Problem Solving

Foundations course, introduction.

Before we start digging into some pretty nifty JavaScript, we need to begin talking about problem solving : the most important skill a developer needs.

Problem solving is the core thing software developers do. The programming languages and tools they use are secondary to this fundamental skill.

From his book, “Think Like a Programmer” , V. Anton Spraul defines problem solving in programming as:

Problem solving is writing an original program that performs a particular set of tasks and meets all stated constraints.

The set of tasks can range from solving small coding exercises all the way up to building a social network site like Facebook or a search engine like Google. Each problem has its own set of constraints, for example, high performance and scalability may not matter too much in a coding exercise but it will be vital in apps like Google that need to service billions of search queries each day.

New programmers often find problem solving the hardest skill to build. It’s not uncommon for budding programmers to breeze through learning syntax and programming concepts, yet when trying to code something on their own, they find themselves staring blankly at their text editor not knowing where to start.

The best way to improve your problem solving ability is by building experience by making lots and lots of programs. The more practice you have the better you’ll be prepared to solve real world problems.

In this lesson we will walk through a few techniques that can be used to help with the problem solving process.

Lesson overview

This section contains a general overview of topics that you will learn in this lesson.

  • Explain the three steps in the problem solving process.
  • Explain what pseudocode is and be able to use it to solve problems.
  • Be able to break a problem down into subproblems.

Understand the problem

The first step to solving a problem is understanding exactly what the problem is. If you don’t understand the problem, you won’t know when you’ve successfully solved it and may waste a lot of time on a wrong solution .

To gain clarity and understanding of the problem, write it down on paper, reword it in plain English until it makes sense to you, and draw diagrams if that helps. When you can explain the problem to someone else in plain English, you understand it.

Now that you know what you’re aiming to solve, don’t jump into coding just yet. It’s time to plan out how you’re going to solve it first. Some of the questions you should answer at this stage of the process:

  • Does your program have a user interface? What will it look like? What functionality will the interface have? Sketch this out on paper.
  • What inputs will your program have? Will the user enter data or will you get input from somewhere else?
  • What’s the desired output?
  • Given your inputs, what are the steps necessary to return the desired output?

The last question is where you will write out an algorithm to solve the problem. You can think of an algorithm as a recipe for solving a particular problem. It defines the steps that need to be taken by the computer to solve a problem in pseudocode.

Pseudocode is writing out the logic for your program in natural language instead of code. It helps you slow down and think through the steps your program will have to go through to solve the problem.

Here’s an example of what the pseudocode for a program that prints all numbers up to an inputted number might look like:

This is a basic program to demonstrate how pseudocode looks. There will be more examples of pseudocode included in the assignments.

Divide and conquer

From your planning, you should have identified some subproblems of the big problem you’re solving. Each of the steps in the algorithm we wrote out in the last section are subproblems. Pick the smallest or simplest one and start there with coding.

It’s important to remember that you might not know all the steps that you might need up front, so your algorithm may be incomplete -— this is fine. Getting started with and solving one of the subproblems you have identified in the planning stage often reveals the next subproblem you can work on. Or, if you already know the next subproblem, it’s often simpler with the first subproblem solved.

Many beginners try to solve the big problem in one go. Don’t do this . If the problem is sufficiently complex, you’ll get yourself tied in knots and make life a lot harder for yourself. Decomposing problems into smaller and easier to solve subproblems is a much better approach. Decomposition is the main way to deal with complexity, making problems easier and more approachable to solve and understand.

In short, break the big problem down and solve each of the smaller problems until you’ve solved the big problem.

Solving Fizz Buzz

To demonstrate this workflow in action, let’s solve a common programming exercise: Fizz Buzz, explained in this wiki article .

Understanding the problem

Write a program that takes a user’s input and prints the numbers from one to the number the user entered. However, for multiples of three print Fizz instead of the number and for the multiples of five print Buzz . For numbers which are multiples of both three and five print FizzBuzz .

This is the big picture problem we will be solving. But we can always make it clearer by rewording it.

Write a program that allows the user to enter a number, print each number between one and the number the user entered, but for numbers that divide by 3 without a remainder print Fizz instead. For numbers that divide by 5 without a remainder print Buzz and finally for numbers that divide by both 3 and 5 without a remainder print FizzBuzz .

Does your program have an interface? What will it look like? Our FizzBuzz solution will be a browser console program, so we don’t need an interface. The only user interaction will be allowing users to enter a number.

What inputs will your program have? Will the user enter data or will you get input from somewhere else? The user will enter a number from a prompt (popup box).

What’s the desired output? The desired output is a list of numbers from 1 to the number the user entered. But each number that is divisible by 3 will output Fizz , each number that is divisible by 5 will output Buzz and each number that is divisible by both 3 and 5 will output FizzBuzz .

Writing the pseudocode

What are the steps necessary to return the desired output? Here is an algorithm in pseudocode for this problem:

Dividing and conquering

As we can see from the algorithm we developed, the first subproblem we can solve is getting input from the user. So let’s start there and verify it works by printing the entered number.

With JavaScript, we’ll use the “prompt” method.

The above code should create a little popup box that asks the user for a number. The input we get back will be stored in our variable answer .

We wrapped the prompt call in a parseInt function so that a number is returned from the user’s input.

With that done, let’s move on to the next subproblem: “Loop from 1 to the entered number”. There are many ways to do this in JavaScript. One of the common ways - that you actually see in many other languages like Java, C++, and Ruby - is with the for loop :

If you haven’t seen this before and it looks strange, it’s actually straightforward. We declare a variable i and assign it 1: the initial value of the variable i in our loop. The second clause, i <= answer is our condition. We want to loop until i is greater than answer . The third clause, i++ , tells our loop to increment i by 1 every iteration. As a result, if the user inputs 10, this loop would print numbers 1 - 10 to the console.

Most of the time, programmers find themselves looping from 0. Due to the needs of our program, we’re starting from 1

With that working, let’s move on to the next problem: If the current number is divisible by 3, then print Fizz .

We are using the modulus operator ( % ) here to divide the current number by three. If you recall from a previous lesson, the modulus operator returns the remainder of a division. So if a remainder of 0 is returned from the division, it means the current number is divisible by 3.

After this change the program will now output this when you run it and the user inputs 10:

The program is starting to take shape. The final few subproblems should be easy to solve as the basic structure is in place and they are just different variations of the condition we’ve already got in place. Let’s tackle the next one: If the current number is divisible by 5 then print Buzz .

When you run the program now, you should see this output if the user inputs 10:

We have one more subproblem to solve to complete the program: If the current number is divisible by 3 and 5 then print FizzBuzz .

We’ve had to move the conditionals around a little to get it to work. The first condition now checks if i is divisible by 3 and 5 instead of checking if i is just divisible by 3. We’ve had to do this because if we kept it the way it was, it would run the first condition if (i % 3 === 0) , so that if i was divisible by 3, it would print Fizz and then move on to the next number in the iteration, even if i was divisible by 5 as well.

With the condition if (i % 3 === 0 && i % 5 === 0) coming first, we check that i is divisible by both 3 and 5 before moving on to check if it is divisible by 3 or 5 individually in the else if conditions.

The program is now complete! If you run it now you should get this output when the user inputs 20:

  • Read How to Think Like a Programmer - Lessons in Problem Solving by Richard Reis.
  • Watch How to Begin Thinking Like a Programmer by Coding Tech. It’s an hour long but packed full of information and definitely worth your time watching.
  • Read this Pseudocode: What It Is and How to Write It article from Built In.

Knowledge check

This section contains questions for you to check your understanding of this lesson on your own. If you’re having trouble answering a question, click it and review the material it links to.

  • What are the three stages in the problem solving process?
  • Why is it important to clearly understand the problem first?
  • What can you do to help get a clearer understanding of the problem?
  • What are some of the things you should do in the planning stage of the problem solving process?
  • What is an algorithm?
  • What is pseudocode?
  • What are the advantages of breaking a problem down and solving the smaller problems?

Additional resources

This section contains helpful links to other content. It isn’t required, so consider it supplemental.

  • Read the first chapter in Think Like a Programmer: An Introduction to Creative Problem Solving ( not free ). This book’s examples are in C++, but you will understand everything since the main idea of the book is to teach programmers to better solve problems. It’s an amazing book and worth every penny. It will make you a better programmer.
  • Watch this video on repetitive programming techniques .
  • Watch Jonathan Blow on solving hard problems where he gives sage advice on how to approach problem solving in software projects.

Support us!

The odin project is funded by the community. join us in empowering learners around the globe by supporting the odin project.

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial
  • Program to check if a person can vote using his age | Menu-Driven
  • Program to print first 10 perfect squares
  • Program to print all multiples of 7 till 1000
  • Program to print first 10 even numbers
  • Program to print all two-digit numbers in descending order
  • Most Famous Online IDE for Programming
  • Program to convert weeks to days
  • Program to Print Multiplication Table of a Number
  • Program to print all three digit numbers in ascending order
  • Program to count the number of days between two years
  • Program to find diameter with the given radius of a circle.
  • Program to convert given weeks to hours
  • Program to print numbers having remainder 3 when divided by 11
  • If-Then-___ Trio in Programming
  • Write a program to print 1 to 100 without using any numerical value
  • Types of Operators in Programming
  • Basic Programming Problems
  • Learn Programming For Free
  • Program to check if a student passes/fails using his grade | Menu Driven

Programming Tutorial | Introduction, Basic Concepts, Getting started, Problems

This comprehensive guide of Programming Tutorial or Coding Tutorial provides an introduction to programming, covering basic concepts, setting up your development environment, and common beginner problems. Learn about variables, data types, control flow statements, functions, and how to write your first code in various languages. Explore resources and tips to help you to begin your programming journey. We designed this Programming Tutorial or Coding Tutorial to empower beginners and equip them with the knowledge and resources they will need to get started with programming.

Programming Tutorial

Programming Tutorial

1. What is Programming?

Programming , also known as coding , is the process of creating a set of instructions that tell a computer how to perform a specific task. These instructions, called programs, are written in a language that the computer can understand and execute.

Table of Content

  • What is Programming?
  • Getting Started with Programming
  • Common Programming Mistakes and How to Avoid Them
  • Basic Programming EssentialsA Beginner’s Guide to Programming Fundamentals
  • Advanced Programming Concepts
  • Writing Your First Code
  • Top 20 Programs to get started with Coding/Programming
  • Next Steps after learning basic Coding/Programming
  • Resources and Further Learning
  • Frequently Asked Questions (FAQs) on Programming Tutorial

Think of programming as giving commands to a robot. You tell the robot what to do, step-by-step, and it follows your instructions precisely. Similarly, you tell the computer what to do through code, and it performs those tasks as instructed.

The purpose of programming is to solve problems and automate tasks. By creating programs, we can instruct computers to perform a wide range of activities, from simple calculations to complex tasks like managing databases and designing video games.

A. How Programming Works:

Programming involves several key steps:

  • Problem definition: Clearly define the problem you want to solve and what you want the program to achieve.
  • Algorithm design: Develop a step-by-step procedure for solving the problem.
  • Coding: Translate the algorithm into a programming language using a text editor or integrated development environment (IDE).
  • Testing and debugging: Run the program and identify and fix any errors.
  • Deployment: Share the program with others or use it for your own purposes.

B. Benefits of Learning to Code:

Learning to code offers numerous benefits, both personal and professional:

  • Develop critical thinking and problem-solving skills: Programming encourages logical thinking, problem decomposition, and finding creative solutions.
  • Boost your creativity and innovation: Coding empowers you to build your own tools and applications, turning ideas into reality.
  • Increase your employability: The demand for skilled programmers is high and growing across various industries.
  • Improve your communication and collaboration skills: Working with code often requires collaboration and clear communication.
  • Gain a deeper understanding of technology: Learning to code gives you a better understanding of how computers work and how they are used in the world around you.
  • Build self-confidence and motivation: Successfully completing programming projects can boost your confidence and motivate you to learn new things.

Whether you’re interested in pursuing a career in technology or simply want to expand your knowledge and skills, learning to code is a valuable investment in your future.

2. Getting Started with Programming Tutorial

A. choosing your first language.

Assess Resource Availability:

  • Free Online Resources: Platforms like Geeksforgeeks, Coursera, edX, and Udemy offer structured learning paths for various languages.
  • Paid Online Courses: Platforms like Geeksforgeeks, Coursera, edX, and Udemy offer structured learning paths for various languages.
  • Books and eBooks: Numerous beginner-friendly books and ebooks are available for most popular languages.
  • Community Support: Look for active online forums, communities, and Stack Overflow for troubleshooting and questions.

B. Which Programming Language should you choose as your First Language?

Here’s a breakdown of popular beginner-friendly languages with their Strengths and Weaknesses:

C. Setting Up Your Development Environment

Choose a Text Editor or IDE :

  • Text Editors: Sublime Text, Atom, Notepad++ (lightweight, good for beginners)
  • Offline IDEs: Visual Studio Code, PyCharm, IntelliJ IDEA (feature-rich, recommended for larger projects)
  • Online IDEs: GeeksforGeeks IDE

Install a Compiler or Interpreter:

  • Compilers: Convert code to machine language (C++, Java)
  • I nterpreters: Execute code line by line (Python, JavaScript)

Download Additional Software (if needed):

  • Web browsers (Chromium, Firefox) for web development
  • Android Studio or Xcode for mobile app development
  • Game engines (Unity, Unreal Engine) for game development

Test Your Environment:

  • Write a simple program (e.g., print “Hello, world!”)
  • Run the program and verify the output
  • Ensure everything is set up correctly
  • Start with a simple editor like Sublime Text for code basics.
  • Use an IDE like Visual Studio Code for larger projects with advanced features.
  • Join online communities or forums for help with setup issues.

3. Common Programming Mistakes and How to Avoid Them

  • Syntax errors: Typographical errors or incorrect grammar in your code.
  • Use syntax highlighting in your editor or IDE.
  • Logical errors: Errors in the logic of your program, causing it to produce the wrong results.
  • Carefully review your code and logic.
  • Test your program thoroughly with different inputs.
  • Use debugging tools to identify and fix issues.
  • Runtime errors: Errors that occur during program execution due to unforeseen circumstances.
  • Seek help from online communities or forums for specific errors.
  • Start with simple programs and gradually increase complexity.
  • Write clean and well-formatted code for better readability.
  • Use comments to explain your code and logic.
  • Practice regularly and don’t be afraid to experiment.
  • Seek help from online communities or mentors when stuck.

4. Basic Programming Essentials – A Beginner’s Guide to Programming Fundamentals:

This section delves deeper into fundamental programming concepts that form the building blocks of any program.

A. Variables and Data Types:

Understanding Variable Declaration and Usage:

  • Variables are containers that hold data and can be assigned different values during program execution.
  • To declare a variable, you specify its name and data type, followed by an optional assignment statement.
  • Example: age = 25 (declares a variable named age of type integer and assigns it the value 25).
  • Variables can be reassigned new values throughout the program.

Exploring Different Data Types:

  • Integers: Whole numbers without decimal points (e.g., 1, 2, -3).
  • Floats: Decimal numbers with a fractional part (e.g., 3.14, 10.5).
  • Booleans: True or False values used for conditions.
  • Characters: Single letters or symbols (‘a’, ‘$’, ‘#’).
  • Strings: Sequences of characters (“Hello, world!”).
  • Other data types: Arrays, lists, dictionaries, etc. (depending on the language).

Operations with Different Data Types:

Each data type has supported operations.

  • Arithmetic operators (+, -, *, /) work with integers and floats.
  • Comparison operators (==, !=, >, <, >=, <=) compare values.
  • Logical operators (&&, ||, !) combine conditions.
  • Concatenation (+) joins strings.
  • Operations with incompatible data types may lead to errors.

B. Operators and Expressions:

Arithmetic Operators:

  • Perform basic mathematical calculations (+, -, *, /, %, **, //).
  • % (modulo) returns the remainder after division.
  • ** (power) raises a number to a certain power.
  • // (floor division) discards the fractional part of the result.

Comparison Operators:

  • Evaluate conditions and return True or False.
  • == (equal), != (not equal), > (greater than), < (less than), >= (greater than or equal), <= (less than or equal).

Logical Operators: Combine conditions and produce True or False.

  • && (and): both conditions must be True.
  • || (or): at least one condition must be True.
  • ! (not): reverses the truth value of a condition.

Building Expressions:

  • Combine variables, operators, and constants to form expressions.
  • Expressions evaluate to a single value. Example: result = age + 10 * 2 (calculates the sum of age and 20).

