Join thousands of product people at Insight Out Conf on April 11. Register free.

Insights hub solutions

Analyze data

Uncover deep customer insights with fast, powerful features, store insights, curate and manage insights in one searchable platform, scale research, unlock the potential of customer insights at enterprise scale.

Featured reads

Create a quick summary to identify key takeaways and keep your team in the loop.

Tips and tricks

Make magic with your customer data in Dovetail

analysis for descriptive research

Four ways Dovetail helps Product Managers master continuous product discovery

analysis for descriptive research

Product updates

Dovetail retro: our biggest releases from the past year

Events and videos

© Dovetail Research Pty. Ltd.

  • What is descriptive research?

Last updated

5 February 2023

Reviewed by

Cathy Heath

Descriptive research is a common investigatory model used by researchers in various fields, including social sciences, linguistics, and academia.

Read on to understand the characteristics of descriptive research and explore its underlying techniques, processes, and procedures.

Analyze your descriptive research

Dovetail streamlines analysis to help you uncover and share actionable insights

Descriptive research is an exploratory research method. It enables researchers to precisely and methodically describe a population, circumstance, or phenomenon.

As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses . This can be reported using surveys , observational studies, and case studies. You can use both quantitative and qualitative methods to compile the data.

Besides making observations and then comparing and analyzing them, descriptive studies often develop knowledge concepts and provide solutions to critical issues. It always aims to answer how the event occurred, when it occurred, where it occurred, and what the problem or phenomenon is.

  • Characteristics of descriptive research

The following are some of the characteristics of descriptive research:

Quantitativeness

Descriptive research can be quantitative as it gathers quantifiable data to statistically analyze a population sample. These numbers can show patterns, connections, and trends over time and can be discovered using surveys, polls, and experiments.

Qualitativeness

Descriptive research can also be qualitative. It gives meaning and context to the numbers supplied by quantitative descriptive research .

Researchers can use tools like interviews, focus groups, and ethnographic studies to illustrate why things are what they are and help characterize the research problem. This is because it’s more explanatory than exploratory or experimental research.

Uncontrolled variables

Descriptive research differs from experimental research in that researchers cannot manipulate the variables. They are recognized, scrutinized, and quantified instead. This is one of its most prominent features.

Cross-sectional studies

Descriptive research is a cross-sectional study because it examines several areas of the same group. It involves obtaining data on multiple variables at the personal level during a certain period. It’s helpful when trying to understand a larger community’s habits or preferences.

Carried out in a natural environment

Descriptive studies are usually carried out in the participants’ everyday environment, which allows researchers to avoid influencing responders by collecting data in a natural setting. You can use online surveys or survey questions to collect data or observe.

Basis for further research

You can further dissect descriptive research’s outcomes and use them for different types of investigation. The outcomes also serve as a foundation for subsequent investigations and can guide future studies. For example, you can use the data obtained in descriptive research to help determine future research designs.

  • Descriptive research methods

There are three basic approaches for gathering data in descriptive research: observational, case study, and survey.

You can use surveys to gather data in descriptive research. This involves gathering information from many people using a questionnaire and interview .

Surveys remain the dominant research tool for descriptive research design. Researchers can conduct various investigations and collect multiple types of data (quantitative and qualitative) using surveys with diverse designs.

You can conduct surveys over the phone, online, or in person. Your survey might be a brief interview or conversation with a set of prepared questions intended to obtain quick information from the primary source.

Observation

This descriptive research method involves observing and gathering data on a population or phenomena without manipulating variables. It is employed in psychology, market research , and other social science studies to track and understand human behavior.

Observation is an essential component of descriptive research. It entails gathering data and analyzing it to see whether there is a relationship between the two variables in the study. This strategy usually allows for both qualitative and quantitative data analysis.

Case studies

A case study can outline a specific topic’s traits. The topic might be a person, group, event, or organization.

It involves using a subset of a larger group as a sample to characterize the features of that larger group.

You can generalize knowledge gained from studying a case study to benefit a broader audience.

This approach entails carefully examining a particular group, person, or event over time. You can learn something new about the study topic by using a small group to better understand the dynamics of the entire group.

  • Types of descriptive research

There are several types of descriptive study. The most well-known include cross-sectional studies, census surveys, sample surveys, case reports, and comparison studies.

Case reports and case series

In the healthcare and medical fields, a case report is used to explain a patient’s circumstances when suffering from an uncommon illness or displaying certain symptoms. Case reports and case series are both collections of related cases. They have aided the advancement of medical knowledge on countless occasions.

The normative component is an addition to the descriptive survey. In the descriptive–normative survey, you compare the study’s results to the norm.

Descriptive survey

This descriptive type of research employs surveys to collect information on various topics. This data aims to determine the degree to which certain conditions may be attained.

You can extrapolate or generalize the information you obtain from sample surveys to the larger group being researched.

Correlative survey

Correlative surveys help establish if there is a positive, negative, or neutral connection between two variables.

Performing census surveys involves gathering relevant data on several aspects of a given population. These units include individuals, families, organizations, objects, characteristics, and properties.

During descriptive research, you gather different degrees of interest over time from a specific population. Cross-sectional studies provide a glimpse of a phenomenon’s prevalence and features in a population. There are no ethical challenges with them and they are quite simple and inexpensive to carry out.

Comparative studies

These surveys compare the two subjects’ conditions or characteristics. The subjects may include research variables, organizations, plans, and people.

Comparison points, assumption of similarities, and criteria of comparison are three important variables that affect how well and accurately comparative studies are conducted.

For instance, descriptive research can help determine how many CEOs hold a bachelor’s degree and what proportion of low-income households receive government help.

  • Pros and cons

The primary advantage of descriptive research designs is that researchers can create a reliable and beneficial database for additional study. To conduct any inquiry, you need access to reliable information sources that can give you a firm understanding of a situation.

Quantitative studies are time- and resource-intensive, so knowing the hypotheses viable for testing is crucial. The basic overview of descriptive research provides helpful hints as to which variables are worth quantitatively examining. This is why it’s employed as a precursor to quantitative research designs.

Some experts view this research as untrustworthy and unscientific. However, there is no way to assess the findings because you don’t manipulate any variables statistically.

Cause-and-effect correlations also can’t be established through descriptive investigations. Additionally, observational study findings cannot be replicated, which prevents a review of the findings and their replication.

The absence of statistical and in-depth analysis and the rather superficial character of the investigative procedure are drawbacks of this research approach.

  • Descriptive research examples and applications

Several descriptive research examples are emphasized based on their types, purposes, and applications. Research questions often begin with “What is …” These studies help find solutions to practical issues in social science, physical science, and education.

Here are some examples and applications of descriptive research:

Determining consumer perception and behavior

Organizations use descriptive research designs to determine how various demographic groups react to a certain product or service.

For example, a business looking to sell to its target market should research the market’s behavior first. When researching human behavior in response to a cause or event, the researcher pays attention to the traits, actions, and responses before drawing a conclusion.

Scientific classification

Scientific descriptive research enables the classification of organisms and their traits and constituents.

Measuring data trends

A descriptive study design’s statistical capabilities allow researchers to track data trends over time. It’s frequently used to determine the study target’s current circumstances and underlying patterns.

Conduct comparison

Organizations can use a descriptive research approach to learn how various demographics react to a certain product or service. For example, you can study how the target market responds to a competitor’s product and use that information to infer their behavior.

  • Bottom line

A descriptive research design is suitable for exploring certain topics and serving as a prelude to larger quantitative investigations. It provides a comprehensive understanding of the “what” of the group or thing you’re investigating.

This research type acts as the cornerstone of other research methodologies . It is distinctive because it can use quantitative and qualitative research approaches at the same time.

What is descriptive research design?

Descriptive research design aims to systematically obtain information to describe a phenomenon, situation, or population. More specifically, it helps answer the what, when, where, and how questions regarding the research problem rather than the why.

