research that focuses on collecting and analyzing numerical data to answer research questions. There are two main methods used to conduct quantitative research: 1. Primary Method. There are several methods of primary quantitative research, each with its own strengths and limitations.

  19. Qualitative vs Quantitative Research Methods & Data Analysis

    Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

  20. Quantitative Data Analysis: A Complete Guide

    Here's how to make sense of your company's numbers in just four steps: 1. Collect data. Before you can actually start the analysis process, you need data to analyze. This involves conducting quantitative research and collecting numerical data from various sources, including: Interviews or focus groups.

  21. Examples of Quantitative Research Questions

    Understanding Quantitative Research Questions. Quantitative research involves collecting and analyzing numerical data to answer research questions and test hypotheses. These questions typically seek to understand the relationships between variables, predict outcomes, or compare groups. Let's explore some examples of quantitative research ...

  22. Presenting the Results of Quantitative Analysis

    After that comes a literature review, which ends with a summary of the research question(s) and/or hypotheses. A methods section, which explains the source of data, sample, and variables and quantitative techniques used, follows. Many analysts will include a short discussion of their descriptive statistics in the methods section.

  23. PDF A Really Simple Guide to Quantitative Data Analysis

    based decisions rather than exact mathematical proof.The quantitative research processThis guide focuses on descriptive statistics and statistical testing as these are the c. mmon forms of quantitative data analysis required at the university and research level. It is assumed that dat. ollowing stages:Define your aim and research questionsCarry ...

  24. Data Analysis in Research

    Data analysis in quantitative research involves the systematic application of statistical techniques to numerical data to identify patterns, relationships, and trends. Here are some common methods used in quantitative data analysis: ... Acknowledge any limitations in your data or analysis: Sample Size: Note if the sample size was small. Biases: ...

  25. Quantitative vs. Qualitative Research Design: Understanding the Differences

    you have interests related to mathematics, statistical analysis and data science. Examples of Quantitative Research Design in Education. Here are just a few examples of how quantitative research design methods may impact education: Example 1: Researchers compile data to understand the connection between class sizes and standardized test scores ...

  26. What is Qualitative Data? Types, Examples & Analysis

    Difference between qualitative and quantitative data. Qualitative and quantitative data are much different, but bring equal value to any data analysis. When it comes to understanding data research, there are different analysis methods, collection types and uses.

  27. Full article: Integrating Data Analytics Training into Curricula at

    IntroductionIncreasing proficiency in basic Quantitative Data Analytics (QDA) skills is a growing priority for enhancing statistical thinking among college students (Carver et al., 2016). ... This is especially important in the fields of natural and health sciences that have seen a surge in data-intensive research and evidence-based healthcare ...

  28. Generation and analysis of the rice proteome reveals a role ...

    We present a comprehensive quantitative analysis of the proteome across 14 major rice tissues, which reveals that N6-methyladenosine (m6A) is negatively correlated with protein abundance. This ...