C. Control Flow Statements:

Conditional Statements: Control the flow of execution based on conditions.

  • if-else: Executes one block of code if the condition is True and another if it’s False.
  • switch-case: Executes different code blocks depending on the value of a variable.

Looping Statements: Repeat a block of code multiple times.

  • for: Executes a block a specific number of times.
  • while: Executes a block while a condition is True.
  • do-while: Executes a block at least once and then repeats while a condition is True.

Nested Loops and Conditional Statements:

  • Can be combined to create complex control flow structures.
  • Inner loops run inside outer loops, allowing for nested logic.

D. Functions:

Defining and Calling Functions:

  • Blocks of code that perform a specific task.
  • Defined with a function name, parameters (optional), and a code block.
  • Called throughout the program to execute the defined functionality.

Passing Arguments to Functions:

  • Values passed to functions for processing.

Returning Values from Functions:

  • Functions can return a value after execution.
  • Useful for collecting results.
  • A function calling itself with a modified input.
  • Useful for solving problems that involve repetitive tasks with smaller inputs.

These topics provide a solid foundation for understanding programming fundamentals. Remember to practice writing code and experiment with different concepts to solidify your learning.

5. Advanced Programming Concepts

This section explores more advanced programming concepts that build upon the foundational knowledge covered earlier.

A. Object-Oriented Programming (OOP)

OOP is a programming paradigm that emphasizes the use of objects to represent real-world entities and their relationships.

1. Classes and Objects:

  • Classes: Define the blueprint for objects, specifying their properties (attributes) and behaviors (methods).
  • Objects: Instances of a class, with their own set of properties and methods.

2. Inheritance and Polymorphism:

  • Inheritance: Allows creating new classes that inherit properties and methods from existing classes (superclasses).
  • Polymorphism: Enables objects to respond differently to the same message depending on their type.

3. Encapsulation and Abstraction:

  • Encapsulation: Encloses an object’s internal state and methods, hiding implementation details and exposing only a public interface.
  • Abstraction: Focuses on the essential features and functionalities of an object, ignoring unnecessary details.

B. Concurrency and Parallelism

Concurrency and parallelism are crucial for improving program efficiency and responsiveness.

1. Multithreading and Multiprocessing:

  • Multithreading: Allows multiple threads of execution within a single process, enabling concurrent tasks.
  • Multiprocessing: Utilizes multiple processors to run different processes simultaneously, achieving true parallelism.

2. Synchronization and Concurrency Control:

Mechanisms to ensure data consistency and prevent conflicts when multiple threads or processes access shared resources.

6. Writing Your First Code

Here is your first code in different languages. These programs all achieve the same goal: printing “ Hello, world! ” to the console. However, they use different syntax and conventions specific to each language.

Printing “Hello world” in C++:

Explanation of above C++ code:

  • #include: This keyword includes the <iostream> library, which provides functions for input and output.
  • int main(): This defines the main function, which is the entry point of the program.
  • std::cout <<: This keyword prints the following expression to the console.
  • “Hello, world!” This is the string that is printed to the console.
  • std::endl: This keyword inserts a newline character after the printed string.
  • return 0; This statement exits the program and returns a success code (0).

Printing “Hello world” in Java:

Explanation of above Java code:

  • public class HelloWorld: This keyword defines a public class named HelloWorld .
  • public static void main(String[] args): This declares the main function, which is the entry point of the program.
  • System.out.println(“Hello, world!”); This statement prints the string “ Hello, world! ” to the console.

Printing “Hello world” in Python:

Explanation of above Python code:

  • print: This keyword prints the following argument to the console.

Printing “Hello world” in Javascript:

Explanation of above Javascript code:

  • console.log: This object’s method prints the following argument to the console.

Printing “Hello world” in PHP:

Explanation of above PHP code:

  • <?php: This tag initiates a PHP code block.
  • echo: This keyword prints the following expression to the console.
  • ?>: This tag ends the PHP code block.

7. Top 20 Programs to get started with Coding/Programming Tutorial:

Here are the list of some basic problem, these problems cover various fundamental programming concepts. Solving them will help you improve your coding skills and understanding of programming fundamentals.

8. Next Steps after learning basic Coding/Programming Tutorial:

Congratulations on taking the first step into the exciting world of programming! You’ve learned the foundational concepts and are ready to explore more. Here’s a comprehensive guide to help you navigate your next steps:

A. Deepen your understanding of Basic Programming Concepts:

  • Practice regularly: Implement what you learn through practice problems and coding exercises.
  • Solve code challenges: Platforms like GeeksforGeeks, HackerRank, LeetCode, and Codewars offer challenges to improve your problem-solving skills and coding speed.

B. Learn advanced concepts:

  • Data structures: Learn about arrays, linked lists, stacks, queues, trees, and graphs for efficient data organization.
  • Algorithms: Explore algorithms for searching, sorting, dynamic programming, and graph traversal.
  • Databases: Learn SQL and NoSQL databases for data storage and retrieval.
  • Version control: Use Git and GitHub for code versioning and collaboration.

C. Choose a focus area:

  • Web development: Learn HTML, CSS, and JavaScript to build interactive web pages and applications.
  • Mobile app development: Choose frameworks like Flutter (Dart) or React Native (JavaScript) to build cross-platform apps.
  • Data science and machine learning: Explore Python libraries like NumPy, pandas, and scikit-learn to analyze data and build machine learning models.
  • Game development: Learn game engines like Unity (C#) or Unreal Engine (C++) to create engaging games.
  • Desktop app development: Explore frameworks like PyQt (Python) or C# to build desktop applications.
  • Other areas: Explore other areas like robotics, embedded systems, cybersecurity, or blockchain development based on your interests.

D. Build projects:

  • Start with small projects: Begin with simple projects to apply your knowledge and gain confidence.
  • Gradually increase complexity: As you progress, tackle more challenging projects that push your boundaries.
  • Contribute to open-source projects: Contributing to open-source projects is a great way to learn from experienced developers and gain valuable experience.
  • Showcase your work: Create a portfolio website or blog to showcase your skills and projects to potential employers or clients.

9. Resources and Further Learning

A. Online Courses and Tutorials:

  • Interactive platforms: GeeksforGeeks, Codecademy, Coursera, edX, Khan Academy
  • Video tutorials: GeeksforGeeks, YouTube channels like FreeCodeCamp, The Coding Train, CS50’s Introduction to Computer Science
  • Language-specific tutorials: GeeksforGeeks, Official documentation websites, blogs, and community-driven resources

B. Books and eBooks:

  • Beginner-friendly books: “Python Crash Course” by Eric Matthes, “Head First Programming” by David Griffiths
  • A dvanced topics: “Clean Code” by Robert C. Martin, “The Pragmatic Programmer” by Andrew Hunt and David Thomas
  • Free ebooks: Many free programming ebooks are available online, such as those on Project Gutenberg

C. Programming Communities and Forums:

  • Stack Overflow: Q&A forum for programming questions
  • GitHub: Open-source platform for hosting and collaborating on code projects
  • Reddit communities: r/learnprogramming, r/python, r/webdev
  • Discord servers: Many languages have dedicated Discord servers for discussions and support

D. Tips for Staying Motivated and Learning Effectively:

  • Set realistic goals and deadlines.
  • Start small and gradually increase complexity.
  • Practice regularly and code consistently.
  • Find a learning buddy or group for accountability.
  • Participate in online communities and forums.
  • Take breaks and avoid burnout.
  • Most importantly, have fun and enjoy the process

10. Frequently Asked Questions (FAQs) on Programming Tutorial:

Question 1: how to learn programming without tutorial.

Answer: Learning programming without tutorials involves a self-directed approach. Start by understanding fundamental concepts, practicing regularly, and working on small projects. Utilize books, documentation, and online resources for reference.

Question 2: How to learn coding tutorial?

Answer: Learning coding through tutorials involves choosing a programming language, finding online tutorials or courses, and following them step by step. Practice coding alongside the tutorial examples and apply the concepts to real-world projects for a hands-on learning experience.

Question 3: What are 3 important things to know about programming?

Answer: Problem Solving: Programming is fundamentally about solving problems. Logic and Algorithms: Understanding logical thinking and creating efficient algorithms is crucial. Practice: Regular practice and hands-on coding improve skills and understanding.

Question 4: How many days do I need to learn programming?

Answer: The time to learn programming varies based on factors like prior experience, the complexity of the language, and the depth of knowledge desired. Learning the basics can take weeks, but mastery requires continuous practice over months.

Question 5: Can tutorials help coding?

Answer: Yes, tutorials are valuable resources for learning coding. They provide structured guidance, examples, and explanations, making it easier to understand and apply Programming Tutorial concepts.

Question 6: How do you use tutorials effectively?

Answer: Use tutorials effectively by following these steps: Set clear learning goals. Work on hands-on exercises and projects. Seek additional resources for deeper understanding. Regularly review and practice concepts learned.

Question 7: Can coding be done on a phone?

Answer: Yes, coding can be done on a phone using coding apps or online platforms that provide mobile-friendly coding environments. However, a computer is generally more practical for extensive coding tasks.

Question 8: Can I learn coding on GeeksforGeeks?

Answer: Yes, GeeksforGeeks is a popular platform for learning coding. Many Tutorials, Courses are provided you to learn various programming languages and concepts.

Question 9: Can we do coding on a laptop?

Answer: Yes, coding can be done on a laptop. Laptops are common tools for coding as they provide a portable and versatile environment for writing, testing, and running code.

Question 10: What is the difference between coding and programming?

Answer: The terms are often used interchangeably, but coding is typically seen as the act of writing code, while programming involves a broader process that includes problem-solving, designing algorithms, and implementing solutions. Programming encompasses coding as one of its stages.

This comprehensive programming tutorial has covered the fundamentals you need to start coding. Stay updated with emerging technologies and keep practicing to achieve your goals. Remember, everyone starts as a beginner. With dedication, you can unlock the world of programming!

Please Login to comment...

  • Programming
  • 10 Best Free Social Media Management and Marketing Apps for Android - 2024
  • 10 Best Customer Database Software of 2024
  • How to Delete Whatsapp Business Account?
  • Discord vs Zoom: Select The Efficienct One for Virtual Meetings?
  • 30 OOPs Interview Questions and Answers (2024)

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

What is Programming? A Handbook for Beginners

Estefania Cassingena Navone

Welcome to the amazing world of programming. This is one of the most useful and powerful skills that you can learn and use to make your visions come true.

In this handbook, we will dive into why programming is important, its applications, its basic concepts, and the skills you need to become a successful programmer.

You will learn:

  • What programming is and why it is important .
  • What a programming language is and why it is important .
  • How programming is related to binary numbers .
  • Real-world applications of programming .
  • Skills you need to succeed as a programmer .
  • Tips for learning how to code .
  • Basic programming concepts .
  • Types of programming languages .
  • How to contribute to open source projects .
  • And more...

Are you ready? Let's begin! ✨  

🔹 What is Programming?

main-image

Did you know that computer programming is already a fundamental part of your everyday lives? Let's see why. I'm sure that you will be greatly surprised.

Every time you turn on your smartphone, laptop, tablet, smart TV, or any other electronic device, you are running code that was planned, developed, and written by developers. This code creates the final and interactive result that you can see on your screen.

That is exactly what programming is all about. It is the process of writing code to solve a particular problem or to implement a particular task.

Programming is what allows your computer to run the programs you use every day and your smartphone to run the apps that you love. It is an essential part of our world as we know it.

Whenever you check your calendar, attend virtual conferences, browse the web, or edit a document, you are using code that has been written by developers.

"And what is code?" you may ask.

Code is a sequence of instructions that a programmer writes to tell a device (like a computer) what to do.

The device cannot know by itself how to handle a particular situation or how to perform a task. So developers are in charge of analyzing the situation and writing explicit instructions to implement what is needed.

To do this, they follow a particular syntax (a set of rules for writing the code).

A developer (or programmer) is the person who analyzes a problem and implements a solution in code.

Sounds amazing, right? It's very powerful and you can be part this wonderful world too by learning how to code. Let's see how.

You, as a developer.

Let's put you in a developer's shoes for a moment. Imagine that you are developing a mobile app, like the ones that you probably have installed on your smartphone right now.

What is the first thing that you would do?

Think about this for a moment.

The answer is...

Analyzing the problem. What are you trying to build?

As a developer, you would start by designing the layout of the app, how it will work, its different screens and functionality, and all the small details that will make your app an awesome tool for users around the world.

Only after you have everything carefully planned out, you can start to write your code. To do that, you will need to choose a programming language to work with. Let's see what a programming language is and why they are super important.

🔸 What is a Programing Language?

what-is-a-programming-language

A programming language is a language that computers can understand.

We cannot just write English words in our program like this:

"Computer, solve this task!"

and hope that our computer can understand what we mean. We need to follow certain rules to write the instructions.

Every programming language has its own set of rules that determine if a line of code is valid or not. Because of this, the code you write in one programming language will be slightly different from others.

💡 Tip: Some programming languages are more complex than others but most of them share core concepts and functionality. If you learn how to code in one programming language, you will likely be able to learn another one faster.

Before you can start writing awesome programs and apps, you need to learn the basic rules of the programming language you chose for the task.

💡 Tip: a program is a set of instructions written in a programming language for the computer to execute. We usually write the code for our program in one or multiple files.

For example, this is a line of code in Python (a very popular programming language) that shows the message "Hello, World!" :

But if we write the same line of code in JavaScript (a programming language mainly used for web development), we will get an error because it will not be valid.

To do something very similar in JavaScript, we would write this line of code instead:

Visually, they look very different, right? This is because Python and JavaScript have a different syntax and a different set of built-in functions .

💡 Tip : built-in functions are basically tasks that are already defined in the programming language. This lets us use them directly in our code by writing their names and by specifying the values they need.  

In our examples, print() is a built-in function in Python while console.log() is a function that we can use in JavaScript to see the message in the console (an interactive tool) if we run our code in the browser.

Examples of programming languages include Python, JavaScript, TypeScript, Java, C, C#, C++, PHP, Go, Swift, SQL, and R. There are many programming languages and most of them can be used for many different purposes.

💡 Tip: These were the most popular programming languages on the Stack Overflow Developer Survey 2022 :

Screen-Shot-2022-12-02-at-9.06.50-PM

There are many other programming languages (hundreds or even thousands!) but usually, you will learn and work with some of the most popular ones. Some of them have broader applications like Python and JavaScript while others (like R) have more specific (and even scientific) purposes.

This sounds very interesting, right? And we are only starting to talk about programming languages. There is a lot to learn about them and I promise you that if you dive deeper into programming, your time and effort will be totally worth it.

Awesome! Now that you know what programming is and what programming languages are all about, let's see how programming is related to binary numbers.

🔹 Programming and Binary Numbers

When you think about programming, perhaps the first thing that comes to your mind is something like the below image, right? A sequence of 0 s and 1 s on your computer.

binary

Programming is indeed related to binary numbers ( 0 and 1 ) but in an indirect way. Developers do not actually write their code using zeros and ones.

We usually write programs in a high-level programming language, a programming language with a syntax that recognizes specific words (called keywords), symbols, and values of different data types.

Basically, we write code in a way that humans can understand.

For example, these are the keywords that we can use in Python:

Every programming language has its own set of keywords (words written in English). These keywords are part of the syntax and core functionality of the programming language.

But keywords are just common words in English, almost like the ones that we would find in a book.

That leads us to two very important questions:

  • How does the computer understand and interpret what we are trying to say?
  • Where does the binary number system come into play here?

The computer does not understand these words, symbols, or values directly.

When a program runs, the code that we write in a high-level programming language that humans can understand is automatically transformed into binary code that the computer can understand.

11---binary-diagram

This transformation of source code that humans can understand into binary code that the computer can understand is called compilation .

According to Britannica , a compiler is defined as:

Computer software that translates (compiles) source code written in a high-level language (e.g., C++) into a set of machine-language instructions that can be understood by a digital computer’s CPU.

Britannica also mentions that:

The term compiler was coined by American computer scientist Grace Hopper , who designed one of the first compilers in the early 1950s.

Some programming languages can be classified as compiled programming languages while others can be classified as interpreted programming languages based on how to they are transformed into machine-language instructions.

However, they all have to go through a process that converts them into instructions that the computer can understand.

Awesome. Now you know why binary code is so important for computer science. Without it, basically programming would not exist because computers would not be able to understand our instructions.