How does descriptive research compare to qualitative research?

Despite certain parallels, descriptive research concentrates on describing phenomena, while qualitative research aims to understand people better.

How do you analyze descriptive research data?

Data analysis involves using various methodologies, enabling the researcher to evaluate and provide results regarding validity and reliability.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 17 February 2024

Last updated: 19 November 2023

Last updated: 5 March 2024

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

logo image missing

  • > Statistics

An Overview of Descriptive Analysis

  • Ayush Singh Rawat
  • Mar 31, 2021

An Overview of Descriptive Analysis title banner

Nowadays, Big Data and Data Science have become high volume keywords. They tend to become extensively researched and this makes this data to be processed and studied with scrutiny. One of the techniques to analyse this data is Descriptive Analysis.

This data needs to be analysed to provide great insights and influential trends that allows the next batch of content to be made in accordance to the general population’s liking or dis-liking.

Introduction

The conversion of raw data into a form that will make it easy to understand & interpret, ie., rearranging, ordering, and manipulating data to provide insightful information about the provided data.

Descriptive Analysis is the type of analysis of data that helps describe, show or summarize data points in a constructive way such that patterns might emerge that fulfill every condition of the data.

It is one of the most important steps for conducting statistical data analysis . It gives you a conclusion of the distribution of your data, helps you detect typos and outliers, and enables you to identify similarities among variables, thus making you ready for conducting further statistical analyses.   

Techniques for Descriptive Analysis

Data aggregation and data mining are two techniques used in descriptive analysis to churn out historical data. In Data aggregation, data is first collected and then sorted in order to make the datasets more manageable.

Descriptive techniques often include constructing tables of quantiles and means, methods of dispersion such as variance or standard deviation, and cross-tabulations or "crosstabs" that can be used to carry out many disparate hypotheses. These hypotheses often highlight differences among subgroups.

Measures like segregation, discrimination, and inequality are studied using specialised descriptive techniques. Discrimination is measured with the help of audit studies or decomposition methods. More segregation on the basis of type or inequality of outcomes need not be wholly good or bad in itself, but it is often considered a marker of unjust social processes; accurate measurement of the different steps across space and time is a prerequisite to understanding these processes.

A table of means by subgroup is used to show important differences across subgroups, which mostly results in inference and conclusions being made. When we notice a gap in earnings, for example, we naturally tend to extrapolate reasons for those patterns complying. 

But this also enters the province of measuring impacts which requires the use of different techniques. Often, random variation causes difference in means, and statistical inference is required to determine whether observed differences could happen merely due to chance.

A crosstab or two-way tabulation is supposed to show the proportions of components with unique values for each of two variables available, or cell proportions. For example, we might tabulate the proportion of the population that has a high school degree and also receives food or cash assistance, meaning a crosstab of education versus receipt of assistance is supposed to be made. 

Then we might also want to examine row proportions, or the fractions in each education group who receive food or cash assistance, perhaps seeing assistance levels dip extraordinarily at higher education levels.

Column proportions can also be examined, for the fraction of population with different levels of education, but this is the opposite from any causal effects. We might come across a surprisingly high number or proportion of recipients with a college education, but this might be a result of larger numbers of people being college graduates than people who have less than a high school degree.

(Must check: 4 Types of Data in Statistics )

Types of Descriptive Analysis

Descriptive analysis can be categorized into four types which are measures of frequency, central tendency, dispersion or variation, and position. These methods are optimal for a single variable at a time.

the photo represents the different types of Descriptive analysis techniques, namely; Measures of frequency, measures of central tendency, measures of dispersion, measures of position, contingency tables and scatter plots.

Different types of Descriptive Analysis

Measures of Frequency

In descriptive analysis, it’s essential to know how frequently a certain event or response is likely to occur. This is the prime purpose of measures of frequency to make like a count or percent. 

For example, consider a survey where 500 participants are asked about their favourite IPL team. A list of 500 responses would be difficult to consume and accommodate, but the data can be made much more accessible by measuring how many times a certain IPL team was selected.

Measures of Central Tendency

In descriptive analysis, it’s also important to find out the Central (or average) Tendency or response. Central tendency is measured with the use of three averages — mean, median, and mode. As an example, consider a survey in which the weight of 1,000 people is measured. In this case, the mean average would be an excellent descriptive metric to measure mid-values.

Measures of Dispersion

Sometimes, it is important to know how data is divided across a range. To elaborate this, consider the average weight in a sample of two people. If both individuals are 60 kilos, the average weight will be 60 kg. However, if one individual is 50 kg and the other is 70 kg, the average weight is still 60 kg. Measures of dispersion like range or standard deviation can be employed to measure this kind of distribution.

Measures of Position

Descriptive analysis also involves identifying the position of a single value or its response in relation to others. Measures like percentiles and quartiles become very useful in this area of expertise.

Apart from it, if you’ve collected data on multiple variables, you can use the Bivariate or Multivariate descriptive statistics to study whether there are relationships between them.

In bivariate analysis, you simultaneously study the frequency and variability of two different variables to see if they seem to have a pattern and vary together. You can also test and compare the central tendency of the two variables before carrying out further types of statistical analysis .

Multivariate analysis is the same as bivariate analysis but it is carried out for more than two variables. Following 2 methods are for bivariate analysis.

Contingency table

In a contingency table, each cell represents the combination of the two variables. Naturally, an independent variable (e.g., gender) is listed along the vertical axis and a dependent one is tallied along the horizontal axis (e.g., activities). You need to read “across” the table to witness how the two variables i.e. independent and dependent variables relate to each other.

A table showing a tally of different gender with number of activities

Scatter plots

A scatter plot is a chart that enables you to see the relationship between two or three different variables. It’s a visual rendition of the strength of a relationship.

In a scatter plot, you are supposed to plot one variable along the x-axis and another one along the y-axis. Each data point is denoted by a point in the chart.

the photo is a scatter plot representation for the different hours of sleep a person needs to acquire by the different age in his lifespan

The scatter plot shows the hours of sleep needed per day by age, Source

(Recommend Blog: Introduction to Bayesian Statistics )

Advantages of Descriptive Analysis

High degree of objectivity and neutrality of the researchers are one of the main advantages of Descriptive Analysis. The reason why researchers need to be extra vigilant is because descriptive analysis shows different characteristics of the data extracted and if the data doesn’t match with the trends then it will lead to major dumping of data.

Descriptive analysis is considered to be more vast than other quantitative methods and provide a broader picture of an event or phenomenon. It can use any number of variables or even a single number of variables to conduct a descriptive research. 

This type of analysis is considered as a better method for collecting information that describes relationships as natural and exhibits the world as it exists. This reason makes this analysis very real and close to humanity as all the trends are made after research about the real-life behaviour of the data.

It is considered useful for identifying variables and new hypotheses which can be further analyzed through experimental and inferential studies. It is considered useful because the margin for error is very less as we are taking the trends straight from the data properties.

This type of study gives the researcher the flexibility to use both quantitative and qualitative data in order to discover the properties of the population.

For example, researchers can use both case study which is a qualitative analysis and correlation analysis to describe a phenomena in its own way. Using the case studies for describing people, events, institutions enables the researcher to understand the behavior and pattern of the concerned set to its maximum potential. 

In the case of surveys which consist of one of the main types of Descriptive Analysis, the researcher tends to gather data points from a relatively large number of samples unlike experimental studies that generally need smaller samples.

This is an out and out advantage of the survey method over other descriptive methods that it enables researchers to study larger groups of individuals with ease. If the surveys are properly administered, it gives a broader and neater description of the unit under research.