Now let's dive into the applications of programming and the different areas that you can explore.

🔸 Real-World Applications of Programming

applications

Programming has many different applications in many different industries. This is truly amazing because you can apply your knowledge in virtually any industry that you are interested in.

From engineering to farming, from game development to physics, the possibilities are endless if you learn how to code.  

Let's see some of them. (I promise you. They are amazing! ⭐) .

Front-End Web Development

1---frontend

If you learn how to code, you can use your programming skills to design and develop websites and online platforms. Front-End Web Developers create the parts of the websites that users can see and interact with directly.

For example, right now you are reading an article on freeCodeCamp 's publication. The publication looks like this and it works like this thanks to code that front-end web developers wrote line by line.

💡 Tip: If you learn front-end web development, you can do this too.

Screen-Shot-2022-12-02-at-9.56.43-PM

Front-End Web Developers use HTML and CSS to create the structure of the website (these are markup languages, which are used to present information) and they write JavaScript code to add functionality and interactivity.

If you are interested in learning front-end web development, you can learn HTML and CSS with these free courses on freeCodeCamp's YouTube Channel:

  • Learn HTML5 and CSS3 From Scratch - Full Course
  • Learn HTML & CSS – Full Course for Beginners
  • Frontend Web Development Bootcamp Course (JavaScript, HTML, CSS)
  • Introduction To Responsive Web Design - HTML & CSS Tutorial

You can also learn JavaScript for free with these free online courses:

  • Learn JavaScript - Full Course for Beginners
  • JavaScript Programming - Full Course
  • JavaScript DOM Manipulation – Full Course for Beginners
  • Learn JavaScript by Building 7 Games - Full Course

💡 Tip: You can also earn a Responsive Web Design Certification while you learn with interactive exercises on freeCodeCamp.

Back-End Web Development

2---backend

More complex and dynamic web applications that work with user data also require a server . This is a computer program that receives requests and sends appropriate responses. They also need a database , a collection of values stored in a structured way.

Back-End Web Developers are in charge of developing the code for these servers. They decide how to handle the different requests, how to send appropriate resources, how to store the information, and basically how to make everything that runs behind the scenes work smoothly and efficiently.

A real-world example of back-end web development is what happens when you create an account on freeCodeCamp and complete a challenge. Your information is stored on a database and you can access it later when you sign in with your email and password.

Screen-Shot-2022-12-02-at-10.07.41-PM

This amazing interactive functionality was implemented by back-end web developers.

💡 Tip: Full-stack Web Developers are in charge of both Front-End and Back-End Web Development. They have specialized knowledge on both areas.

All the complex platforms that you use every day, like social media platforms, online shopping platforms, and educational platforms, use servers and back-end web development to power their amazing functionality.

Python is an example of a powerful programming language used for this purpose. This is one of the most popular programming languages out there, and its popularity continues to rise every year. This is partly because it is simple and easy to learn and yet powerful and versatile enough to be used in real-world applications.

💡 Tip: if you are curious about the specific applications of Python, this is an article I wrote on this topic .

JavaScript can also be used for back-end web development thanks to Node.js.

Other programming languages used to develop web servers are PHP, Ruby, C#, and Java.

If you would like to learn Back-End Web Development, these are free courses on freeCodeCamp's YouTube channel:

  • Python Backend Web Development Course (with Django)
  • Node.js and Express.js - Full Course
  • Full Stack Web Development for Beginners (Full Course on HTML, CSS, JavaScript, Node.js, MongoDB)
  • Node.js / Express Course - Build 4 Projects

💡 Tip: freeCodeCamp also has a free Back End Development and APIs certification.

Mobile App Development

3---mobile-apps

Mobile apps have become part of our everyday lives. I'm sure that you could not imagine life without them.

Think about your favorite mobile app. What do you love about it?

Our favorite apps help us with our daily tasks, they entertain us, they solve a problem, and they help us to achieve our goals. They are always there for us.

That is the power of mobile apps and you can be part of this amazing world too if you learn mobile app development.

Developers focused on mobile app development are in charge of planning, designing, and developing the user interface and functionality of these apps. They identify a gap in the existing apps and they try to create a working product to make people's lives better.

💡 Tip: regardless of the field you choose, your goal as a developer should always be making people's lives better. Apps are not just apps, they have the potential to change our lives. You should always remember this when you are planning your projects. Your code can make someone's life better and that is a very important responsibility.

Mobile app developers use programming languages like JavaScript, Java, Swift, Kotlin, and Dart. Frameworks like Flutter and React Native are super helpful to build cross-platform mobile apps (that is, apps that run smoothly on multiple different operating systems like Android and iOS).

According to Flutter 's official documentation:

Flutter is an open source framework by Google for building beautiful, natively compiled, multi-platform applications from a single codebase.

If you would like to learn mobile app development, these are free courses that you can take on freeCodeCamp's YouTube channel:

  • Flutter Course for Beginners – 37-hour Cross Platform App Development Tutorial
  • Flutter Course - Full Tutorial for Beginners (Build iOS and Android Apps)
  • React Native - Intro Course for Beginners
  • Learn React Native Gestures and Animations - Tutorial

Game Development

4---games

Games create long-lasting memories. I'm sure that you still remember your favorite games and why you love (or loved) them so much. Being a game developer means having the opportunity of bringing joy and entertainment to players around the world.

Game developers envision, design, plan, and implement the functionality of a game. They also need to find or create assets such as characters, obstacles, backgrounds, music, sound effects, and more.

💡 Tip: if you learn how to code, you can create your own games. Imagine creating an awesome and engaging game that users around the world will love. That is what I personally love about programming. You only need your computer, your knowledge, and some basic tools to create something amazing.

Popular programming languages used for game development include JavaScript, C++, Python, and C#.

If you are interested in learning game development, you can take these free courses on freeCodeCamp's YouTube channel:

  • JavaScript Game Development Course for Beginners
  • Learn Unity - Beginner's Game Development Tutorial
  • Learn Python by Building Five Games - Full Course
  • Code a 2D Game Using JavaScript, HTML, and CSS (w/ Free Game Assets) – Tutorial
  • 2D Game Development with GDevelop - Crash Course
  • Pokémon Coding Tutorial - CS50's Intro to Game Development

Biology, Physics, and Chemistry

5---biology-and-science

Programming can be applied in every scientific field that you can imagine, including biology, physics, chemistry, and even astronomy. Yes! Scientists use programming all the time to collect and analyze data. They can even run simulations to test hypotheses.

In biology, computer programs can simulate population genetics and population dynamics. There is even an entire field called bioinformatics .

According to this article "Bioinformatics" by Ardeshir Bayat, member of the Centre for Integrated Genomic Medical Research at the University of Manchester:

Bioinformatics is defined as the application of tools of computation and analysis to the capture and interpretation of biological data.

Dr. Bayat mentions that bioinformatics can be used for genome sequencing. He also mentions that its discoveries may lead to drug discoveries and individualized therapies.

Frequently used programming languages for bioinformatics include Python, R, PHP, PERL, and Java.

💡 Tip: R is a programming "language and environment for statistical computing and graphics" ( source ).

An example of a great tool that scientists can use for biology is Biopython . This is a Python framework with "freely available tools for biological computation."

If you would like to learn more about how you can apply your programming skills in science, these are free courses that you can take on freeCodeCamp's YouTube channel:

  • Python for Bioinformatics - Drug Discovery Using Machine Learning and Data Analysis
  • R Programming Tutorial - Learn the Basics of Statistical Computing
  • Learn Python - Full Course for Beginners [Tutorial]

Physics requires running many simulations and programming is perfect for doing exactly that. With programming, scientists can program and run simulations based on specific scenarios that would be hard to replicate in real life. This is much more efficient.

Programming languages that are commonly used for physics simulations include C, Java, Python, MATLAB, and JavaScript.  

Chemistry also relies on simulations and data analysis, so it's a field where programming can be a very helpful tool.

In this scientific article by Dr. Ivar Ugi and his colleagues from Organisch-chemisches Institut der Technischen Universität München, they mention that:

The design of entirely new syntheses, and the classification and documentation of structures, substructures, and reactons are examples of new applications of computers to chemistry.

Scientific experiments also generate detailed data and results that can be analyzed with computer programs developed by scientists.  

Think about it: writing a program to generate a box plot or a scatter plot or any other type of plot to visualize trends in thousands of measurements can save researchers a lot of time and effort. This lets them focus on the most important part of their work: analyzing the results.

Screen-Shot-2022-12-04-at-10.40.43-AM

💡 Tips: if you are interested in diving deeper into this, this is a list of chemistry simulations by the American Chemical Society. These simulations were programmed by developers and they are helping thousands of students and teachers around the world.

Think about it...You could build the next great simulation. If you are interested in a scientific field, I totally recommend learning how to code. Your work will be much more productive and your results will be easier to analyze.

If you are interested in learning programming for scientific applications, these are free courses on freeCodeCamp's YouTube channel:

  • Python for Data Science - Course for Beginners (Learn Python, Pandas, NumPy, Matplotlib)

Data Science and Engineering

6---engineering-2

Talking about data...programming is also essential for a field called Data Science . If you are interested in answering questions through data and statistics, this field might be exactly what you are looking for and having programming skills will help you to achieve your goals.

Data scientists collect and analyze data in order to answer questions in many different fields. According to UC Berkeley in the article " What is Data Science? ":

Effective data scientists are able to identify relevant questions, collect data from a multitude of different data sources, organize the information, translate results into solutions, and communicate their findings in a way that positively affects business decisions.

There are many powerful programming languages for analyzing and visualizing data, but perhaps one of the most frequently used ones for this purpose is Python.

This is an example of the type of data visualizations that you can create with Python. They are very helpful to analyze data visually and you can customize them to your fit needs.

image-6

If you are interested in learning programming for data science, these are free courses on freeCodeCamp's YouTube channel:

  • Learn Data Science Tutorial - Full Course for Beginners
  • Intro to Data Science - Crash Course for Beginners
  • Build 12 Data Science Apps with Python and Streamlit - Full Course
  • Data Analysis with Python - Full Course for Beginners (Numpy, Pandas, Matplotlib, Seaborn)

💡 Tip: you can also earn these free certifications on freeCodeCamp:

  • Data Visualization
  • Data Analysis with Python

Engineering

Engineering is another field where programming can help you to succeed. Being able to write your own computer programs can make your work much more efficient.

There are many tools created specifically for engineers. For example, the R programming language is specialized in statistical applications and Python is very popular in this field too.

Another great tool for programming in engineering is MATLAB . According to its official website:

MATLAB is a programming and numeric computing platform used by millions of engineers and scientists to analyze data, develop algorithms, and create models.

Really, the possibilities are endless.

You can learn MATLAB with this crash course on the freeCodeCamp YouTube channel .

If you are interested in learning engineering tools related to programming, this is a free course on freeCodeCamp's YouTube channel that covers AutoCAD, a 2D and 3D computer-aided design software used by engineers:

  • AutoCAD for Beginners - Full University Course

Medicine and Pharmacology

7---medicine-an-pharmachology

Medicine and pharmacology are constantly evolving by finding new treatments and procedures. Let's see how you can apply your programming skills in these fields.

Programming is really everywhere. If you are interested in the field of medicine, learning how to code can be very helpful for you too. Even if you would like to focus on computer science and software development, you can apply your knowledge in both fields.

Specialized developers are in charge of developing and writing the code that powers and controls the devices and machines that are used by modern medicine.

Think about it...all these machines and devices are controlled by software and someone has to write that software. Medical records are also stored and tracked by specialized systems created by developers. That could be you if you decide to follow this path. Sounds exciting, right?

According to the scientific article Application of Computer Techniques in Medicine :

Major uses of computers in medicine include hospital information system, data analysis in medicine, medical imaging laboratory computing, computer assisted medical decision making, care of critically ill patients, computer assisted therapy and so on.

Pharmacology

Programming and computer science can also be applied to develop new drugs in the field of pharmacology.

A remarkable example of what you can achieve in this field by learning how to code is presented in this article by MIT News. It describes how an MIT senior, Kristy Carpenter, was using computer science in 2019 to develop "new, more affordable drugs." Kristy mentions that:

Artificial intelligence, which can help compute the combinations of compounds that would be better for a particular drug, can reduce trial-and-error time and ideally quicken the process of designing new medicines.

Another example of a real-world application of programming in pharmacology is related to Python (yes, Python has many applications!). Among its success stories , we find that Python was selected by AstraZeneca to develop techniques and programs that can help scientists to discover new drugs faster and more efficiently.

The documentation explains that:

To save time and money on laboratory work, experimental chemists use computational models to narrow the field of good drug candidates, while also verifying that the candidates to be tested are not simple variations of each other's basic chemical structure.

If you are interested in learning programming for medicine or health-related fields, this is a free course on freeCodeCamp's YouTube channel on programming for healthcare imaging:

  • PyTorch and Monai for AI Healthcare Imaging - Python Machine Learning Course

8---education

Have you ever thought that programming could be helpful for education? Well, let me tell you that it is and it is very important. Why? Because the digital learning tools that students and teachers use nowadays are programmed by developers.

Every time a student opens an educational app, browses an educational platform like freeCodeCamp, writes on a digital whiteboard, or attends a class through an online meeting platform, programming is making that possible.

As a programmer or as a teacher who knows how to code, you can create the next great app that will enhance the learning experience of students around the world.

Perhaps it will be a note-taking app, an online learning platform, a presentation app, an educational game, or any other app that could be helpful for students.

The important thing is to create it with students in mind if your goal is to make something amazing that will create long-lasting memories.

If you envision it, then you can create it with code.  

Teachers can also teach their students how to code to develop their problem-solving skills and to teach them important skills for their future.

💡 Tip: if you are teaching students how to code, Scratch is a great programming language to teach the basics of programming. It is particularly focused on teaching children how to code in an interactive way.

According to the official Scratch website:

Scratch is the world’s largest coding community for children and a coding language with a simple visual interface that allows young people to create digital stories, games, and animations.

If you are interested in learning how to code for educational purposes, these are courses that you may find helpful on freeCodeCamp's YouTube channel:

  • Scratch Tutorial for Beginners - Make a Flappy Bird Game
  • Computational Thinking & Scratch - Intro to Computer Science - Harvard's CS50 (2018)
  • Android Development for Beginners - Full Course

Machine Learning, Artificial Intelligence, and Robotics

9---robotics

Some of the most amazing fields that are directly related to programming are Machine Learning, Artificial Intelligence, and Robotics. Let's see why.

Artificial Intelligence is defined by Britannica as:

The project of developing systems endowed with the intellectual processes characteristic of humans, such as the ability to reason, discover meaning, generalize, or learn from past experience.

Machine learning is a branch or a subset of the field of Artificial Intelligence in which systems can learn on their own based on data. The goal of this learning process is to predict the expected output. These models continuously learn how to "think" and how to analyze situations based on their previous training.

The most commonly used programming languages in these fields are Python, C, C#, C++, and MATLAB.

Artificial intelligence and Machine Learning have amazing applications in various industries, such as:

  • Image and object detection.
  • Making predictions based on patterns.
  • Text recognition.
  • Recommendation engines (like when an online shopping platform shows you products that you may like or when YouTube shows you videos that you may like).
  • Spam detection for emails.
  • Fraud detection.
  • Social media features like personalized feeds.
  • Many more... there are literally millions of applications in virtually every industry.

If you are interested in learning how to code for Artificial Intelligence and Machine Learning, these are free courses on freeCodeCamp's YouTube channel:

  • Machine Learning for Everybody – Full Course
  • Machine Learning Course for Beginners
  • PyTorch for Deep Learning & Machine Learning – Full Course
  • TensorFlow 2.0 Complete Course - Python Neural Networks for Beginners Tutorial
  • Self-Driving Car with JavaScript Course – Neural Networks and Machine Learning
  • Python TensorFlow for Machine Learning – Neural Network Text Classification Tutorial
  • Practical Deep Learning for Coders - Full Course from fast.ai and Jeremy Howard
  • Deep Learning Crash Course for Beginners
  • Advanced Computer Vision with Python - Full Course

💡 Tip: you can also earn a Machine Learning with Python Certification on freeCodeCamp.

Programming is also very important for robotics. Yes, robots are programmed too!

Robotics is defined by Britannica as the:

Design, construction, and use of machines (robots) to perform tasks done traditionally by human beings.

Robots are just like computers. They do not know what to do until you tell them what to do by writing instructions in your programs. If you learn how to code, you can program robots and industrial machinery found in manufacturing facilities.