(Also check: Importance of Statistics for Data Science )

Share Blog :

analysis for descriptive research

Be a part of our Instagram community

Trending blogs

5 Factors Influencing Consumer Behavior

Elasticity of Demand and its Types

What is PESTLE Analysis? Everything you need to know about it

What is Managerial Economics? Definition, Types, Nature, Principles, and Scope

5 Factors Affecting the Price Elasticity of Demand (PED)

6 Major Branches of Artificial Intelligence (AI)

Dijkstra’s Algorithm: The Shortest Path Algorithm

Scope of Managerial Economics

Different Types of Research Methods

Latest Comments

analysis for descriptive research

Cindy Jason

HOW TO GET YOUR EX HUSBAND BACK HELP OF DR KACHI CALL NUMBER +1 (209) 893-8075 God did it for me again with the help of Dr Kachi with his love spell to get my husband back. we divorce 3months ago and since things become so hard for me because I love my husband so much, But he was chatting on me with another woman and he always goes to party every night my husband doesn't care about me whenever he get back at night he will be beating me up with no reason, I cry every night and day to get my husband back to his normal love and affection that he give to me before. but nothing was working out for me I try my best I left him with my kids but I couldn't sleep at night without thinking about my husband, then one day I was reading a new online about our politics and I see a comment about Dr Kachi how he restored broken relationship back and marriage, i didn't believe in love spell at the first place, then i have to make further research about Dr Kachi I opened his website I can't believe what I saw a great man helping people return their lover back and being happy in relationship again. I went fast and contacted Dr Kachi to help me restore my marriage back, after I provided the required needed to cast the love spell, the next day my husband come back to me and apologies for him leaving me and the kids Dr Kachi made me the happiest woman on earth I am so happy, I do appreciate your kind help bring my husband home, you can also contact him and seek for help in break up in married Via Text Number WhatsApp: +1 (209) 893-8075 Website: https://drkachispellcaster.wixsite.com/my-site Email [email protected]

analysis for descriptive research

patricianelson0529f9ed2c49f224ae8

My name is Patricia Nelson. I was in the process of rebuilding credit from divorce and unfortunately had my car totaled otherwise I would’ve kept my current auto loan and car. Previously I had Experian FICO around 674, with a similar auto score. My TransUnion was absolutely trashed, and barely 600 and my Equifax was in the 640s. I had no collection accounts, no charge offs, and two accounts paid less than agreed. I tried getting a loan on PNC but got denied. I needed help and found PINNACLE CREDIT SPECIALIST here, they're a good and kind credit repair team. They pulled my score to 801 Experian, 805 TransUnion, 809 Equifax and they added good trade lines to my credit report. I got everything I wanted and even more. Thanks to the entire team. Contacts: [email protected] / +1 (409) 231-0041.

richardmorin461babb0c03826f498d

Today I called PINNACLE CREDIT SPECIALIST and asked to have my BK7 removed from my CR, and they did. It was scheduled to fall off next year. So that’s that. A horrible chapter in my life but I’ve come out on top. So much wiser, better prepared for the future, and peace of mind where finances are concerned. Thanks to this forum and the good folks that spend their time here to share their experience and share the knowledge they got from PINNACLE CREDIT SPECIALIST. Thank you PINNACLE CREDIT SPECIALIST for all your assistance, guidance and cheerleading. Especially in the early days of my rebuild. With my scores now in the 800’s I’m tempted to app just to know I’d likely be approved, but there’s nothing I need right now. A sincere thanks to all of you! Contact them by email: [email protected] / Or call +1 (409) 231-0041.

analysis for descriptive research

devidtukur737906a3065e44ce

HIRE A CERTIFIED CRYPTO RECOVERY EXPERT // LOST RECOVERY MASTERS ARE REPUTABLE Most frequently asked question by investors after losing Bitcoins to fraudsters is how possible it is to recover the digital asset. I happened to become a scam victim last summer. I became interested in Cryptocurrency trading last summer and decided to trade $425,000 worth of crypto through an online software company which promised huge returns. This all went wrong after they transferred all my funds from my coin base wallet to an unknown wallet address. I immediately had a search out on a reliable option to recover the funds back. I came across Lost Recovery Masters, a specialized group in Cryptocurrency Recovery services. I must say I have good fortune, all my lost funds have been recovered back all thanks to these experts. To any victim who has lost Crypto to fraudsters learn more on restoring back your funds Visit their website and Learn more: Website: https://lostrecoverymasters.wixsite.com/recoverbitcoin2024 Whatsapp (+44(7537)-105921) Support Email ([email protected])

jasonherman4787bb771ddefc64bc2

Hi everyone, I want to sincerely appreciate PINNACLE CREDIT SPECIALIST for the dedication and time they put in working my credit. I had 4 charges off accounts (3 cc and 1 installment loan). I do have 2 cards with longevity and bad payment history though lower limits ($1200 and $850) and a car loan with 7 late time payments reflecting. During my financial struggles NFC closed the 2-credit card accounts I had with them. I also had a chapter 7 BK in 2020. I did have high utilization and few late payments (over more than 10 days late). The account closure dropped my scores because the balances took my utilization to 990%. I continued making payments on time until a friend read about PINNACLE CREDIT SPECIALIST on Quora and informed me, I contacted them after reading some testimonies about them, they ran my credit report, analyzed my credit score and determined which action will have the greatest impact. They raised my credit score to 803 and deleted all negative items on my credit report including the chapter 7 BK, within 6 days. They made it work and I have a clean profile now. My heart is full of gratitude. You can reach them via: [email protected] Or call +1 (409) 231-0041.

sukysodhi64de16a4a2bb14b69

When one loses funds to cryptocurrency and digital assets to investment theft it can be so devastating so the need to get a legitimate fund recovery support team arises. Two weeks ago I fell for an ad on crypto investment which I invested blindly due to the return on investment. After a few days of investing I tried to check through how my investment has grown and to my surprise the account that was created for me got deleted. That was how I lost my life savings of about $230.000. and I tried reaching the support team all to no avail. Instantly I knew I would be swindled but amazingly 4 days ago I read a review about this great recovery team with the mail: HACKRECOVERY {at} YANDEX {dot} RU whom I wrote and he recovered all my funds using some forensics and digital currency recovery techniques. So happy!

jamesgrove20939e280fc27134a88

I had a couple of things happen in 2021 that caused me to get extremely behind on several bills. I had about 3 credit cards end up in charge-off status. Only one of those cards was ever sent to collections and I have since paid this before the collection ever hit my credit. 2 of the cards were through Capital One. 1 of the 2 were sent to collections. The unpaid one has been referred to an attorney and kept in house, although I received documentation that the attorney was dropping the lawsuit against me. My credit was hovering at around a 620 Equifax FICO and a 618 Experian FICO. I had so many lates from these three accounts. This forum gave me some hope regarding PINNACLE CREDIT SPECIALIST. PINNACLE CREDIT SPECIALIST came through for me and increased my scores to 801 Equifax, 806 TransUnion and 811 Experian and deleted all the negative items on my credit profile including charge offs and collection. If you need a hacker to fix your credit issues within 6 days, PINNACLE CREDIT SPECIALIST is good to go. They get the job done as quickly as possible. Email: [email protected] / +1 (409) 231-0041.

analysis for descriptive research

Susan Bickford

It's A Great News to Celebrate with you Viewer, I am truly living the life I have been looking for after Dr Kachi made me win my Powerball Lottery, I had been playing for a good 8years. It was a friend of mine who directed me to Dr Kachi because my friend Nancy has won the Powerball so many times and I don't know how she got the match six numbers to play and win a very big amount of money, then the last time she won the Mega Millions I told her to tell me the secret on how she win. That's when she started telling me about the powerful Dr Kachi who has been her helper. and she gave me Dr Kachi Text/Call Number:+1 (209) 893-8075 I texted the greatest spell caster Dr Kachi and I told him I wanted to win my Powerball with his spiritual rightful number and he told me I should give him 2hours to get everything done and hopefully Dr Kachi do it, and give me a winning numbers to play my ticket that make me win the prize of $223.3 Million Dollars Powerball lottery Tuesday i bought the winning ticket at the Carlie C’s IGA store in Hope Mills, that changed my life for good today, and Dr Kachi a strong spell caster and trust him when he says the results will manifest it's Truth, God bless you Dr kachi for your kind help also can Email: [email protected] or website:  https://drkachispellcaster.wixsite.com/my-site

analysis for descriptive research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Descriptive Statistics | Definitions, Types, Examples

Published on July 9, 2020 by Pritha Bhandari . Revised on June 21, 2023.

Descriptive statistics summarize and organize characteristics of a data set. A data set is a collection of responses or observations from a sample or entire population.

In quantitative research , after collecting data, the first step of statistical analysis is to describe characteristics of the responses, such as the average of one variable (e.g., age), or the relation between two variables (e.g., age and creativity).

The next step is inferential statistics , which help you decide whether your data confirms or refutes your hypothesis and whether it is generalizable to a larger population.

Table of contents

Types of descriptive statistics, frequency distribution, measures of central tendency, measures of variability, univariate descriptive statistics, bivariate descriptive statistics, other interesting articles, frequently asked questions about descriptive statistics.

There are 3 main types of descriptive statistics:

  • The distribution concerns the frequency of each value.
  • The central tendency concerns the averages of the values.
  • The variability or dispersion concerns how spread out the values are.

Types of descriptive statistics

You can apply these to assess only one variable at a time, in univariate analysis, or to compare two or more, in bivariate and multivariate analysis.

  • Go to a library
  • Watch a movie at a theater
  • Visit a national park

Prevent plagiarism. Run a free check.

A data set is made up of a distribution of values, or scores. In tables or graphs, you can summarize the frequency of every possible value of a variable in numbers or percentages. This is called a frequency distribution .

  • Simple frequency distribution table
  • Grouped frequency distribution table

From this table, you can see that more women than men or people with another gender identity took part in the study. In a grouped frequency distribution, you can group numerical response values and add up the number of responses for each group. You can also convert each of these numbers to percentages.

Measures of central tendency estimate the center, or average, of a data set. The mean, median and mode are 3 ways of finding the average.

Here we will demonstrate how to calculate the mean, median, and mode using the first 6 responses of our survey.

The mean , or M , is the most commonly used method for finding the average.

To find the mean, simply add up all response values and divide the sum by the total number of responses. The total number of responses or observations is called N .

The median is the value that’s exactly in the middle of a data set.

To find the median, order each response value from the smallest to the biggest. Then , the median is the number in the middle. If there are two numbers in the middle, find their mean.

The mode is the simply the most popular or most frequent response value. A data set can have no mode, one mode, or more than one mode.

To find the mode, order your data set from lowest to highest and find the response that occurs most frequently.

Measures of variability give you a sense of how spread out the response values are. The range, standard deviation and variance each reflect different aspects of spread.

The range gives you an idea of how far apart the most extreme response scores are. To find the range , simply subtract the lowest value from the highest value.

Standard deviation

The standard deviation ( s or SD ) is the average amount of variability in your dataset. It tells you, on average, how far each score lies from the mean. The larger the standard deviation, the more variable the data set is.

There are six steps for finding the standard deviation:

  • List each score and find their mean.
  • Subtract the mean from each score to get the deviation from the mean.
  • Square each of these deviations.
  • Add up all of the squared deviations.
  • Divide the sum of the squared deviations by N – 1.
  • Find the square root of the number you found.

Step 5: 421.5/5 = 84.3

Step 6: √84.3 = 9.18

The variance is the average of squared deviations from the mean. Variance reflects the degree of spread in the data set. The more spread the data, the larger the variance is in relation to the mean.

To find the variance, simply square the standard deviation. The symbol for variance is s 2 .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

analysis for descriptive research

Univariate descriptive statistics focus on only one variable at a time. It’s important to examine data from each variable separately using multiple measures of distribution, central tendency and spread. Programs like SPSS and Excel can be used to easily calculate these.

If you were to only consider the mean as a measure of central tendency, your impression of the “middle” of the data set can be skewed by outliers, unlike the median or mode.

Likewise, while the range is sensitive to outliers , you should also consider the standard deviation and variance to get easily comparable measures of spread.

If you’ve collected data on more than one variable, you can use bivariate or multivariate descriptive statistics to explore whether there are relationships between them.

In bivariate analysis, you simultaneously study the frequency and variability of two variables to see if they vary together. You can also compare the central tendency of the two variables before performing further statistical tests .

Multivariate analysis is the same as bivariate analysis but with more than two variables.

Contingency table

In a contingency table, each cell represents the intersection of two variables. Usually, an independent variable (e.g., gender) appears along the vertical axis and a dependent one appears along the horizontal axis (e.g., activities). You read “across” the table to see how the independent and dependent variables relate to each other.

Interpreting a contingency table is easier when the raw data is converted to percentages. Percentages make each row comparable to the other by making it seem as if each group had only 100 observations or participants. When creating a percentage-based contingency table, you add the N for each independent variable on the end.

From this table, it is more clear that similar proportions of children and adults go to the library over 17 times a year. Additionally, children most commonly went to the library between 5 and 8 times, while for adults, this number was between 13 and 16.

Scatter plots

A scatter plot is a chart that shows you the relationship between two or three variables . It’s a visual representation of the strength of a relationship.

In a scatter plot, you plot one variable along the x-axis and another one along the y-axis. Each data point is represented by a point in the chart.

From your scatter plot, you see that as the number of movies seen at movie theaters increases, the number of visits to the library decreases. Based on your visual assessment of a possible linear relationship, you perform further tests of correlation and regression.

Descriptive statistics: Scatter plot

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Statistical power
  • Pearson correlation
  • Degrees of freedom
  • Statistical significance

Methodology

  • Cluster sampling
  • Stratified sampling
  • Focus group
  • Systematic review
  • Ethnography
  • Double-Barreled Question

Research bias

  • Implicit bias
  • Publication bias
  • Cognitive bias
  • Placebo effect
  • Pygmalion effect
  • Hindsight bias
  • Overconfidence bias

Descriptive statistics summarize the characteristics of a data set. Inferential statistics allow you to test a hypothesis or assess whether your data is generalizable to the broader population.

The 3 main types of descriptive statistics concern the frequency distribution, central tendency, and variability of a dataset.

  • Distribution refers to the frequencies of different responses.
  • Measures of central tendency give you the average for each response.
  • Measures of variability show you the spread or dispersion of your dataset.
  • Univariate statistics summarize only one variable  at a time.
  • Bivariate statistics compare two variables .
  • Multivariate statistics compare more than two variables .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 21). Descriptive Statistics | Definitions, Types, Examples. Scribbr. Retrieved March 25, 2024, from https://www.scribbr.com/statistics/descriptive-statistics/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, central tendency | understanding the mean, median & mode, variability | calculating range, iqr, variance, standard deviation, inferential statistics | an easy introduction & examples, what is your plagiarism score.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Descriptive Research Design | Definition, Methods & Examples

Descriptive Research Design | Definition, Methods & Examples

Published on 5 May 2022 by Shona McCombes . Revised on 10 October 2022.

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what , where , when , and how   questions , but not why questions.

A descriptive research design can use a wide variety of research methods  to investigate one or more variables . Unlike in experimental research , the researcher does not control or manipulate any of the variables, but only observes and measures them.

Table of contents

When to use a descriptive research design, descriptive research methods.

Descriptive research is an appropriate choice when the research aim is to identify characteristics, frequencies, trends, and categories.

It is useful when not much is known yet about the topic or problem. Before you can research why something happens, you need to understand how, when, and where it happens.

  • How has the London housing market changed over the past 20 years?
  • Do customers of company X prefer product Y or product Z?
  • What are the main genetic, behavioural, and morphological differences between European wildcats and domestic cats?
  • What are the most popular online news sources among under-18s?
  • How prevalent is disease A in population B?