If you are interested in learning how to code for robotics, electronics, and related fields, this is a free course on Arduino on freeCodeCamp's YouTube channel:

  • Arduino Course for Beginners - Open-Source Electronics Platform

Other Applications

There are many other fascinating applications of programming in almost every field. These are some highlights:

  • Agriculture: in this article by MIT News, a farmer developed an autonomous tractor app after learning how to code.
  • Self-driving cars: autonomous cars rely on software to analyze their surroundings and to make quick and accurate decisions on the road. If you are interested in this area, this is a course on this topic on freeCodeCamp's YouTube channel.
  • Finance: programming can also be helpful to develop programs and models that predict financial indicators and trends. For example, this is a course on algorithmic trading on freeCodeCamp's YouTube channel.

The possibilities are endless. I hope that this section will give you a notion of why learning how to code is so important for your present and for your future. It will be a valuable skill to have in any field you choose.

Awesome. Now let's dive into the soft skills that you need to become a successful programmer.

🔹 Skills of a Successful Programmer

skills

After going through the diverse range of applications of programming, you must be curious to know what skills are needed to succeed in this field.

A programmer should be curious. Whether you are just starting to learn how to code or you already have 20 years of experience, coding projects will always present you with new challenges and learning opportunities. If you take these opportunities, you will continously improve your skills and succeed.

Enthusiasm is a key trait of a successful programmer but this applies in general to any field if you want to succeed. Enthusiasm will keep you happy and curious about what you are creating and learning.

💡 Tip: If you ever feel like you are not as enthusiastic as you used to be, it's time to find or learn something new that can light the spark in you again and fill you with hope and dreams.

A programmer must be patient because transforming an initial idea into a working product can take time, effort, and many different steps. Patience will keep you focused on your final goal.  

Programming can be challenging. That is true. But what defines you is not how many challenges you face, it's how you face them. If you thrive despite these challenges, you will become a better programmer and you could create something that could change the world.

Programmers must be creative because even though every programming language has a particular set of rules for writing the code, coding is like using LEGOs. You have the building-blocks but you need to decide what to create and how to create it. The process of writing the code requires creativity while following the established best practices.

Problem-solving and Analysis

Programming is basically analyzing and solving problems with code. Depending on your field of choice, those problems will be simpler or more complex but they will all require some level of problem-solving skills and a thorough analysis of the situation.

Questions like:

  • What should I build?
  • How can I build it?
  • What is the best way to build this?

Are part of the everyday routine of a programmer.

Ability to Focus for Long Periods of Time

When you are working on a coding project, you will need to focus on a task for long periods of time. From creating the design, to planning and writing the code, to testing the result, and to fixing bugs (issues with the code), you will dedicate many hours to a particular task. This is why it's essential to be able to focus and to keep your final goal in mind.

Taking Detailed Notes

This skill is very important for programmers, particularly when you are learning how to code. Taking detailed notes can be help you to understand and remember the concepts and tools you learn. This also applies for experienced programmers, since being a programmer involves life-long learning.

Communication

Initially, you might think that programming is a solitary activity and imagine that a programmer spends hundreds of hours alone sitting on a desk.

But the reality is that when you find your first job, you will see that communication is super important to coordinate tasks with other team members and to exchange ideas and feedback.

Open to Feedback

In programming, there is usually more than one way to implement the same functionality. Different alternatives may work similarly, but some may be easier to read or more efficient in terms of time or resource consumption.

When you are learning how to code, you should always take constructive feedback as a tool for learning. Similarly, when you are working on a team, take your colleagues' feedback positively and always try to improve.

Life-long Learning

Programming equals life-long learning. If you are interested in learning how to code, you must know that you will always need to be learning new things as new technologies emerge and existing technologies are updated. Think about it... that is great because there is always something interesting and new to learn!

Open to Trying New Things

Finally, an essential skill to be a successful programmer is to be open to trying new things. Step out of your comfort zone and be open to new technologies and products. In the technology industry, things evolve very quickly and adapting to change is essential.

🔸 Tips for Learning How to Code

tips

Now that you know more about programming, programming languages, and the skills you need to be a successful programmer, let's see some tips for learning how to code.

💡 Tip: these tips are based on my personal experience and opinions.

  • Choose one programming language to learn first. When you are learning how to code, it's easy to feel overwhelmed with the number of options and entry paths. My advice would be to focus on understanding the essential computer science concepts and one programming language first. Python and JavaScript are great options to start learning the fundamentals.
  • Take detailed notes. Note-taking skills are essential to record and to analyze the topics you are learning. You can add custom comments and annotations to explain what you are learning.
  • Practice constantly. You can only improve your problem-solving skills by practicing and by learning new techniques and tools. Try to practice every day.

💡 Tip: There is a challenge called the #100DaysOfCode challenge that you can join to practice every day.  

  • Always try again. If you can't solve a problem on your first try, take a break and come back again and again until you solve it. That is the only way to learn. Learn from your mistakes and learn new approaches.
  • Learn how to research and how to find answers. Programming languages, libraries, and frameworks usually have official documentations that explain their built-in elements and tools and how you can use them. This is a precious resource that you should definitely refer to.
  • Browse Stack Overflow . This is an amazing platform. It is like an online encyclopedia of answers to common programming questions. You can find answers to existing questions and ask new questions to get help from the community.
  • Set goals. Motivation is one of the most important factors for success. Setting goals is very important to keep you focused, motivated, and enthusiastic. Once you reach your goals, set new ones that you find challenging and exciting.
  • Create projects. When you are learning how to code, applying your skills will help you to expand your knowledge and remember things better. Creating projects is the perfect way to practice and to create a portfolio that you can show to potential employers.

🔹 Basic Programming Concepts

basic-concepts

Great. If reading this article has helped you confirm that you want to learn programming, let's take your first steps.

These are some basic programming concepts that you should know:

  • Variable: a variable is a name that we assign to a value in a computer program. When we define a variable, we assign a value to a name and we allocate a space in memory to store that value. The value of a variable can be updated during the program.
  • Constant: a constant is similar to a variable. It stores a value but it cannot be modified. Once you assign a value to a constant, you cannot change it during the entire program.
  • Conditional: a conditional is a programming structure that lets developers choose what the computer should do based on a condition. If the condition is True, something will happen but if the condition is False, something different can happen.
  • Loop: a loop is a programming structure that let us run a code block (a sequence of instructions) multiple times. They are super helpful to avoid code repetition and to implement more complex functionality.
  • Function: a function helps us to avoid code repetition and to reuse our code. It is like a code block to which we assign a name but it also has some special characteristics. We can write the name of the function to run that sequence of instructions without writing them again.

💡 Tip: Functions can communicate with main programs and main programs can communicate with functions through parameters , arguments , and return statements.

  • Class: a class is used as a blueprint to define the characteristics and functionality of a type of object. Just like we have objects in our real world, we can represent objects in our programs.
  • Bug: a bug is an error in the logic or implementation of a program that results in an unexpected or incorrect output.
  • Debugging: debugging is the process of finding and fixing bugs in a program.
  • IDE: this acronym stands for Integrated Development Environment. It is a software development environment that has the most helpful tools that you will need to write computer programs such as a file editor, an explorer, a terminal, and helpful menu options.

💡 Tip: a commonly used and free IDE is Visual Studio Code , created by Microsoft.

Awesome! Now you know some of the fundamental concepts in programming. Like you learned, each programming language has a different syntax, but they all share most of these programming structures and concepts.  

🔸 Types of Programming Languages

types-of-programming-languages

Programming languages can be classified based on different criteria. If you want to learn how to code, it's important for you to learn these basic classifications:

  • High-level programming languages: they are designed to be understood by humans and they have to be converted into machine code before the computer can understand them. They are the programming languages that we commonly use. For example: JavaScript, Python, Java, C#, C++, and Kotlin.
  • Low-level programming languages: they are more difficult to understand because they are not designed for humans. They are designed to be understood and processed efficiently by machines.

Conversion into Machine Code

  • Compiled programming languages: programs written with this type of programming language are converted directly into machine code by a compiler. Examples include C, C++, Haskell, and Go.
  • Interpreted programming languages: programs written with this type of programming language rely on another program called the interpreter, which is in charge of running the code line by line. Examples include Python, JavaScript, PHP, and Ruby.

💡 Tip: according to this article on freeCodeCamp's publication:

Most programming languages can have both compiled and interpreted implementations – the language itself is not necessarily compiled or interpreted. However, for simplicity’s sake, they’re typically referred to as such.

There are other types of programming languages based on different criteria, such as:

  • Procedural programming languages
  • Functional programming languages
  • Object-oriented programming languages
  • Scripting languages
  • Logic programming languages

And the list of types of programming languages continues. This is very interesting because you can analyze the characteristics of a programming language to help you choose the right one for your project.

🔹 How to Contribute to Open Source Projects

Screen-Shot-2022-12-04-at-4.53.42-PM

Finally, you might think that coding implies sitting at a desk for many hours looking at your code without any human interaction. But let me tell you that this does not have to be true at all. You can be part of a learning community or a developer community.

Initially, when you are learning how to code, you can participate in a learning community like freeCodeCamp. This way, you will share your journey with others who are learning how to code, just like you.

Then, when you have enough skills and confidence in your knowledge, you can practice by contributing to open source projects and join developer communities.

Open source software is defined by Opensource.com as:

Software with source code that anyone can inspect, modify, and enhance.

GitHub is an online platform for hosting projects with version control. There, you can find many open source projects (like freeCodeCamp ) that you can contribute to and practice your skills.

💡 Tip: many open source projects welcome first-time contributions and contributions from all skill levels. These are great opportunities to practice your skills and to contribute to real-world projects.  

Screen-Shot-2022-12-04-at-5.01.58-PM

Contributing to open source projects on GitHub is great to acquire new experience working and communicating with other developers. This is another important skill for finding a job in this field.

Screen-Shot-2022-12-04-at-5.06.54-PM

Working on a team is a great experience. I totally recommend it once you feel comfortable enough with your skills and knowledge.

You did it! You reached the end of this article. Great work. Now you know what programming is all about. Let's see a brief summary.

🔸 In Summary

  • Programming is a very powerful skill. If you learn how to code, you can make your vision come true.
  • Programming has many different applications in many different fields. You can find an application for programming in basically any field you choose.
  • Programming languages can be classified based on different criteria and they share basic concepts such as variables, conditionals, loops, and functions.
  • Always set goals and take detailed notes. To succeed as a programmer, you need to be enthusiastic and consistent.

Thank you very much for reading my article. I hope you liked it and found it helpful. Now you know why you should learn how to code.

🔅 I invite you to follow me on Twitter ( @EstefaniaCassN ) and YouTube ( Coding with Estefania ) to find coding tutorials.

Developer, technical writer, and content creator @freeCodeCamp. I run the freeCodeCamp.org Español YouTube channel.

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Computer Programming Basics  - Introduction to Computer Programming

Computer programming basics  -, introduction to computer programming, computer programming basics introduction to computer programming.

GCFLearnFree Logo

Computer Programming Basics: Introduction to Computer Programming

Lesson 1: introduction to computer programming, introduction to programming.

Computer programming is the process of designing and writing computer programs . As a skill set, it includes a wide variety of different tasks and techniques, but our tutorials are not intended to teach you everything. Instead, they are meant to provide  basic, practical skills  to help you understand and write computer code that reflects things you see and use in the real world. 

A computer

What you need to know

Our computer programming tutorials assume that you have no programming experience whatsoever. They do, however, require basic familiarity with the use of computers and web browsers. For example, you should be comfortable downloading and opening files, and using text editing software. If you don't feel confident in those skills, consider spending some time with these tutorials first:

  • Computer Basics
  • Internet Basics

As long as you are comfortable with those basics, you should be prepared to begin learning programming. 

What these tutorials will cover

These tutorials focus on one particular type of programming:  web development . When you visit websites , whether you use a laptop, a smartphone, or anything else, you're actually looking at computer  code , which a web developer likely wrote, and which your web browser is interpreting to show you what you see on the screen. 

These tutorials will show you how to begin writing three common types of code used in web development, which combined make up the average website that you see every day: HTML , CSS , and JavaScript .

Parts of a website

Imagine that every website you visit is a person. Every person is different in how they look, act, and speak, but they're generally made up of  the same basic pieces.

If you imagine a website as a person, you can think of HTML as being the skeleton. 

A skeleton

HTML is at the center of almost everything you see on the Internet. While it doesn't look like much on its own, it forms the building blocks on top of which all the other pieces rest. The HTML for an extremely simple website might look something like this:

And if you loaded that in your browser, you'd see this:

Screenshot of a simple website

Try it yourself!

You can test some HTML yourself. Use this as a starting example:

Try entering that HTML in the input box below, then press the "View HTML" button. Make sure to  type it in exactly  as you see it.

You should see a button with the text you entered appear in the box above. It looks fairly plain, and it doesn't do anything yet, but you will learn about that later! 

Congratulations, you just wrote HTML!

If HTML is the skeleton, you can think of CSS as making up all the muscle, skin, and so on that make a person actually look like a person. 

A person

CSS doesn't do anything on its own. Instead, it takes plain HTML and styles it to look different . It can make what you see in the browser bigger or smaller, reorganize the pieces on the page, add colors, and more. Some CSS for an extremely simple website might look something like this:

If you were to apply the above CSS to the same extremely simple website you saw before, it would look like this:

Screenshot of a simple website with styling

You can test that CSS yourself. Use this as a starting example:

Try entering that snippet of CSS in the input box below, then press the "Update CSS" button. Make sure to  type it in exactly  as you see it.

You should see words in the box to the right become italicized. If you do, then congratulations! You just wrote CSS!

If HTML and CSS have combined to make a person that looks like a person, you can think of JavaScript as being the brain. Without it, a person just sits there, but with it, they are active and alive.

A person being active

JavaScript can change the HTML and CSS of a website in real time after it has loaded. It can hide things, add new things, change what things look like, and more. Any time something on a website changes while you are looking at it, there is a good chance that JavaScript is being used to do it. 

For example, imagine that you wanted the browser to create a pop-up greeting whenever somebody loaded the extremely simple website from before. One way would be to write some code that looks like this:

And when you loaded the website, you would see something like this:

Screenshot of a pop-up greeting on a simple website

You can test that JavaScript yourself. Use this code as an example:

Try entering that snippet of code in the input box below, then press the "Run Code" button. Make sure to type it in exactly as you see it.

You should see a pop-up just like in the example above, only with a different message. Congratulations, y ou just wrote JavaScript!

previous

/en/computer-programming-basics/tools-to-start-programming/content/

  • Online Degree Explore Bachelor’s & Master’s degrees
  • MasterTrack™ Earn credit towards a Master’s degree
  • University Certificates Advance your career with graduate-level learning
  • Top Courses
  • Join for Free

Duke University

Programming Fundamentals

This course is part of Introductory C Programming Specialization

Taught in English

Some content may not be translated

Andrew D. Hilton

Instructors: Andrew D. Hilton +2 more

Instructors

Instructor ratings

We asked all learners to give feedback on our instructors based on the quality of their teaching style.

Financial aid available

210,085 already enrolled

Coursera Plus

(6,737 reviews)

Skills you'll gain

  • Programming Language Concepts
  • Problem Solving
  • C Programming

Details to know

lesson 7 problem solving process with programming

Add to your LinkedIn profile

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate

Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

Programming is an increasingly important skill, whether you aspire to a career in software development, or in other fields. This course is the first in the specialization Introduction to Programming in C, but its lessons extend to any language you might want to learn. This is because programming is fundamentally about figuring out how to solve a class of problems and writing the algorithm, a clear set of steps to solve any problem in its class. This course will introduce you to a powerful problem-solving process—the Seven Steps—which you can use to solve any programming problem. In this course, you will learn how to develop an algorithm, then progress to reading code and understanding how programming concepts relate to algorithms.

Introduction

This module introduces a powerful process for solving any programming problem—the Seven Steps. You will learn how to approach a programming problem methodically, so you can formulate an algorithm that is specific and correct. You will work through examples with sequences of numbers and graphical patterns to develop the skill of algorithm development.