Prevent plagiarism, run a free check.

Descriptive research is usually defined as a type of quantitative research , though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable .

Survey research allows you to gather large volumes of data that can be analysed for frequencies, averages, and patterns. Common uses of surveys include:

  • Describing the demographics of a country or region
  • Gauging public opinion on political and social topics
  • Evaluating satisfaction with a company’s products or an organisation’s services

Observations

Observations allow you to gather data on behaviours and phenomena without having to rely on the honesty and accuracy of respondents. This method is often used by psychological, social, and market researchers to understand how people act in real-life situations.

Observation of physical entities and phenomena is also an important part of research in the natural sciences. Before you can develop testable hypotheses , models, or theories, it’s necessary to observe and systematically describe the subject under investigation.

Case studies

A case study can be used to describe the characteristics of a specific subject (such as a person, group, event, or organisation). Instead of gathering a large volume of data to identify patterns across time or location, case studies gather detailed data to identify the characteristics of a narrowly defined subject.

Rather than aiming to describe generalisable facts, case studies often focus on unusual or interesting cases that challenge assumptions, add complexity, or reveal something new about a research problem .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). Descriptive Research Design | Definition, Methods & Examples. Scribbr. Retrieved 25 March 2024, from https://www.scribbr.co.uk/research-methods/descriptive-research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, a quick guide to experimental design | 5 steps & examples, correlational research | guide, design & examples, qualitative vs quantitative research | examples & methods.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

analysis for descriptive research

Home Market Research

Descriptive Research: Definition, Characteristics, Methods + Examples

Descriptive Research

Suppose an apparel brand wants to understand the fashion purchasing trends among New York’s buyers, then it must conduct a demographic survey of the specific region, gather population data, and then conduct descriptive research on this demographic segment.

The study will then uncover details on “what is the purchasing pattern of New York buyers,” but will not cover any investigative information about “ why ” the patterns exist. Because for the apparel brand trying to break into this market, understanding the nature of their market is the study’s main goal. Let’s talk about it.

What is descriptive research?

Descriptive research is a research method describing the characteristics of the population or phenomenon studied. This descriptive methodology focuses more on the “what” of the research subject than the “why” of the research subject.

The method primarily focuses on describing the nature of a demographic segment without focusing on “why” a particular phenomenon occurs. In other words, it “describes” the research subject without covering “why” it happens.

Characteristics of descriptive research

The term descriptive research then refers to research questions, the design of the study, and data analysis conducted on that topic. We call it an observational research method because none of the research study variables are influenced in any capacity.

Some distinctive characteristics of descriptive research are:

  • Quantitative research: It is a quantitative research method that attempts to collect quantifiable information for statistical analysis of the population sample. It is a popular market research tool that allows us to collect and describe the demographic segment’s nature.
  • Uncontrolled variables: In it, none of the variables are influenced in any way. This uses observational methods to conduct the research. Hence, the nature of the variables or their behavior is not in the hands of the researcher.
  • Cross-sectional studies: It is generally a cross-sectional study where different sections belonging to the same group are studied.
  • The basis for further research: Researchers further research the data collected and analyzed from descriptive research using different research techniques. The data can also help point towards the types of research methods used for the subsequent research.

Applications of descriptive research with examples

A descriptive research method can be used in multiple ways and for various reasons. Before getting into any survey , though, the survey goals and survey design are crucial. Despite following these steps, there is no way to know if one will meet the research outcome. How to use descriptive research? To understand the end objective of research goals, below are some ways organizations currently use descriptive research today:

  • Define respondent characteristics: The aim of using close-ended questions is to draw concrete conclusions about the respondents. This could be the need to derive patterns, traits, and behaviors of the respondents. It could also be to understand from a respondent their attitude, or opinion about the phenomenon. For example, understand millennials and the hours per week they spend browsing the internet. All this information helps the organization researching to make informed business decisions.
  • Measure data trends: Researchers measure data trends over time with a descriptive research design’s statistical capabilities. Consider if an apparel company researches different demographics like age groups from 24-35 and 36-45 on a new range launch of autumn wear. If one of those groups doesn’t take too well to the new launch, it provides insight into what clothes are like and what is not. The brand drops the clothes and apparel that customers don’t like.
  • Conduct comparisons: Organizations also use a descriptive research design to understand how different groups respond to a specific product or service. For example, an apparel brand creates a survey asking general questions that measure the brand’s image. The same study also asks demographic questions like age, income, gender, geographical location, geographic segmentation , etc. This consumer research helps the organization understand what aspects of the brand appeal to the population and what aspects do not. It also helps make product or marketing fixes or even create a new product line to cater to high-growth potential groups.
  • Validate existing conditions: Researchers widely use descriptive research to help ascertain the research object’s prevailing conditions and underlying patterns. Due to the non-invasive research method and the use of quantitative observation and some aspects of qualitative observation , researchers observe each variable and conduct an in-depth analysis . Researchers also use it to validate any existing conditions that may be prevalent in a population.
  • Conduct research at different times: The analysis can be conducted at different periods to ascertain any similarities or differences. This also allows any number of variables to be evaluated. For verification, studies on prevailing conditions can also be repeated to draw trends.

Advantages of descriptive research

Some of the significant advantages of descriptive research are:

Advantages of descriptive research

  • Data collection: A researcher can conduct descriptive research using specific methods like observational method, case study method, and survey method. Between these three, all primary data collection methods are covered, which provides a lot of information. This can be used for future research or even for developing a hypothesis for your research object.
  • Varied: Since the data collected is qualitative and quantitative, it gives a holistic understanding of a research topic. The information is varied, diverse, and thorough.
  • Natural environment: Descriptive research allows for the research to be conducted in the respondent’s natural environment, which ensures that high-quality and honest data is collected.
  • Quick to perform and cheap: As the sample size is generally large in descriptive research, the data collection is quick to conduct and is inexpensive.

Descriptive research methods

There are three distinctive methods to conduct descriptive research. They are:

Observational method

The observational method is the most effective method to conduct this research, and researchers make use of both quantitative and qualitative observations.

A quantitative observation is the objective collection of data primarily focused on numbers and values. It suggests “associated with, of or depicted in terms of a quantity.” Results of quantitative observation are derived using statistical and numerical analysis methods. It implies observation of any entity associated with a numeric value such as age, shape, weight, volume, scale, etc. For example, the researcher can track if current customers will refer the brand using a simple Net Promoter Score question .

Qualitative observation doesn’t involve measurements or numbers but instead just monitoring characteristics. In this case, the researcher observes the respondents from a distance. Since the respondents are in a comfortable environment, the characteristics observed are natural and effective. In a descriptive research design, the researcher can choose to be either a complete observer, an observer as a participant, a participant as an observer, or a full participant. For example, in a supermarket, a researcher can from afar monitor and track the customers’ selection and purchasing trends. This offers a more in-depth insight into the purchasing experience of the customer.

Case study method

Case studies involve in-depth research and study of individuals or groups. Case studies lead to a hypothesis and widen a further scope of studying a phenomenon. However, case studies should not be used to determine cause and effect as they can’t make accurate predictions because there could be a bias on the researcher’s part. The other reason why case studies are not a reliable way of conducting descriptive research is that there could be an atypical respondent in the survey. Describing them leads to weak generalizations and moving away from external validity.

Survey research

In survey research, respondents answer through surveys or questionnaires or polls . They are a popular market research tool to collect feedback from respondents. A study to gather useful data should have the right survey questions. It should be a balanced mix of open-ended questions and close ended-questions . The survey method can be conducted online or offline, making it the go-to option for descriptive research where the sample size is enormous.

Examples of descriptive research

Some examples of descriptive research are:

  • A specialty food group launching a new range of barbecue rubs would like to understand what flavors of rubs are favored by different people. To understand the preferred flavor palette, they conduct this type of research study using various methods like observational methods in supermarkets. By also surveying while collecting in-depth demographic information, offers insights about the preference of different markets. This can also help tailor make the rubs and spreads to various preferred meats in that demographic. Conducting this type of research helps the organization tweak their business model and amplify marketing in core markets.
  • Another example of where this research can be used is if a school district wishes to evaluate teachers’ attitudes about using technology in the classroom. By conducting surveys and observing their comfortableness using technology through observational methods, the researcher can gauge what they can help understand if a full-fledged implementation can face an issue. This also helps in understanding if the students are impacted in any way with this change.

Some other research problems and research questions that can lead to descriptive research are:

  • Market researchers want to observe the habits of consumers.
  • A company wants to evaluate the morale of its staff.
  • A school district wants to understand if students will access online lessons rather than textbooks.
  • To understand if its wellness questionnaire programs enhance the overall health of the employees.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

idea management software

Unlocking Creativity With 10 Top Idea Management Software

Mar 23, 2024

website optimization tools

20 Best Website Optimization Tools to Improve Your Website

Mar 22, 2024

digital customer experience software

15 Best Digital Customer Experience Software of 2024

product experience software

15 Best Product Experience Software of 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Child Care and Early Education Research Connections

Descriptive research studies.

Descriptive research is a type of research that is used to describe the characteristics of a population. It collects data that are used to answer a wide range of what, when, and how questions pertaining to a particular population or group. For example, descriptive studies might be used to answer questions such as: What percentage of Head Start teachers have a bachelor's degree or higher? What is the average reading ability of 5-year-olds when they first enter kindergarten? What kinds of math activities are used in early childhood programs? When do children first receive regular child care from someone other than their parents? When are children with developmental disabilities first diagnosed and when do they first receive services? What factors do programs consider when making decisions about the type of assessments that will be used to assess the skills of the children in their programs? How do the types of services children receive from their early childhood program change as children age?

Descriptive research does not answer questions about why a certain phenomenon occurs or what the causes are. Answers to such questions are best obtained from  randomized and quasi-experimental studies . However, data from descriptive studies can be used to examine the relationships (correlations) among variables. While the findings from correlational analyses are not evidence of causality, they can help to distinguish variables that may be important in explaining a phenomenon from those that are not. Thus, descriptive research is often used to generate hypotheses that should be tested using more rigorous designs.

A variety of data collection methods may be used alone or in combination to answer the types of questions guiding descriptive research. Some of the more common methods include surveys, interviews, observations, case studies, and portfolios. The data collected through these methods can be either quantitative or qualitative. Quantitative data are typically analyzed and presenting using  descriptive statistics . Using quantitative data, researchers may describe the characteristics of a sample or population in terms of percentages (e.g., percentage of population that belong to different racial/ethnic groups, percentage of low-income families that receive different government services) or averages (e.g., average household income, average scores of reading, mathematics and language assessments). Quantitative data, such as narrative data collected as part of a case study, may be used to organize, classify, and used to identify patterns of behaviors, attitudes, and other characteristics of groups.

Descriptive studies have an important role in early care and education research. Studies such as the  National Survey of Early Care and Education  and the  National Household Education Surveys Program  have greatly increased our knowledge of the supply of and demand for child care in the U.S. The  Head Start Family and Child Experiences Survey  and the  Early Childhood Longitudinal Study Program  have provided researchers, policy makers and practitioners with rich information about school readiness skills of children in the U.S.

Each of the methods used to collect descriptive data have their own strengths and limitations. The following are some of the strengths and limitations of descriptive research studies in general.

Study participants are questioned or observed in a natural setting (e.g., their homes, child care or educational settings).

Study data can be used to identify the prevalence of particular problems and the need for new or additional services to address these problems.

Descriptive research may identify areas in need of additional research and relationships between variables that require future study. Descriptive research is often referred to as "hypothesis generating research."

Depending on the data collection method used, descriptive studies can generate rich datasets on large and diverse samples.

Limitations:

Descriptive studies cannot be used to establish cause and effect relationships.

Respondents may not be truthful when answering survey questions or may give socially desirable responses.

The choice and wording of questions on a questionnaire may influence the descriptive findings.

Depending on the type and size of sample, the findings may not be generalizable or produce an accurate description of the population of interest.

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

14 Quantitative analysis: Descriptive statistics

Numeric data collected in a research project can be analysed quantitatively using statistical tools in two different ways. Descriptive analysis refers to statistically describing, aggregating, and presenting the constructs of interest or associations between these constructs. Inferential analysis refers to the statistical testing of hypotheses (theory testing). In this chapter, we will examine statistical techniques used for descriptive analysis, and the next chapter will examine statistical techniques for inferential analysis. Much of today’s quantitative data analysis is conducted using software programs such as SPSS or SAS. Readers are advised to familiarise themselves with one of these programs for understanding the concepts described in this chapter.

Data preparation

In research projects, data may be collected from a variety of sources: postal surveys, interviews, pretest or posttest experimental data, observational data, and so forth. This data must be converted into a machine-readable, numeric format, such as in a spreadsheet or a text file, so that they can be analysed by computer programs like SPSS or SAS. Data preparation usually follows the following steps:

Data coding. Coding is the process of converting data into numeric format. A codebook should be created to guide the coding process. A codebook is a comprehensive document containing a detailed description of each variable in a research study, items or measures for that variable, the format of each item (numeric, text, etc.), the response scale for each item (i.e., whether it is measured on a nominal, ordinal, interval, or ratio scale, and whether this scale is a five-point, seven-point scale, etc.), and how to code each value into a numeric format. For instance, if we have a measurement item on a seven-point Likert scale with anchors ranging from ‘strongly disagree’ to ‘strongly agree’, we may code that item as 1 for strongly disagree, 4 for neutral, and 7 for strongly agree, with the intermediate anchors in between. Nominal data such as industry type can be coded in numeric form using a coding scheme such as: 1 for manufacturing, 2 for retailing, 3 for financial, 4 for healthcare, and so forth (of course, nominal data cannot be analysed statistically). Ratio scale data such as age, income, or test scores can be coded as entered by the respondent. Sometimes, data may need to be aggregated into a different form than the format used for data collection. For instance, if a survey measuring a construct such as ‘benefits of computers’ provided respondents with a checklist of benefits that they could select from, and respondents were encouraged to choose as many of those benefits as they wanted, then the total number of checked items could be used as an aggregate measure of benefits. Note that many other forms of data—such as interview transcripts—cannot be converted into a numeric format for statistical analysis. Codebooks are especially important for large complex studies involving many variables and measurement items, where the coding process is conducted by different people, to help the coding team code data in a consistent manner, and also to help others understand and interpret the coded data.

Data entry. Coded data can be entered into a spreadsheet, database, text file, or directly into a statistical program like SPSS. Most statistical programs provide a data editor for entering data. However, these programs store data in their own native format—e.g., SPSS stores data as .sav files—which makes it difficult to share that data with other statistical programs. Hence, it is often better to enter data into a spreadsheet or database where it can be reorganised as needed, shared across programs, and subsets of data can be extracted for analysis. Smaller data sets with less than 65,000 observations and 256 items can be stored in a spreadsheet created using a program such as Microsoft Excel, while larger datasets with millions of observations will require a database. Each observation can be entered as one row in the spreadsheet, and each measurement item can be represented as one column. Data should be checked for accuracy during and after entry via occasional spot checks on a set of items or observations. Furthermore, while entering data, the coder should watch out for obvious evidence of bad data, such as the respondent selecting the ‘strongly agree’ response to all items irrespective of content, including reverse-coded items. If so, such data can be entered but should be excluded from subsequent analysis.