What's included

8 videos 9 readings 3 quizzes

8 videos • Total 32 minutes

  • Why You Should Learn to Program • 3 minutes • Preview module
  • Stepping Through An Algorithm • 4 minutes
  • Testing an Algorithm for a Numerical Sequence • 3 minutes
  • A Pattern of Squares • 4 minutes
  • Testing a Pattern of Squares • 2 minutes
  • Drawing a Rectangle • 4 minutes
  • Closest Point • 5 minutes
  • Generalizing Closest Point • 5 minutes

9 readings • Total 56 minutes

  • Programming: Plan First, Then Code • 3 minutes
  • Overview of the Seven Steps • 5 minutes
  • Algorithms • 10 minutes
  • Step 1: Work an Example Yourself • 5 minutes
  • Step 2: Write Down What You Just Did • 4 minutes
  • Step 3: Generalize Your Steps • 10 minutes
  • Step 4: Test Your Algorithm • 9 minutes
  • A Pattern of Squares • 6 minutes
  • Next Steps • 4 minutes

3 quizzes • Total 90 minutes

  • Steps 1–4 • 30 minutes
  • Algorithm Practice • 30 minutes
  • Algorithms • 30 minutes

Reading Code

In this module, you will learn to read code—this means you will be able to execute a piece of code by hand, and clearly illustrate what each statement does and what the state of the program is. Understanding how to read code is the only way to be sure you can write correct code. By the end of this module, you will be able to read and understand code with functions, conditional statements, iteration, and other fundamental techniques.

12 videos 17 readings 8 quizzes

12 videos • Total 37 minutes

  • Why You Should Learn to Read Code • 2 minutes • Preview module
  • Declaring and Assigning a Variable • 2 minutes
  • Examples of Expressions • 2 minutes
  • Using Functions for Abstraction • 4 minutes
  • Execution of Function Calls • 4 minutes
  • Printing Example • 2 minutes
  • Execution of If/Else • 3 minutes
  • Execution of Switch/Case • 3 minutes
  • While Loops • 3 minutes
  • Equivalent For and While Loops • 2 minutes
  • Execution of Nested Loops • 3 minutes
  • Execution of Continue • 2 minutes

17 readings • Total 170 minutes

  • Declaring a Variable • 10 minutes
  • Assigning a Variable • 10 minutes
  • Expressions with Common Operators • 10 minutes
  • Anatomy of a Function • 10 minutes
  • How to Evaluate a Function • 10 minutes
  • Scope • 10 minutes
  • Printing • 10 minutes
  • Conditional Statements • 10 minutes
  • If/Else • 10 minutes
  • Switch/Case • 10 minutes
  • Shorthand • 10 minutes
  • Loops for Repetition • 10 minutes
  • While Loops • 10 minutes
  • Do/While Loops • 10 minutes
  • For Loops • 10 minutes
  • Continue and Break • 10 minutes
  • Higher-level Meaning • 10 minutes

8 quizzes • Total 240 minutes

  • Variables and Expressions • 30 minutes
  • Functions • 30 minutes
  • Printing • 30 minutes
  • Logical Operators • 30 minutes
  • Conditional Statements • 30 minutes
  • While Loops • 30 minutes
  • Loops • 30 minutes
  • Reading Code • 30 minutes

Everything is a number to a computer, but types determine the size and interpretation of numbers. In this module you will learn about types beyond integers, both their conceptual representations, and their hardware representations in binary. You will learn basic data types, "non-number" types, and complex, custom types, as well as some important caveats, so you will avoid type-related programming mistakes.

8 videos 18 readings 6 quizzes

8 videos • Total 22 minutes

  • Introduction to Types • 0 minutes • Preview module
  • Types and Formatted Output • 4 minutes
  • Type Conversion • 2 minutes
  • Everything Is a Number • 2 minutes
  • Struct for a Rectangle • 2 minutes
  • Uses of Typedef • 3 minutes
  • Enumerated Types • 3 minutes
  • A Duke Software Engineering Student on the Importance of Planning • 3 minutes

18 readings • Total 180 minutes

  • Converting between Decimal and Binary • 10 minutes
  • Looking under the Hood • 10 minutes
  • Basic Data Types • 10 minutes
  • char • 10 minutes
  • int • 10 minutes
  • float and double • 10 minutes
  • Printing redux • 10 minutes
  • Expressions Have Types • 10 minutes
  • Type Conversion • 10 minutes
  • Casting • 10 minutes
  • Overflow and Underflow • 10 minutes
  • "Non-numbers" • 10 minutes
  • Strings • 10 minutes
  • Images • 10 minutes
  • Sound and Video • 10 minutes
  • Structs • 10 minutes
  • Typedef • 10 minutes
  • Enumerated Types • 10 minutes

6 quizzes • Total 180 minutes

  • Decimal, Hex, and Binary • 30 minutes
  • Basic Data Types • 30 minutes
  • Expressions Have Types • 30 minutes
  • "Non-numbers" • 30 minutes
  • Complex, Custom Data Types • 30 minutes
  • Types • 30 minutes

You have learned a lot about designing algorithms and the programming concepts that will help you implement them. For this project, you will develop and test your own algorithm for sorting data. This module will reinforce the importance of being specific when you write an algorithm and provide an opportunity for you to do so yourself, for a very common computational task: sorting.

2 videos 1 reading 1 quiz

2 videos • Total 4 minutes

  • Importance of Writing a Specific Algorithm • 2 minutes • Preview module
  • Introduction to Sorting • 1 minute

1 reading • Total 10 minutes

  • Sample PB&J Algorithm with Feedback • 10 minutes

1 quiz • Total 60 minutes

  • Writing a Sorting Algorithm • 60 minutes

lesson 7 problem solving process with programming

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.

Recommended if you're interested in Algorithms

lesson 7 problem solving process with programming

Duke University

Writing, Running, and Fixing Code in C

lesson 7 problem solving process with programming

Introductory C Programming

Specialization

lesson 7 problem solving process with programming

Pointers, Arrays, and Recursion

lesson 7 problem solving process with programming

Interacting with the System and Managing Memory

Why people choose coursera for their career.

lesson 7 problem solving process with programming

Learner reviews

Showing 3 of 6737

6,737 reviews

Reviewed on Aug 31, 2020

I had no background in programming before attending this course and I had my own doubts on learning a new language online. But trust me, this course is very well-built and it was a cake walk for me.

Reviewed on Jul 21, 2019

If you are new to C programming and know nothing about it then its amazing course to get started with C programming. It completely felt like being spoon-fed for the material taught in this course.

Reviewed on May 30, 2020

The first exercise that required me to evaluate someone else's algorithm, and them to evaluate mine, did not make it clear how to find this person. I thought the system would connect us automatically.

New to Algorithms? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions

Will i receive a transcript from duke university for completing this course.

No. Completion of a Coursera course does not earn you academic credit from Duke; therefore, Duke is not able to provide you with a university transcript. However, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.

When will I have access to the lectures and assignments?

Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

What will I get if I subscribe to this Specialization?

When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

What is the refund policy?

If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy Opens in a new tab .

Is financial aid available?

Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.

More questions

Tutorial Playlist

Programming tutorial, your guide to the best backend languages for 2024, an ultimate guide that helps you to start learn coding 2024, what is backend development: the ultimate guide for beginners, all you need to know for choosing the first programming language to learn, here’s all you need to know about coding, decoding, and reasoning with examples, understanding what is xml: the best guide to xml and its concepts., an ultimate guide to learn the importance of low-code and no-code development, top frontend languages that you should know about, top 75+ frontend developer interview questions and answers, the ultimate guide to learn typescript generics, the most comprehensive guide for beginners to know ‘what is typescript’.

The Ultimate Guide on Introduction to Competitive Programming

Top 60+ TCS NQT Interview Questions and Answers for 2024

Most commonly asked logical reasoning questions in an aptitude test, everything you need to know about advanced typescript concepts, an absolute guide to build c hello world program, a one-stop solution guide to learn how to create a game in unity, what is nat significance of nat for translating ip addresses in the network model, data science vs software engineering: key differences, a real-time chat application typescript project using node.js as a server, what is raspberry pi here’s the best guide to get started, what is arduino here’s the best beginners guide to get started, arduino vs. raspberry pi: which is the better board, the perfect guide for all you need to learn about mean stack, software developer resume: a comprehensive guide, here’s everything all you need to know about the programming roadmap, an ultimate guide that helps you to develop and improve problem solving in programming, the top 10 awesome arduino projects of all time, roles of product managers, pyspark rdd: everything you need to know about pyspark rdd, wipro interview questions and answers that you should know before going for an interview, how to use typescript with nodejs: the ultimate guide, what is rust programming language why is it so popular, software terminologies, an ultimate guide that helps you to develop and improve problem solving in programming.

Lesson 27 of 34 By Hemant Deshpande

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Table of Contents

Coding and Programming skills hold a significant and critical role in implementing and developing various technologies and software. They add more value to the future and development. These programming and coding skills are essential for every person to improve problem solving skills. So, we brought you this article to help you learn and know the importance of these skills in the future. 

Want a Top Software Development Job? Start Here!

Want a Top Software Development Job? Start Here!

Topics covered in this problem solving in programming article are:

  • What is Problem Solving in Programming? 
  • Problem Solving skills in Programming
  • How does it impact your career ?
  • Steps involved in Problem Solving
  • Steps to improve Problem Solving in programming

What is Problem Solving in Programming?

Computers are used to solve various problems in day-to-day life. Problem Solving is an essential skill that helps to solve problems in programming. There are specific steps to be carried out to solve problems in computer programming, and the success depends on how correctly and precisely we define a problem. This involves designing, identifying and implementing problems using certain steps to develop a computer.

When we know what exactly problem solving in programming is, let us learn how it impacts your career growth.

How Does It Impact Your Career?

Many companies look for candidates with excellent problem solving skills. These skills help people manage the work and make candidates put more effort into the work, which results in finding solutions for complex problems in unexpected situations. These skills also help to identify quick solutions when they arise and are identified. 

People with great problem solving skills also possess more thinking and analytical skills, which makes them much more successful and confident in their career and able to work in any kind of environment. 

The above section gives you an idea of how problem solving in programming impacts your career and growth. Now, let's understand what problem solving skills mean.

Problem Solving Skills in Programming

Solving a question that is related to computers is more complicated than finding the solutions for other questions. It requires excellent knowledge and much thinking power. Problem solving in programming skills is much needed for a person and holds a major advantage. For every question, there are specific steps to be followed to get a perfect solution. By using those steps, it is possible to find a solution quickly.

The above section is covered with an explanation of problem solving in programming skills. Now let's learn some steps involved in problem solving.

Steps Involved in Problem Solving

Before being ready to solve a problem, there are some steps and procedures to be followed to find the solution. Let's have a look at them in this problem solving in programming article.

Basically, they are divided into four categories:

  • Analysing the problem
  • Developing the algorithm
  • Testing and debugging

Analysing the Problem

Every problem has a perfect solution; before we are ready to solve a problem, we must look over the question and understand it. When we know the question, it is easy to find the solution for it. If we are not ready with what we have to solve, then we end up with the question and cannot find the answer as expected. By analysing it, we can figure out the outputs and inputs to be carried out. Thus, when we analyse and are ready with the list, it is easy and helps us find the solution easily. 

Developing the Algorithm

It is required to decide a solution before writing a program. The procedure of representing the solution  in a natural language called an algorithm. We must design, develop and decide the final approach after a number of trials and errors, before actually writing the final code on an algorithm before we write the code. It captures and refines all the aspects of the desired solution.

Once we finalise the algorithm, we must convert the decided algorithm into a code or program using a dedicated programming language that is understandable by the computer to find a desired solution. In this stage, a wide variety of programming languages are used to convert the algorithm into code. 

Testing and Debugging

The designed and developed program undergoes several rigorous tests based on various real-time parameters and the program undergoes various levels of simulations. It must meet the user's requirements, which have to respond with the required time. It should generate all expected outputs to all the possible inputs. The program should also undergo bug fixing and all possible exception handling. If it fails to show the possible results, it should be checked for logical errors.

Industries follow some testing methods like system testing, component testing and acceptance testing while developing complex applications. The errors identified while testing are debugged or rectified and tested again until all errors are removed from the program.

The steps mentioned above are involved in problem solving in programming. Now let's see some more detailed information about the steps to improve problem solving in programming.

Steps to Improve Problem Solving in Programming

Right mindset.

The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

Making Right Decisions

When we need to solve a problem, we must be clear with the solution. The perfect solution helps to get success in a shorter period. Making the right decisions in the right situation helps to find the perfect solution quickly and efficiently. These skills also help to get more command over the subject.

Keeping Ideas on Track

Ideas always help much in improving the skills; they also help to gain more knowledge and more command over things. In problem solving situations, these ideas help much and help to develop more skills. Give opportunities for the mind and keep on noting the ideas.

Learning from Feedbacks

A crucial part of learning is from the feedback. Mistakes help you to gain more knowledge and have much growth. When you have a solution for a problem, go for the feedback from the experienced or the professionals. It helps you get success within a shorter period and enables you to find other solutions easily.

Asking Questions

Questions are an incredible part of life. While searching for solutions, there are a lot of questions that arise in our minds. Once you know the question correctly, then you are able to find answers quickly. In coding or programming, we must have a clear idea about the problem. Then, you can find the perfect solution for it. Raising questions can help to understand the problem.

These are a few reasons and tips to improve problem solving in programming skills. Now let's see some major benefits in this article.

  • Problem solving in programming skills helps to gain more knowledge over coding and programming, which is a major benefit.
  • These problem solving skills also help to develop more skills in a person and build a promising career.
  • These skills also help to find the solutions for critical and complex problems in a perfect way.
  • Learning and developing problem solving in programming helps in building a good foundation.
  • Most of the companies are looking for people with good problem solving skills, and these play an important role when it comes to job opportunities 
Don't miss out on the opportunity to become a Certified Professional with Simplilearn's Post Graduate Program in Full Stack Web Development . Enroll Today!

Problem solving in programming skills is important in this modern world; these skills build a great career and hold a great advantage. This article on problem solving in programming provides you with an idea of how it plays a massive role in the present world. In this problem solving in programming article, the skills and the ways to improve more command on problem solving in programming are mentioned and explained in a proper way.

If you are looking to advance in your career. Simplilearn provides training and certification courses on various programming languages - Python , Java , Javascript , and many more. Check out our Post Graduate Program in Full Stack Web Development course that will help you excel in your career.

If you have any questions for us on the problem solving in programming article. Do let us know in the comments section below; we have our experts answer it right away.

Find our Full Stack Developer - MERN Stack Online Bootcamp in top cities:

About the author.

Hemant Deshpande

Hemant Deshpande, PMP has more than 17 years of experience working for various global MNC's. He has more than 10 years of experience in managing large transformation programs for Fortune 500 clients across verticals such as Banking, Finance, Insurance, Healthcare, Telecom and others. During his career he has worked across the geographies - North America, Europe, Middle East, and Asia Pacific. Hemant is an internationally Certified Executive Coach (CCA/ICF Approved) working with corporate leaders. He also provides Management Consulting and Training services. He is passionate about writing and regularly blogs and writes content for top websites. His motto in life - Making a positive difference.

Recommended Resources

Your One-Stop Solution to Understand Coin Change Problem

Your One-Stop Solution to Understand Coin Change Problem

Combating the Global Talent Shortage Through Skill Development Programs

Combating the Global Talent Shortage Through Skill Development Programs

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

One Stop Solution to All the Dynamic Programming Problems

One Stop Solution to All the Dynamic Programming Problems

The Ultimate Guide on Introduction to Competitive Programming

The Ultimate Guide to Top Front End and Back End Programming Languages for 2021

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

UNIT 1: How to Think Like an Engineer.

Learning objectives.

  • Explain what we mean by “Computational Thinking”.
  • Describe the problem being solved in a computational algorithm.
  • Explain the process for generating computational algorithms.
  • Generate and test algorithms to solve computational problems.
  • Evaluate computational algorithms for exactness, correctness, termination, generalizability and understandability.
  • Explain the role of programming in the field of Informatics.

Introduction

The goal of this book is to teach you to solve computational problems and to think like an engineer. Computational problems are problems that can be solved by the use of computations (a computation is what you do when you calculate something). Engineers are people who solve problems – they invent, design, analyze, build and test “things” to fulfill objectives and requirements. The single most important skill for you to learn is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills.

This book strives to prepare you to write well-designed computer programs that solve interesting problems involving data.

Computational Thinking

image

Figure 1: “The seven components to computational thinking”(www.ignitemyfutureinschool.org/about)

Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) – thinking like an engineer. Computational thinking is a fundamental skill for everyone, not just for programmers because computational thinking is what comes before any computing technology. [1]

Computer science is the study of computation — what can be computed and how to compute it whereas computational thinking is:

Conceptualizing , not programming. Computer science is not only computer programming. Thinking like a computer scientist means more than being able to program a computer. It requires thinking at multiple levels of abstraction;

Fundamental , not rote skill. A fundamental skill is something every human being must know to function in modern society. Rote means a mechanical routine;

A way that humans, not computers, think . Computational thinking is a way humans solve problems; it is not trying to get humans to think like computers. Computers are dull and boring; humans are clever and imaginative. We humans make computers exciting. Equipped with computing devices, we use our cleverness to tackle problems we would not dare take on before the age of computing and build systems with functionality limited only by our imaginations;

Complements and combines mathematical and engineering thinking . Computer science inherently draws on mathematical thinking, given that, like all sciences, its formal foundations rest on mathematics. Computer science inherently draws on engineering thinking, given that we build systems that interact with the real world;

Ideas , not artifacts. It’s not just the software and hardware artifacts we produce that will be physically present everywhere and touch our lives all the time, it will be the computational concepts we use to approach and solve problems, manage our daily lives, and communicate and interact with other people;

For everyone, everywhere . Computational thinking will be a reality when it is so integral to human endeavors it disappears as an explicit philosophy. [2]

lesson 7 problem solving process with programming

Figure 2 “Are you happy?” by Typcut http://www.typcut.com/headup/are-you-happy

An algorithm specifies a series of steps that perform a particular computation or task. Throughout this book we’ll examine a number of different algorithms to solve a variety of computational problems.

Algorithms resemble recipes. Recipes tell you how to accomplish a task by performing a number of steps. For example, to bake a cake the steps are: preheat the oven; mix flour, sugar, and eggs thoroughly; pour into a baking pan; set the timer and bake until done.

However, “algorithm” is a technical term with a more specific meaning than “recipe”, and calling something an algorithm means that the following properties are all true:

  • An algorithm is an unambiguous description that makes clear what has to be implemented in order to solve the problem. In a recipe, a step such as “Bake until done” is ambiguous because it doesn’t explain what “done” means. A more explicit description such as “Bake until the cheese begins to bubble” is better. In a computational algorithm, a step such as “Choose a large number” is vague: what is large? 1 million, 1 billion, or 100? Does the number have to be different each time, or can the same number be used again?
  • An algorithm expects a defined set of inputs. For example, it might require two numbers where both numbers are greater than zero. Or it might require a word, or a list customer names.
  • An algorithm produces a defined set of outputs. It might output the larger of the two numbers, an all-uppercase version of a word, or a sorted version of the list of names.
  • An algorithm is guaranteed to terminate and produce a result, always stopping after a finite time. If an algorithm could potentially run forever, it wouldn’t be very useful because you might never get an answer.
  • Must be general for any input it is given. Algorithms solve general problems (determine if a password is valid); they are of little use if they only solve a specific problem (determine if ‘comp15’ is a valid password)
  • It is at the right level of detail…..the person or device executing the instruction know how to accomplish the instruction without any extra information.

Once we know it’s possible to solve a problem with an algorithm, a natural question is whether the algorithm is the best possible one. Can the problem be solved more quickly or efficiently?

The first thing you need to do before designing an algorithm is to understand completely the problem given. Read the problem’s description carefully, then read it again. Try sketching out by hand some examples of how the problem can be solved. Finally consider any special cases and design your algorithm to address them.

An algorithm does not solve a problem rather it gives you a series of steps that, if executed correctly, will result in a solution to a problem.

An Example Algorithm

Let us look at a very simple algorithm called find_max.

Problem : Given a list of positive numbers, return the largest number on the list.

Inputs : A list of positive numbers. This list must contain at least one number. (Asking for the largest number in a list of no numbers is not a meaningful question.)

Outputs : A number, which will be the largest number in the list.

Algorithm :

  • Accept a list of positive numbers; set to nums_list
  • Set max_number to 0.
  • If the number is larger, set max_number to the larger number.
  • max_number is now set to the largest number in the list of positive numbers, nums_list.

Does this meet the criteria for being an algorithm?

  • Is it unambiguous? Yes. Each step of the algorithm consists of uncomplicated operations, and translating each step into programming code is straight forward.
  • Does it have defined inputs and outputs? Yes.
  • Is it guaranteed to terminate? Yes. The list nums_list is of finite length, so after looking at every element of the list the algorithm will stop.
  • Is it general for any input? Yes. A list of any set of positive numbers works.
  • Does it produce the correct result? Yes. When tested, the results are what are expected

[3] Figure 3: Example Algotithm

Verifying your Algorithm

How do we know if an algorithm is unambiguous, correct, comes to an end, is general AND is at the right level of detail? We must test the algorithm. Testing means verifying that the algorithm does what we expect it to do. In our ‘bake a cake’ example we know our algorithm is ‘working’ if, in the end, we get something that looks, smells and tastes like a cake.

lesson 7 problem solving process with programming

Figure 4 “ Keyboard ” by Geralt is licensed under CC 2

Your first step should be to carefully read through EACH step of the algorithm to check for ambiguity and if there is any information missing. To ensure that the algorithm is correct, terminates and is general for any input we devise ‘test cases’ for the algorithm.

A test case is a set of inputs, conditions, and expected results developed for a particular computational problem to be solved. A test case is really just a question that you ask of the algorithm (e.g. if my list is the three numbers 2, 14, and 11 does the algorithm return the number 14?). The point of executing the test is to make sure the algorithm is correct, that it terminates and is general for any input.

Good (effective) test cases:

  • are easy to understand and execute
  • are created with the user in mind (what input mistakes will be made? what are the preconditions?)
  • make no assumptions (you already know what it is supposed to do)
  • consider the boundaries for a specified range of values.

Let us look at the example algorithm from the previous section. The input for the algorithm is ‘a list of positive numbers’. To make it easy to understand and execute keep the test lists short. The preconditions are that the list only contains numbers and these numbers must be positive so include a test with a ‘non-number’ (i.e. a special character or a letter) and a test with a negative number. The boundaries for the list are zero and the highest positive number so include a test with zero and a large positive number. That is it! Here is an example of three different test cases.

Manually, you should step through your algorithm using each of the three test cases, making sure that the algorithm does indeed terminate and that you get your expected result. As our algorithms and programs become more complex, skilled programmers often break each test case into individual steps of the algorithm/program and indicate what the expected result of each step should be. When you write a detailed test case, you don’t necessarily need to specify the expected result for each test step if the result is obvious.

In computer programming we accept a problem to solve and develop an algorithm that can serve as a general solution. Once we have such a solution, we can use our computer to automate the execution. Programming is a skill that allows a competent programmer to take an algorithm and represent it in a notation (a program) that can be followed by a computer. These programs are written in programming languages (such as Python). Writing a correct and valid algorithm to solve a computational problem is key to writing good code. Learn to Think First and coding will come naturally!

Computational problem solving does not simply involve the act of computer programming. It is a process, with programming being only one of the steps. Before a program is written, a design for the program must be developed (the algorithm). And before a design can be developed, the problem to be solved must be well understood. Once written, the program must be thoroughly tested. These steps are outlined in Figure 5.

lesson 7 problem solving process with programming

Figure 5: Process of Computational Problem Solving

Values and Variables

A value is one of the basic things computer programs works with, like a password or a number of errors.

Values belong to different types: 21 is an integer (like the number of errors), and ‘comp15’ is a string of characters (like the password). Python lets you give names to values giving us the ability to generalize our algorithms.

One of the most powerful features of a programming language is the ability to use variables. A variable is simply a name that refers to a value as shown below,

Whenever the variable errors appears in a calculation the current value of the variable is used.

We need some way of storing information (i.e. the number of errors or the password) and manipulate them as well. This is where variables come into the picture. Variables are exactly what the name implies – their value can vary, i.e., you can store anything using a variable. Variables are just parts of your computer’s memory where you store some information. Unlike literal constants, you need some method of accessing these variables and hence you give them names.

Programmers generally choose names for their variables that are meaningful and document what the variable is used for. It is a good idea to begin variable names with a lowercase letter . The underscore character (_) can appear in a name and is often used in names with multiple words.

What is a program?

image

Figure 6: “ Python Code ” by nyuhuhuu is licensed under CC-BY 2.0

A program is a sequence of instructions that specifies how to perform a computation. The computation might be something mathematical, such as solving a system of mathematical equations or finding the roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing text in a document or something graphical, like processing user input on an ATM device.

The details look different in different computer programming languages, but there are some low-level conceptual patterns (constructs) that we use to write all programs. These constructs are not just for Python programs, they are a part of every programming language.

input Get data from the “outside world”. This might be reading data from a file, or even some kind of sensor like a microphone or GPS. In our initial algorithms and programs, our input will come from the user typing data on the keyboard.

output Display the results of the program on a screen or store them in a file or perhaps write them to a device like a speaker to play music or speak text.

sequential execution Perform statements one after another in the order they are encountered in the script.

conditional execution Checks for certain conditions and then executes or skips a sequence of statements.

repeated execution Perform some set of statements repeatedly, usually with some variation.

reuse Write a set of instructions once and give them a name and then reuse those instructions as needed throughout your program.

Believe it or not, that’s pretty much all there is to it. Every computer application you’ve ever used, no matter how complicated, is made up of constructs that look pretty much like these. So you can think of programming as the process of breaking a large, complex task into smaller and smaller subtasks until the subtasks are simple enough to be performed with one of these basic constructs. The “art” of writing a program is composing and weaving these basic elements together many times over to produce something that is useful to its users.

Computational Problem Design using the Basic Programming Constructs

The key to better algorithm design and thus to programming lies in limiting the control structure to only three constructs as shown below.

  • The Sequence structure (sequential execution)
  • The Decision, Selection or Control structure (conditional execution)
  • Repetition or Iteration Structure (repeated execution)

image

Figure 7: the 3 Programming Constructs

  Let us look at some examples for the sequential control and the selection control.

Sequential Control Example

The following algorithm is an example of sequential control .

Problem : Given two numbers, return the sum and the product of the two numbers.

Inputs : Two numbers.

Outputs : The sum and the product.

  • display “Input two numbers”
  • accept number1, accept number2
  • sum = number1 + number2
  • print “The sum is “, sum
  • product = number1 * number2
  • print “The product is “, product
  • Is it guaranteed to terminate? Yes. Sequential control, by its nature, always ends.
  • Is it general for any input? Yes. Any two numbers work in this design.
  • Does it produce the correct result? Yes. When tested, the results are what are expected.

Here is an example of three different test cases that are used to verify the algorithm.

Selection Control Examples

The following two algorithms are examples of selection control which uses the ‘IF’ statement in most programming languages.

Problem : Given two numbers, the user chooses to either multiply, add or subtract the two numbers. Return the value of the chosen calculation.

Inputs : Two numbers and calculation option.

Outputs : The value of the chosen calculation.

The relational (or comparison) operators used in selection control are:

= is equal to [in Python the operator is ==]

> is greater than

< is less than

>= is greater than or equal

<= is less than or equal

<> is not equal to [in Python the operator is !=]

  • display “choose one of the following”
  • display “m for multiply”
  • display “a for add”
  • display “s for subtract”
  • accept choice
  • display “input two numbers you want to use”
  • accept number1, number2
  • if choice = m then answer= number1 * number2
  • if choice = a then answer= number1 + number2
  • if choice = s then answer= number1 -number212. if choice is not m, a, or s then answer is NONE
  • display answer
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s choice and the two numbers the algorithm will stop.
  • Is it general for any input? Yes. Any two numbers work in this design and only a choice of a’m’, ‘a’, or ‘s’ will result in numeric output.

This example uses an extension of the simple selection control structure we just saw and is referred to as the ‘IF-ELSE’ structure.

Problem : Accept from the user a positive integer value representing a salary amount, return tax due based on the salary amount.

Inputs : One positive integer number.

Outputs : The calculated tax amount.

= is equal to  [in Python the operator is ==]

<> is not equal to  [in Python the operator is !=]

  • accept salary
  • If salary < 50000 then
  • Tax = 0 Else
  • If salary > 50000 AND salary < 100000 then
  • Tax = 50000 * 0.05 Else
  • Tax = 100000 * 0.30
  • display Tax
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number, even if it is negative, the algorithm will stop.
  • Is it general for any input? Yes. Any number entered in this design will work.

Iterative Control Examples

The third programming control is the iterative or, also referred to as, the repetition structure. This control structure causes certain steps to be repeated in a sequence a specified number of times or until a condition is met. This is what is called a ‘loop’ in programming

In all programming languages there are generally two options: an indefinite loop (the Python ‘WHILE’ programming statement) and a definite loop (the Python ‘FOR’ programming statement). We can use these two constructs, WHILE and FOR, for iterations or loops in our algorithms.

Note for Reader: A definite loop is where we know exactly the number of times the loop’s body will be executed. Definite iteration is usually best coded as a Python for loop. An indefinite loop is where we do not know before entering the body of the loop the exact number of iterations the loop will perform. The loop just keeps going until some condition is met. A while statement is used in this case.

The following algorithm is an example of iterative control using WHILE .

Problem : Print each keyboard character the users types in until the user chooses the ‘q’ (for ‘quit’) character.

Inputs : A series of individual characters.

Outputs : Each character typed in by the user.

  • initialize (set) letter = ‘a’
  • WHILE letter <> ‘q’
  • ACCEPT letter
  • DISPLAY “The character you typed is”, letter
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s keyboard character, even if it is not a letter, the algorithm will stop.
  • Is it general for any input? Yes. Any keyboard character entered in this design will work.

The following algorithm is an example of iterative control using FOR . This statement is used when the number of iterations is known in advance.

Problem : Ask the user how many words they want to enter then print the words entered by the user.

Inputs : Number of words to be entered; this value must be a positive integer greater than zero. Individual words.

Outputs : Each word typed in by the user.

  • accept num_words (must be at least one)
  • repeat num_words times (FOR 1 to num_words)
  • accept word
  • DISPLAY “The word you entered is”, word
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number of words to enter and any characters typed on the keyboard, even if it is not a ‘word’ per say, the algorithm will stop.
  • Is it general for any input? Yes. Any positive integer greater than zero and any size ‘word’ will work.

Here is an example of two different test cases that are used to verify the algorithm.

The Role of Programming in the Field of Informatics

image

Figure8: iPhone apps by Jaap Arriens/NurPhoto via Getty Images (abcnews.go.com)

You see computer programming in use every day. When you use Google or your smartphone, or watch a movie with special effects, there is programing at work. When you order a product over the Internet, there is code in the web site, in the cryptography used to keep your credit card number secure, and in the way that UPS routes their delivery vehicle to get your order to you as quickly as possible.

Programming is indeed important to an informatics professional as they are interested in finding solutions for a wide variety of computational problems involving data.

When you Google the words “pie recipe,” Google reports that it finds approximately 38 million pages, ranked in order of estimated relevance and usefulness. Facebook has approximately 1 billion active users who generate over 3 billion comments and “Likes” each day. GenBank, a national database of DNA sequences used by biologists and medical researchers studying genetic diseases, has over 100 million genetic sequences with over 100 billion DNA base pairs. According to the International Data Corporation, by 2020 the digital universe – the data we create and copy annually – will reach 44 zettabytes, or 44 trillion gigabytes.

image

Figure 9: The Digital Universe ( www.emc.com/leadership/digital-universe/2014iview/images )

  Doing meaningful things with data is challenging, even if we’re not dealing with millions or billions of things. In this book, we will be working with smaller sets of data. But much of what we’ll do will be applicable to very large amounts of data too.

Unit Summary

Computational Thinking is the thought processes involved in formulating a problem and expressing its solution in a way that a computer—human or machine—can effectively carry out.

Computational Thinking is what comes before any computing technology—thought of by a human, knowing full well the power of automation.

Writing a correct and valid algorithm to solve a computational problem is key to writing good code.

  • What are the inputs?
  • What are the outputs (or results)?
  • Can we break the problem into parts?
  • Think about the connections between the input & output.
  • Consider designing ‘backwards’.
  • Have you seen the problem before? In a slightly different form?
  • Can you solve part of the problem?
  • Did you use all the inputs?
  • Can you test it on a variety of inputs?
  • Can you think of how you might write the algorithm differently if you had to start again?
  • Does it solve the problem? Does it meet all the requirements? Is the output correct?
  • Does it terminate?
  • Is it general for all cases?