-1

Data transformation. Sometimes, it is necessary to transform data values before they can be meaningfully interpreted. For instance, reverse coded items—where items convey the opposite meaning of that of their underlying construct—should be reversed (e.g., in a 1-7 interval scale, 8 minus the observed value will reverse the value) before they can be compared or combined with items that are not reverse coded. Other kinds of transformations may include creating scale measures by adding individual scale items, creating a weighted index from a set of observed measures, and collapsing multiple values into fewer categories (e.g., collapsing incomes into income ranges).

Univariate analysis

Univariate analysis—or analysis of a single variable—refers to a set of statistical techniques that can describe the general properties of one variable. Univariate statistics include: frequency distribution, central tendency, and dispersion. The frequency distribution of a variable is a summary of the frequency—or percentages—of individual values or ranges of values for that variable. For instance, we can measure how many times a sample of respondents attend religious services—as a gauge of their ‘religiosity’—using a categorical scale: never, once per year, several times per year, about once a month, several times per month, several times per week, and an optional category for ‘did not answer’. If we count the number or percentage of observations within each category—except ‘did not answer’ which is really a missing value rather than a category—and display it in the form of a table, as shown in Figure 14.1, what we have is a frequency distribution. This distribution can also be depicted in the form of a bar chart, as shown on the right panel of Figure 14.1, with the horizontal axis representing each category of that variable and the vertical axis representing the frequency or percentage of observations within each category.

Frequency distribution of religiosity

With very large samples, where observations are independent and random, the frequency distribution tends to follow a plot that looks like a bell-shaped curve—a smoothed bar chart of the frequency distribution—similar to that shown in Figure 14.2. Here most observations are clustered toward the centre of the range of values, with fewer and fewer observations clustered toward the extreme ends of the range. Such a curve is called a normal distribution .

(15 + 20 + 21 + 20 + 36 + 15 + 25 + 15)/8=20.875

Lastly, the mode is the most frequently occurring value in a distribution of values. In the previous example, the most frequently occurring value is 15, which is the mode of the above set of test scores. Note that any value that is estimated from a sample, such as mean, median, mode, or any of the later estimates are called a statistic .

36-15=21

Bivariate analysis

Bivariate analysis examines how two variables are related to one another. The most common bivariate statistic is the bivariate correlation —often, simply called ‘correlation’—which is a number between -1 and +1 denoting the strength of the relationship between two variables. Say that we wish to study how age is related to self-esteem in a sample of 20 respondents—i.e., as age increases, does self-esteem increase, decrease, or remain unchanged?. If self-esteem increases, then we have a positive correlation between the two variables, if self-esteem decreases, then we have a negative correlation, and if it remains the same, we have a zero correlation. To calculate the value of this correlation, consider the hypothetical dataset shown in Table 14.1.

Normal distribution

After computing bivariate correlation, researchers are often interested in knowing whether the correlation is significant (i.e., a real one) or caused by mere chance. Answering such a question would require testing the following hypothesis:

\[H_0:\quad r = 0 \]

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Enago Academy

Bridging the Gap: Overcome these 7 flaws in descriptive research design

' src=

Descriptive research design is a powerful tool used by scientists and researchers to gather information about a particular group or phenomenon. This type of research provides a detailed and accurate picture of the characteristics and behaviors of a particular population or subject. By observing and collecting data on a given topic, descriptive research helps researchers gain a deeper understanding of a specific issue and provides valuable insights that can inform future studies.

In this blog, we will explore the definition, characteristics, and common flaws in descriptive research design, and provide tips on how to avoid these pitfalls to produce high-quality results. Whether you are a seasoned researcher or a student just starting, understanding the fundamentals of descriptive research design is essential to conducting successful scientific studies.

Table of Contents

What Is Descriptive Research Design?

The descriptive research design involves observing and collecting data on a given topic without attempting to infer cause-and-effect relationships. The goal of descriptive research is to provide a comprehensive and accurate picture of the population or phenomenon being studied and to describe the relationships, patterns, and trends that exist within the data.

Descriptive research methods can include surveys, observational studies , and case studies, and the data collected can be qualitative or quantitative . The findings from descriptive research provide valuable insights and inform future research, but do not establish cause-and-effect relationships.

Importance of Descriptive Research in Scientific Studies

1. understanding of a population or phenomenon.

Descriptive research provides a comprehensive picture of the characteristics and behaviors of a particular population or phenomenon, allowing researchers to gain a deeper understanding of the topic.

2. Baseline Information

The information gathered through descriptive research can serve as a baseline for future research and provide a foundation for further studies.

3. Informative Data

Descriptive research can provide valuable information and insights into a particular topic, which can inform future research, policy decisions, and programs.

4. Sampling Validation

Descriptive research can be used to validate sampling methods and to help researchers determine the best approach for their study.

5. Cost Effective

Descriptive research is often less expensive and less time-consuming than other research methods , making it a cost-effective way to gather information about a particular population or phenomenon.

6. Easy to Replicate

Descriptive research is straightforward to replicate, making it a reliable way to gather and compare information from multiple sources.

Key Characteristics of Descriptive Research Design

The primary purpose of descriptive research is to describe the characteristics, behaviors, and attributes of a particular population or phenomenon.

2. Participants and Sampling

Descriptive research studies a particular population or sample that is representative of the larger population being studied. Furthermore, sampling methods can include convenience, stratified, or random sampling.

3. Data Collection Techniques

Descriptive research typically involves the collection of both qualitative and quantitative data through methods such as surveys, observational studies, case studies, or focus groups.

4. Data Analysis

Descriptive research data is analyzed to identify patterns, relationships, and trends within the data. Statistical techniques , such as frequency distributions and descriptive statistics, are commonly used to summarize and describe the data.

5. Focus on Description

Descriptive research is focused on describing and summarizing the characteristics of a particular population or phenomenon. It does not make causal inferences.

6. Non-Experimental

Descriptive research is non-experimental, meaning that the researcher does not manipulate variables or control conditions. The researcher simply observes and collects data on the population or phenomenon being studied.

When Can a Researcher Conduct Descriptive Research?

A researcher can conduct descriptive research in the following situations:

  • To better understand a particular population or phenomenon
  • To describe the relationships between variables
  • To describe patterns and trends
  • To validate sampling methods and determine the best approach for a study
  • To compare data from multiple sources.

Types of Descriptive Research Design

1. survey research.

Surveys are a type of descriptive research that involves collecting data through self-administered or interviewer-administered questionnaires. Additionally, they can be administered in-person, by mail, or online, and can collect both qualitative and quantitative data.

2. Observational Research

Observational research involves observing and collecting data on a particular population or phenomenon without manipulating variables or controlling conditions. It can be conducted in naturalistic settings or controlled laboratory settings.

3. Case Study Research

Case study research is a type of descriptive research that focuses on a single individual, group, or event. It involves collecting detailed information on the subject through a variety of methods, including interviews, observations, and examination of documents.

4. Focus Group Research

Focus group research involves bringing together a small group of people to discuss a particular topic or product. Furthermore, the group is usually moderated by a researcher and the discussion is recorded for later analysis.

5. Ethnographic Research

Ethnographic research involves conducting detailed observations of a particular culture or community. It is often used to gain a deep understanding of the beliefs, behaviors, and practices of a particular group.

Advantages of Descriptive Research Design

1. provides a comprehensive understanding.

Descriptive research provides a comprehensive picture of the characteristics, behaviors, and attributes of a particular population or phenomenon, which can be useful in informing future research and policy decisions.

2. Non-invasive

Descriptive research is non-invasive and does not manipulate variables or control conditions, making it a suitable method for sensitive or ethical concerns.

3. Flexibility

Descriptive research allows for a wide range of data collection methods , including surveys, observational studies, case studies, and focus groups, making it a flexible and versatile research method.

4. Cost-effective

Descriptive research is often less expensive and less time-consuming than other research methods. Moreover, it gives a cost-effective option to many researchers.