Practice Problems

  • Write about a process in your life (e.g. driving to the mall, walking to class, etc.) and estimate the number of steps necessary to complete the task. Would you consider this a complex or simple task? What happens if you scale that task (e.g. driving two states away to the mall)? Is your method the most efficient? Can you come up with a more efficient way?

image

  • Write an algorithm to find the average of 25 test grades out of a possible 100 points.
  • If you are given three sticks, you may or may not be able to arrange them in a triangle. For example, if one of the sticks is 12 inches long and the other two are one inch long, it is clear that you will not be able to get the short sticks to meet in the middle. For any three lengths, there is a simple test to see if it is possible to form a triangle: “If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can.”Write an algorithm that accepts three integers as arguments, and that displays either “Yes” or “No,” depending on whether you can or cannot form a triangle from sticks with the given lengths.
  • ROT13 is a weak form of encryption that involves “rotating” each letter in a word by 13 places. To rotate a letter means to shift it through the alphabet, wrapping around to the beginning if necessary, so ‘A’ shifted by 3 is ‘D’ and ‘Z’ shifted by 1 is ‘A’. Write an algorithm that accepts a word and an integer from the user, and that prints a new encrypted word that contains the letters from the original word “rotated” by the given amount (the integer input). For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by −10 is “cubed.”
  • Write an algorithm which repeatedly accepts numbers until the user enters “done”. Once “done” is entered, display the total sum of all the numbers, the count of numbers entered, and the average of all the numbers.
  • Write an algorithm that sums a series of ten positive integers entered by the user excluding all numbers greater than 100. Display the final sum.
  • Wing, Jeannette M. "Computational thinking." Communications of the ACM 49.3 (2006): 33-35. ↵

lesson 7 problem solving process with programming

Privacy Policy

loading

How it works

For Business

Join Mind Tools

Article • 4 min read

The Problem-Solving Process

Looking at the basic problem-solving process to help keep you on the right track.

By the Mind Tools Content Team

Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself.

We face and solve problems every day, in a variety of guises and of differing complexity. Some, such as the resolution of a serious complaint, require a significant amount of time, thought and investigation. Others, such as a printer running out of paper, are so quickly resolved they barely register as a problem at all.

lesson 7 problem solving process with programming

Despite the everyday occurrence of problems, many people lack confidence when it comes to solving them, and as a result may chose to stay with the status quo rather than tackle the issue. Broken down into steps, however, the problem-solving process is very simple. While there are many tools and techniques available to help us solve problems, the outline process remains the same.

The main stages of problem-solving are outlined below, though not all are required for every problem that needs to be solved.

lesson 7 problem solving process with programming

1. Define the Problem

Clarify the problem before trying to solve it. A common mistake with problem-solving is to react to what the problem appears to be, rather than what it actually is. Write down a simple statement of the problem, and then underline the key words. Be certain there are no hidden assumptions in the key words you have underlined. One way of doing this is to use a synonym to replace the key words. For example, ‘We need to encourage higher productivity ’ might become ‘We need to promote superior output ’ which has a different meaning.

2. Analyze the Problem

Ask yourself, and others, the following questions.

  • Where is the problem occurring?
  • When is it occurring?
  • Why is it happening?

Be careful not to jump to ‘who is causing the problem?’. When stressed and faced with a problem it is all too easy to assign blame. This, however, can cause negative feeling and does not help to solve the problem. As an example, if an employee is underperforming, the root of the problem might lie in a number of areas, such as lack of training, workplace bullying or management style. To assign immediate blame to the employee would not therefore resolve the underlying issue.

Once the answers to the where, when and why have been determined, the following questions should also be asked:

  • Where can further information be found?
  • Is this information correct, up-to-date and unbiased?
  • What does this information mean in terms of the available options?

3. Generate Potential Solutions

When generating potential solutions it can be a good idea to have a mixture of ‘right brain’ and ‘left brain’ thinkers. In other words, some people who think laterally and some who think logically. This provides a balance in terms of generating the widest possible variety of solutions while also being realistic about what can be achieved. There are many tools and techniques which can help produce solutions, including thinking about the problem from a number of different perspectives, and brainstorming, where a team or individual write as many possibilities as they can think of to encourage lateral thinking and generate a broad range of potential solutions.

4. Select Best Solution

When selecting the best solution, consider:

  • Is this a long-term solution, or a ‘quick fix’?
  • Is the solution achievable in terms of available resources and time?
  • Are there any risks associated with the chosen solution?
  • Could the solution, in itself, lead to other problems?

This stage in particular demonstrates why problem-solving and decision-making are so closely related.

5. Take Action

In order to implement the chosen solution effectively, consider the following:

  • What will the situation look like when the problem is resolved?
  • What needs to be done to implement the solution? Are there systems or processes that need to be adjusted?
  • What will be the success indicators?
  • What are the timescales for the implementation? Does the scale of the problem/implementation require a project plan?
  • Who is responsible?

Once the answers to all the above questions are written down, they can form the basis of an action plan.

6. Monitor and Review

One of the most important factors in successful problem-solving is continual observation and feedback. Use the success indicators in the action plan to monitor progress on a regular basis. Is everything as expected? Is everything on schedule? Keep an eye on priorities and timelines to prevent them from slipping.

If the indicators are not being met, or if timescales are slipping, consider what can be done. Was the plan realistic? If so, are sufficient resources being made available? Are these resources targeting the correct part of the plan? Or does the plan need to be amended? Regular review and discussion of the action plan is important so small adjustments can be made on a regular basis to help keep everything on track.

Once all the indicators have been met and the problem has been resolved, consider what steps can now be taken to prevent this type of problem recurring? It may be that the chosen solution already prevents a recurrence, however if an interim or partial solution has been chosen it is important not to lose momentum.

Problems, by their very nature, will not always fit neatly into a structured problem-solving process. This process, therefore, is designed as a framework which can be adapted to individual needs and nature.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

lesson 7 problem solving process with programming

Get 20% off your first year of Mind Tools

Our on-demand e-learning resources let you learn at your own pace, fitting seamlessly into your busy workday. Join today and save with our limited time offer!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article am7y1zt

Pain Points Podcast - Balancing Work And Kids

Article aexy3sj

Pain Points Podcast - Improving Culture

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - what is ai.

Exploring Artificial Intelligence

Pain Points Podcast - How Do I Get Organized?

It's Time to Get Yourself Sorted!

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Top tips for staying focused.

If You Have Trouble Concentrating These Tips Will Help You Focus

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Please log in to save materials. Log in

  • Problem Solving / Decision Making

Problem Solving Diagrams - Flowcharts

A flow chart can be a useful tool in problem solving. You can see at a glance how your decisions and actions affect the outcome of your problem solving process. This lesson will help you learn the symbols and steps for writing a flowchart. 

Video - Introduction to Creating Flowcharts

Video - lucidchart introduction, "what is my grade" flowchart.

Computer programmers use flowcharts and other types of diagrams to help visualize the steps and  flow  of the program. This can help to see any errors in the logic before they begin to program. Flowcharts can be used no matter what computer language the program will be written in.

If you wanted to write a computer program that inputs a quiz score and then outputs the letter grade that corresponds to that quiz score, you may want to think about the steps that you would use to create this program.

Task Instructions:

1. View the tutorial above for information on how to use Lucidchart to create a flowchart.

2. This is the algorithm that your flowchart should follow:

Input test score

Decision: Is score greater than 89?

Decision: Is score between 80 and 89?

Decision: Is score between 70 and 79?

Decision: Is score between 60 and 69?

Decision: Is score less than 60?

2. You will use the following symbols for this flowchart: Start/End symbols (this symbol is called Terminator in Lucidchart), Decision symbols, Input/Output (Data) symbols 

3.  Click here for the What is my Grade Flowchart Template .  Click on  File , then  Make Copy

4.   Create your flowchart according to the instructions on the template.

"Time For Lunch" Flowchart

Summarize the lesson by discussing with the students the reasons a computer programmer might use a flowchart.

You want to order lunch at a fast food restaurant. You know you want a hamburger, but aren't sure if you'd like fries and a drink. To practice creating a flowchart, think about the steps that you take to solve this problem. Instructions:

Click HERE to go to Lucidchart.com . 

Click HERE to open the TIME FOR LUNCH Flowchart

Click on  File  and choose to  Make a Copy

  • Follow the instructions on the  TIME FOR LUNCH Flowchart  to fill in the correct text in the flowchart symbols.   Click HERE to view a tutorial on how to properly fill out this chart .

Version History

Brought to you by CU Engineering (University of Colorado Boulder)

FREE K-12 standards-aligned STEM

curriculum for educators everywhere!

Find more at TeachEngineering.org .

  • TeachEngineering
  • Problem Solving

Lesson Problem Solving

Grade Level: 8 (6-8)

(two 40-minute class periods)

Lesson Dependency: The Energy Problem

Subject Areas: Physical Science, Science and Technology

Partial design

  • Print lesson and its associated curriculum

Curriculum in this Unit Units serve as guides to a particular content or subject area. Nested under units are lessons (in purple) and hands-on activities (in blue). Note that not all lessons and activities will exist under a unit, and instead may exist as "standalone" curriculum.

  • Energy Forms and States Demonstrations
  • Energy Conversions
  • Watt Meters to Measure Energy Consumption
  • Household Energy Audit
  • Light vs. Heat Bulbs
  • Efficiency of an Electromechanical System
  • Efficiency of a Water Heating System
  • Solving Energy Problems
  • Energy Projects

TE Newsletter

Engineering connection, learning objectives, worksheets and attachments, more curriculum like this, introduction/motivation, associated activities, user comments & tips.

Engineers team up to tackle global challenges

Scientists, engineers and ordinary people use problem solving each day to work out solutions to various problems. Using a systematic and iterative procedure to solve a problem is efficient and provides a logical flow of knowledge and progress.

  • Students demonstrate an understanding of the Technological Method of Problem Solving.
  • Students are able to apply the Technological Method of Problem Solving to a real-life problem.

Educational Standards Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards. All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN) , a project of D2L (www.achievementstandards.org). In the ASN, standards are hierarchically structured: first by source; e.g. , by state; within source by type; e.g. , science or mathematics; within type by subtype, then by grade, etc .

Ngss: next generation science standards - science.

View aligned curriculum

Do you agree with this alignment? Thanks for your feedback!

International Technology and Engineering Educators Association - Technology

State standards, national science education standards - science.

Scientists, engineers, and ordinary people use problem solving each day to work out solutions to various problems. Using a systematic and iterative procedure to solve a problem is efficient and provides a logical flow of knowledge and progress.

In this unit, we use what is called "The Technological Method of Problem Solving." This is a seven-step procedure that is highly iterative—you may go back and forth among the listed steps, and may not always follow them in order. Remember that in most engineering projects, more than one good answer exists. The goal is to get to the best solution for a given problem. Following the lesson conduct the associated activities Egg Drop and Solving Energy Problems for students to employ problem solving methods and techniques. 

Lesson Background and Concepts for Teachers

The overall concept that is important in this lesson is: Using a standard method or procedure to solve problems makes the process easier and more effective.

1) Describe the problem, 2) describe the results you want, 3) gather information, 4) think of solutions, 5) choose the best solution, 6) implement the solution, 7) evaluate results and make necessary changes. Reenter the design spiral at any step to revise as necessary.

The specific process of problem solving used in this unit was adapted from an eighth-grade technology textbook written for New York State standard technology curriculum. The process is shown in Figure 1, with details included below. The spiral shape shows that this is an iterative, not linear, process. The process can skip ahead (for example, build a model early in the process to test a proof of concept) and go backwards (learn more about the problem or potential solutions if early ideas do not work well).

This process provides a reference that can be reiterated throughout the unit as students learn new material or ideas that are relevant to the completion of their unit projects.

Brainstorming about what we know about a problem or project and what we need to find out to move forward in a project is often a good starting point when faced with a new problem. This type of questioning provides a basis and relevance that is useful in other energy science and technology units. In this unit, the general problem that is addressed is the fact that Americans use a lot of energy, with the consequences that we have a dwindling supply of fossil fuels, and we are emitting a lot of carbon dioxide and other air pollutants. The specific project that students are assigned to address is an aspect of this problem that requires them to identify an action they can take in their own live to reduce their overall energy (or fossil fuel) consumption.

The Seven Steps of Problem Solving

1.  Identify the problem

Clearly state the problem. (Short, sweet and to the point. This is the "big picture" problem, not the specific project you have been assigned.)

2.  Establish what you want to achieve

  • Completion of a specific project that will help to solve the overall problem.
  • In one sentence answer the following question: How will I know I've completed this project?
  • List criteria and constraints: Criteria are things you want the solution to have. Constraints are limitations, sometimes called specifications, or restrictions that should be part of the solution. They could be the type of materials, the size or weight the solution must meet, the specific tools or machines you have available, time you have to complete the task and cost of construction or materials.

3.  Gather information and research

  • Research is sometimes needed both to better understand the problem itself as well as possible solutions.
  • Don't reinvent the wheel – looking at other solutions can lead to better solutions.
  • Use past experiences.

4.  Brainstorm possible solutions

List and/or sketch (as appropriate) as many solutions as you can think of.

5.  Choose the best solution

Evaluate solution by: 1) Comparing possible solution against constraints and criteria 2) Making trade-offs to identify "best."

6.  Implement the solution

  • Develop plans that include (as required): drawings with measurements, details of construction, construction procedure.
  • Define tasks and resources necessary for implementation.
  • Implement actual plan as appropriate for your particular project.

7.  Test and evaluate the solution

  • Compare the solution against the criteria and constraints.
  • Define how you might modify the solution for different or better results.
  • Egg Drop - Use this demonstration or activity to introduce and use the problem solving method. Encourages creative design.
  • Solving Energy Problems - Unit project is assigned and students begin with problem solving techniques to begin to address project. Mostly they learn that they do not know enough yet to solve the problem.
  • Energy Projects - Students use what they learned about energy systems to create a project related to identifying and carrying out a personal change to reduce energy consumption.

The results of the problem solving activity provide a basis for the entire semester project. Collect and review the worksheets to make sure that students are started on the right track.

lesson 7 problem solving process with programming

Learn the basics of the analysis of forces engineers perform at the truss joints to calculate the strength of a truss bridge known as the “method of joints.” Find the tensions and compressions to solve systems of linear equations where the size depends on the number of elements and nodes in the trus...

preview of 'Doing the Math: Analysis of Forces in a Truss Bridge' Lesson

Through role playing and problem solving, this lesson sets the stage for a friendly competition between groups to design and build a shielding device to protect humans traveling in space. The instructor asks students—how might we design radiation shielding for space travel?

preview of 'Shielding from Cosmic Radiation: Space Agency Scenario' Lesson

A process for technical problem solving is introduced and applied to a fun demonstration. Given the success with the demo, the iterative nature of the process can be illustrated.

preview of 'Egg Drop' Activity

The culminating energy project is introduced and the technical problem solving process is applied to get students started on the project. By the end of the class, students should have a good perspective on what they have already learned and what they still need to learn to complete the project.

preview of 'Solving Energy Problems' Activity

Hacker, M, Barden B., Living with Technology , 2nd edition. Albany NY: Delmar Publishers, 1993.

Other Related Information

This lesson was originally published by the Clarkson University K-12 Project Based Learning Partnership Program and may be accessed at http://internal.clarkson.edu/highschool/k12/project/energysystems.html.

Contributors

Supporting program, acknowledgements.

This lesson was developed under National Science Foundation grants no. DUE 0428127 and DGE 0338216. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: August 16, 2023

StrategyPunk

Master the 7-Step Problem-Solving Process for Better Decision-Making

Discover the powerful 7-Step Problem-Solving Process to make better decisions and achieve better outcomes. Master the art of problem-solving in this comprehensive guide. Download the Free PowerPoint and PDF Template.

StrategyPunk

StrategyPunk

Master the 7-Step Problem-Solving Process for Better Decision-Making

Introduction

Mastering the art of problem-solving is crucial for making better decisions. Whether you're a student, a business owner, or an employee, problem-solving skills can help you tackle complex issues and find practical solutions. The 7-Step Problem-Solving Process is a proven method that can help you approach problems systematically and efficiently.

The 7-Step Problem-Solving Process involves steps that guide you through the problem-solving process. The first step is to define the problem, followed by disaggregating the problem into smaller, more manageable parts. Next, you prioritize the features and create a work plan to address each. Then, you analyze each piece, synthesize the information, and communicate your findings to others.

By following this process, you can avoid jumping to conclusions, overlooking important details, or making hasty decisions. Instead, you can approach problems with a clear and structured mindset, which can help you make better decisions and achieve better outcomes.

In this article, we'll explore each step of the 7-Step Problem-Solving Process in detail so you can start mastering this valuable skill. You can download the process's free PowerPoint and PDF templates at the end of the blog post .

lesson 7 problem solving process with programming

Step 1: Define the Problem

The first step in the problem-solving process is to define the problem. This step is crucial because finding a solution is only accessible if the problem is clearly defined. The problem must be specific, measurable, and achievable.

One way to define the problem is to ask the right questions. Questions like "What is the problem?" and "What are the causes of the problem?" can help. Gathering data and information about the issue to assist in the definition process is also essential.

Another critical aspect of defining the problem is identifying the stakeholders. Who is affected by it? Who has a stake in finding a solution? Identifying the stakeholders can help ensure that the problem is defined in a way that considers the needs and concerns of all those affected by it.

Once the problem is defined, it is essential to communicate the definition to all stakeholders. This helps to ensure that everyone is on the same page and that there is a shared understanding of the problem.

Step 2: Disaggregate

After defining the problem, the next step in the 7-step problem-solving process is to disaggregate the problem into smaller, more manageable parts. Disaggregation helps break down the problem into smaller pieces that can be analyzed individually. This step is crucial in understanding the root cause of the problem and identifying the most effective solutions.

Disaggregation can be achieved by breaking down the problem into sub-problems, identifying the contributing factors, and analyzing the relationships between these factors. This step helps identify the most critical factors that must be addressed to solve the problem.

A tree or fishbone diagram is one effective way to disaggregate a problem. These diagrams help identify the different factors contributing to the problem and how they are related. Another way is to use a table to list the other factors contributing to the situation and their corresponding impact on the issue.

Disaggregation helps in breaking down complex problems into smaller, more manageable parts. It helps understand the relationships between different factors contributing to the problem and identify the most critical factors that must be addressed. By disaggregating the problem, decision-makers can focus on the most vital areas, leading to more effective solutions.

Step 3: Prioritize

After defining the problem and disaggregating it into smaller parts, the next step in the 7-step problem-solving process is prioritizing the issues that need addressing. Prioritizing helps to focus on the most pressing issues and allocate resources more effectively.

There are several ways to prioritize issues, including:

  • Urgency: Prioritize issues based on their urgency. Problems that require immediate attention should be addressed first.
  • Impact: Prioritize issues based on their impact on the organization or stakeholders. Problems with a high impact should be given priority.
  • Resources: Prioritize issues based on the resources required to address them. Problems that require fewer resources should be dealt with first.

Considering their concerns and needs, it is important to involve stakeholders in the prioritization process. This can be done through surveys, focus groups, or other forms of engagement.

Once the issues have been prioritized, developing a plan of action to address them is essential. This involves identifying the resources required, setting timelines, and assigning responsibilities.

Prioritizing issues is a critical step in problem-solving. By focusing on the most pressing problems, organizations can allocate resources more effectively and make better decisions.

Step 4: Workplan

After defining the problem, disaggregating, and prioritizing the issues, the next step in the 7-step problem-solving process is to develop a work plan. This step involves creating a roadmap that outlines the steps needed to solve the problem.

The work plan should include a list of tasks, deadlines, and responsibilities for each team member involved in the problem-solving process. Assigning tasks based on each team member's strengths and expertise ensures the work is completed efficiently and effectively.

Creating a work plan can help keep the team on track and ensure everyone is working towards the same goal. It can also help to identify potential roadblocks or challenges that may arise during the problem-solving process and develop contingency plans to address them.

Several tools and techniques can be used to develop a work plan, including Gantt charts, flowcharts, and mind maps. These tools can help to visualize the steps needed to solve the problem and identify dependencies between tasks.

Developing a work plan is a critical step in the problem-solving process. It provides a clear roadmap for solving the problem and ensures everyone involved is aligned and working towards the same goal.

Step 5: Analysis

Once the problem has been defined and disaggregated, the next step is to analyze the information gathered. This step involves examining the data, identifying patterns, and determining the root cause of the problem.

Several methods can be used during the analysis phase, including:

  • Root cause analysis
  • Pareto analysis
  • SWOT analysis

Root cause analysis is a popular method used to identify the underlying cause of a problem. This method involves asking a series of "why" questions to get to the root cause of the issue.

Pareto analysis is another method that can be used during the analysis phase. This method involves identifying the 20% of causes responsible for 80% of the problems. By focusing on these critical causes, organizations can make significant improvements.

Finally, SWOT analysis is a valuable tool for analyzing the internal and external factors that may impact the problem. This method involves identifying the strengths, weaknesses, opportunities, and threats related to the issue.

Overall, the analysis phase is critical for identifying the root cause of the problem and developing practical solutions. Organizations can gain a deeper understanding of the issue and make informed decisions by using a combination of methods.

Step 6: Synthesize

Once the analysis phase is complete, it is time to synthesize the information gathered to arrive at a solution. During this step, the focus is on identifying the most viable solution that addresses the problem. This involves examining and combining the analysis results for a clear and concise conclusion.

One way to synthesize the information is to use a decision matrix. This involves creating a table that lists the potential solutions and the essential criteria for making a decision. Each answer is then rated against each standard, and the scores are tallied to arrive at a final decision.

Another approach to synthesizing the information is to use a mind map. This involves creating a visual representation of the problem and the potential solutions. The mind map can identify the relationships between the different pieces of information and help prioritize the solutions.

During the synthesis phase, remaining open-minded and considering all potential solutions is vital. To ensure everyone's perspectives are considered, it is also essential to involve all stakeholders in the decision-making process.

Step 7: Communicate

After synthesizing the information, the next step is communicating the findings to the relevant stakeholders. This is a crucial step because it helps to ensure that everyone is on the same page and that the decision-making process is transparent.

One effective way to communicate the findings is through a well-organized report. The report should include the problem statement, the analysis, the synthesis, and the recommended solution. It should be clear, concise, and easy to understand.

In addition to the report, a presentation explaining the findings is essential. The presentation should be tailored to the audience and highlight the report's key points. Visual aids such as tables, graphs, and charts can make the presentation more engaging.

During the presentation, it is essential to be open to feedback and questions from the audience. This helps ensure everyone agrees with the recommended solution and addresses concerns or objections.

Effective communication is vital to ensuring the decision-making process is successful. Stakeholders can make informed decisions and work towards a common goal by communicating the findings clearly and concisely.

The 7-step problem-solving process is a powerful tool for helping individuals and organizations make better decisions. By following these steps, individuals can identify the root cause of a problem, prioritize potential solutions, and develop a clear plan of action. This process can be applied to various scenarios, from personal challenges to complex business problems.

Through disaggregation, individuals can break down complex problems into smaller, more manageable parts. By prioritizing potential solutions, individuals can focus their efforts on the most impactful actions. The work step allows individuals to develop a clear action plan, while the analysis step provides a framework for evaluating possible solutions.

The synthesis step combines all the information gathered to develop a comprehensive solution. Finally, the communication step allows individuals to share their answers with others and gather feedback.

By mastering the 7-step problem-solving process, individuals can become more effective decision-makers and problem-solvers. This process can help individuals and organizations save time and resources while improving outcomes. With practice, individuals can develop the skills to apply this process to a wide range of scenarios and make better decisions in all areas of life.

7-Step Problem-Solving Process PPT Template

Free powerpoint and pdf template, executive summary: the 7-step problem-solving process.

lesson 7 problem solving process with programming

The 7-Step Problem-Solving Process is a robust and systematic method to help individuals and organizations make better decisions by tackling complex issues and finding practical solutions. This process comprises defining the problem, disaggregating it into smaller parts, prioritizing the issues, creating a work plan, analyzing the data, synthesizing the information, and communicating the findings.

By following these steps, individuals can identify the root cause of a problem, break it down into manageable components, and prioritize the most impactful actions. The work plan, analysis, and synthesis steps provide a framework for developing comprehensive solutions, while the communication step ensures transparency and stakeholder engagement.

Mastering this process can improve decision-making and problem-solving capabilities, save time and resources, and improve outcomes in personal and professional contexts.

Please buy me a coffee.

I'd appreciate your support if my templates have saved you time or helped you start a project. Buy Me a Coffee is a simple way to show your appreciation and help me continue creating high-quality templates that meet your needs.

Buy Me A Coffee

7-Step Problem-Solving Process PDF Template

7-step problem-solving process powerpoint template.

Xpeng SWOT Analysis: Free PPT Template and In-Depth Insights (free file)

Xpeng SWOT Analysis: Free PPT Template and In-Depth Insights (free file)

Unlock key insights into Xpeng with our free SWOT analysis PPT template. Dive deep into its business dynamics at no cost.

Strategic Insights 2024: A SWOT Analysis of Nestle (Plus Free PPT)

Strategic Insights 2024: A SWOT Analysis of Nestle (Plus Free PPT)

Explore Nestle's strategic outlook with our SWOT analysis for 2024. This PowerPoint template highlights key areas for growth and challenges.

2024 Business Disruption: Navigating Growth Through Shaping Strategy

2024 Business Disruption: Navigating Growth Through Shaping Strategy

Discover the importance of being a shaper in 2023's business ecosystem. Shaping strategy, attracting a critical mass of participants, and finding the right strategic path to create value.

Samsung PESTLE Analysis: Unveiling the Driving Forces (Free PPT)

Samsung PESTLE Analysis: Unveiling the Driving Forces (Free PPT)

Download our comprehensive guide: Samsung PESTLE Analysis (Free PPT). Discover the strategic insights & driving forces shaping Samsung's future.

Lesson 6 Problem-solving

Curriculum > KS3 > Unit > Lesson

This is the final lesson of the first unit of programming in Year 7. The lesson starts with a game of ‘Beat the teacher’ where the learners are required to write down as many as the key words relating to this unit that they can. After a minute, the teacher will also play and the learners will see if they’d written down more words than the teacher. The main activity for the lesson will be learners’ main summative assessment task where they are required to independently work through tasks to complete a dance move game. The plenary for the lesson allows the learners an opportunity to reflect and assess the skills that they have developed throughout the unit.

Learning objectives

  • Independently design and apply programming constructs to solve a problem (subroutine, selection, count-controlled iteration, operators, and variables)

Package contents

  • Lesson plans
  • Learning graphs
  • Unit overviews

Not registered yet?

Create an account and get access to over 500 hours of free teaching resources.

Help us make these resources better

Or email us at [email protected]

IMAGES

  1. 6 Ways to Improve Your Programming Problem Solving

    lesson 7 problem solving process with programming

  2. How to Develop Problem Solving Skills in Programming

    lesson 7 problem solving process with programming

  3. The 5 Steps of Problem Solving

    lesson 7 problem solving process with programming

  4. problem solving approach in programming

    lesson 7 problem solving process with programming

  5. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    lesson 7 problem solving process with programming

  6. 7 Step Problem Solving Process

    lesson 7 problem solving process with programming

VIDEO

  1. Code.org Lesson 7.5 The Math Class

  2. Code.org Lesson 7.2C Conditionals Practice

  3. APIs and Function Parameters Lesson 7.5 CS Principles Code.org Tutorial with Answers

  4. Week 7

  5. Problem Solving Process Training Session

  6. चिंतन

COMMENTS

  1. Problem Solving

    In this lesson we will walk through a few techniques that can be used to help with the problem solving process. Lesson overview. This section contains a general overview of topics that you will learn in this lesson. Explain the three steps in the problem solving process. Explain what pseudocode is and be able to use it to solve problems. Be ...

  2. How to think like a programmer

    Simplest means you know the answer (or are closer to that answer). After that, simplest means this sub-problem being solved doesn't depend on others being solved. Once you solved every sub-problem, connect the dots. Connecting all your "sub-solutions" will give you the solution to the original problem. Congratulations!

  3. Programming Tutorial

    Develop critical thinking and problem-solving skills: Programming encourages logical thinking, problem decomposition, and finding creative solutions. Boost your creativity and innovation: Coding empowers you to build your own tools and applications, turning ideas into reality. Increase your employability: The demand for skilled programmers is high and growing across various industries.

  4. How to Solve Coding Problems with a Simple Four Step Method

    In this post, we've gone over the four-step problem-solving strategy for solving coding problems. Let's review them here: Step 1: understand the problem. Step 2: create a step-by-step plan for how you'll solve it. Step 3: carry out the plan and write the actual code.

  5. PDF Unit 2: Problem Solving

    1-2 Introduce data collection and problem solving. 3 Introduce the four steps of the problem solving process. 4-6 Apply the problem solving process. Use different strategies to plan and carry out the plan to solve several problems. 7-9 Reinforce the four steps of the problems solving process. 10-12 Count in the binary number system.

  6. What is Programming? A Handbook for Beginners

    Process of transforming a program into binary code. This transformation of source code that humans can understand into binary code that the computer can understand is called compilation. ... Problem-solving and Analysis. Programming is basically analyzing and solving problems with code. Depending on your field of choice, those problems will be ...

  7. Computer Programming Basics

    Introduction to programming. Computer programming is the process of designing and writing computer programs. As a skill set, it includes a wide variety of different tasks and techniques, but our tutorials are not intended to teach you everything. Instead, they are meant to provide basic, practical skills to help you understand and write ...

  8. The 5 Pillars of Complex Problem Solving with Code

    2. After spending hundreds of hours helping people take their first steps with code, I developed a five part model for problem solving. In fact, it's even easier than that, as it really breaks down to three core skills, and two processes. In this piece I'll explain each of them and how they interreact.

  9. PDF Notes of Lesson Ge3151- Problem Solving and Python Programming

    PROBLEM SOLVING TECHNIQUES Problem solving technique is a set of techniques that helps in providing logic for solving a problem. Problem solving can be expressed in the form of 1. Algorithms. 2. Flowcharts. 3. Pseudo codes. 4. Programs 1.ALGORITHM It is defined as a sequence of instructions that describe a method for solving a problem. In other ...

  10. Programming Fundamentals

    This is because programming is fundamentally about figuring out how to solve a class of problems and writing the algorithm, a clear set of steps to solve any problem in its class. This course will introduce you to a powerful problem-solving process—the Seven Steps—which you can use to solve any programming problem.

  11. How to Develop Problem Solving Skills in Programming

    The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

  12. Problem Solving Process: Programming Problems and Practice

    Lesson on Problem Solving Process:https://github.com/jobb-rodriguez/intermediate-programming/tree/main/general/problem-solving-process

  13. UNIT 1: How to Think Like an Engineer.

    Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) - thinking like an engineer. Computational ...

  14. PDF The Problem Solving Process

    Wrap-Up. At your tables review all the work you did today looking at the problem solving process in a number of contexts and pick the two most important strategies for each step in the process. These should be strategies that you think can help in lots of different types of problems when you're working on that step.

  15. The Problem-Solving Process

    The Problem-Solving Process. Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity.

  16. Problem Solving Diagrams

    A flow chart can be a useful tool in problem solving. You can see at a glance how your decisions and actions affect the outcome of your problem solving process. This lesson will help you learn the symbols and steps for writing a flowchart. Video - Introduction to Creating Flowcharts. Creating Flowcharts .

  17. Problem Solving

    The goal is to get to the best solution for a given problem. Following the lesson conduct the associated activities Egg Drop and Solving Energy Problems for students to employ problem solving methods and techniques. Lesson Background and Concepts for Teachers The overall concept that is important in this lesson is: Using a standard method or ...

  18. Master the 7-Step Problem-Solving Process for Better ...

    The 7-step problem-solving process is a powerful tool for helping individuals and organizations make better decisions. By following these steps, individuals can identify the root cause of a problem, prioritize potential solutions, and develop a clear plan of action. This process can be applied to various scenarios, from personal challenges to ...

  19. Lesson 6 Problem-solving

    Lesson 6 Problem-solving. Curriculum > KS3 > Unit > Lesson. This is the final lesson of the first unit of programming in Year 7. The lesson starts with a game of 'Beat the teacher' where the learners are required to write down as many as the key words relating to this unit that they can. After a minute, the teacher will also play and the ...

  20. Module 1 Lesson 1 Introduction to Computer Programming

    It is to understand or define the problem and what the solution must do (1st step of Problem-Solving Phase) It is when you develop a logical sequence of steps to be used to solve the problem (2nd step of Problem-Solving Phase) It is when you translate the algorithm into a program using any programming language. (1st step of Implementation Phase ...

  21. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.