5. Easy to Replicate

Descriptive research is easy to replicate, making it a reliable way to gather and compare information from multiple sources.

6. Informs Future Research

The insights gained from a descriptive research can inform future research and inform policy decisions and programs.

Disadvantages of Descriptive Research Design

1. limited scope.

Descriptive research only provides a snapshot of the current situation and cannot establish cause-and-effect relationships.

2. Dependence on Existing Data

Descriptive research relies on existing data, which may not always be comprehensive or accurate.

3. Lack of Control

Researchers have no control over the variables in descriptive research, which can limit the conclusions that can be drawn.

The researcher’s own biases and preconceptions can influence the interpretation of the data.

5. Lack of Generalizability

Descriptive research findings may not be applicable to other populations or situations.

6. Lack of Depth

Descriptive research provides a surface-level understanding of a phenomenon, rather than a deep understanding.

7. Time-consuming

Descriptive research often requires a large amount of data collection and analysis, which can be time-consuming and resource-intensive.

7 Ways to Avoid Common Flaws While Designing Descriptive Research

analysis for descriptive research

1. Clearly define the research question

A clearly defined research question is the foundation of any research study, and it is important to ensure that the question is both specific and relevant to the topic being studied.

2. Choose the appropriate research design

Choosing the appropriate research design for a study is crucial to the success of the study. Moreover, researchers should choose a design that best fits the research question and the type of data needed to answer it.

3. Select a representative sample

Selecting a representative sample is important to ensure that the findings of the study are generalizable to the population being studied. Researchers should use a sampling method that provides a random and representative sample of the population.

4. Use valid and reliable data collection methods

Using valid and reliable data collection methods is important to ensure that the data collected is accurate and can be used to answer the research question. Researchers should choose methods that are appropriate for the study and that can be administered consistently and systematically.

5. Minimize bias

Bias can significantly impact the validity and reliability of research findings.  Furthermore, it is important to minimize bias in all aspects of the study, from the selection of participants to the analysis of data.

6. Ensure adequate sample size

An adequate sample size is important to ensure that the results of the study are statistically significant and can be generalized to the population being studied.

7. Use appropriate data analysis techniques

The appropriate data analysis technique depends on the type of data collected and the research question being asked. Researchers should choose techniques that are appropriate for the data and the question being asked.

Have you worked on descriptive research designs? How was your experience creating a descriptive design? What challenges did you face? Do write to us or leave a comment below and share your insights on descriptive research designs!

' src=

extremely very educative

Indeed very educative and useful. Well explained. Thank you

Simple,easy to understand

Rate this article Cancel Reply

Your email address will not be published.

analysis for descriptive research

Enago Academy's Most Popular Articles

7 Step Guide for Optimizing Impactful Research Process

  • Publishing Research
  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Launch of "Sony Women in Technology Award with Nature"

  • Industry News
  • Trending Now

Breaking Barriers: Sony and Nature unveil “Women in Technology Award”

Sony Group Corporation and the prestigious scientific journal Nature have collaborated to launch the inaugural…

Guide to Adhere Good Research Practice (FREE CHECKLIST)

Achieving Research Excellence: Checklist for good research practices

Academia is built on the foundation of trustworthy and high-quality research, supported by the pillars…

ResearchSummary

  • Promoting Research

Plain Language Summary — Communicating your research to bridge the academic-lay gap

Science can be complex, but does that mean it should not be accessible to the…

Journals Combat Image Manipulation with AI

Science under Surveillance: Journals adopt advanced AI to uncover image manipulation

Journals are increasingly turning to cutting-edge AI tools to uncover deceitful images published in manuscripts.…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

Research Recommendations – Guiding policy-makers for evidence-based decision making

analysis for descriptive research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

analysis for descriptive research

What should universities' stance be on AI tools in research and academic writing?

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Descriptive Statistics – Types, Methods and Examples

Descriptive Statistics – Types, Methods and Examples

Table of Contents

Descriptive Statistics

Descriptive Statistics

Descriptive statistics is a branch of statistics that deals with the summarization and description of collected data. This type of statistics is used to simplify and present data in a manner that is easy to understand, often through visual or numerical methods. Descriptive statistics is primarily concerned with measures of central tendency, variability, and distribution, as well as graphical representations of data.

Here are the main components of descriptive statistics:

  • Measures of Central Tendency : These provide a summary statistic that represents the center point or typical value of a dataset. The most common measures of central tendency are the mean (average), median (middle value), and mode (most frequent value).
  • Measures of Dispersion or Variability : These provide a summary statistic that represents the spread of values in a dataset. Common measures of dispersion include the range (difference between the highest and lowest values), variance (average of the squared differences from the mean), standard deviation (square root of the variance), and interquartile range (difference between the upper and lower quartiles).
  • Measures of Position : These are used to understand the distribution of values within a dataset. They include percentiles and quartiles.
  • Graphical Representations : Data can be visually represented using various methods like bar graphs, histograms, pie charts, box plots, and scatter plots. These visuals provide a clear, intuitive way to understand the data.
  • Measures of Association : These measures provide insight into the relationships between variables in the dataset, such as correlation and covariance.

Descriptive Statistics Types

Descriptive statistics can be classified into two types:

Measures of Central Tendency

These measures help describe the center point or average of a data set. There are three main types:

  • Mean : The average value of the dataset, obtained by adding all the data points and dividing by the number of data points.
  • Median : The middle value of the dataset, obtained by ordering all data points and picking out the one in the middle (or the average of the two middle numbers if the dataset has an even number of observations).
  • Mode : The most frequently occurring value in the dataset.

Measures of Variability (or Dispersion)

These measures describe the spread or variability of the data points in the dataset. There are four main types:

  • Range : The difference between the largest and smallest values in the dataset.
  • Variance : The average of the squared differences from the mean.
  • Standard Deviation : The square root of the variance, giving a measure of dispersion that is in the same units as the original dataset.
  • Interquartile Range (IQR) : The range between the first quartile (25th percentile) and the third quartile (75th percentile), which provides a measure of variability that is resistant to outliers.

Descriptive Statistics Formulas

Sure, here are some of the most commonly used formulas in descriptive statistics:

Mean (μ or x̄) :

The average of all the numbers in the dataset. It is computed by summing all the observations and dividing by the number of observations.

Formula : μ = Σx/n or x̄ = Σx/n (where Σx is the sum of all observations and n is the number of observations)

The middle value in the dataset when the observations are arranged in ascending or descending order. If there is an even number of observations, the median is the average of the two middle numbers.

The most frequently occurring number in the dataset. There’s no formula for this as it’s determined by observation.

The difference between the highest (max) and lowest (min) values in the dataset.

Formula : Range = max – min

Variance (σ² or s²) :

The average of the squared differences from the mean. Variance is a measure of how spread out the numbers in the dataset are.

Population Variance formula : σ² = Σ(x – μ)² / N Sample Variance formula: s² = Σ(x – x̄)² / (n – 1)

(where x is each individual observation, μ is the population mean, x̄ is the sample mean, N is the size of the population, and n is the size of the sample)

Standard Deviation (σ or s) :

The square root of the variance. It measures the amount of variability or dispersion for a set of data. Population Standard Deviation formula: σ = √σ² Sample Standard Deviation formula: s = √s²

Interquartile Range (IQR) :

The range between the first quartile (Q1, 25th percentile) and the third quartile (Q3, 75th percentile). It measures statistical dispersion, or how far apart the data points are.

Formula : IQR = Q3 – Q1

Descriptive Statistics Methods

Here are some of the key methods used in descriptive statistics:

This method involves arranging data into a table format, making it easier to understand and interpret. Tables often show the frequency distribution of variables.

Graphical Representation

This method involves presenting data visually to help reveal patterns, trends, outliers, or relationships between variables. There are many types of graphs used, such as bar graphs, histograms, pie charts, line graphs, box plots, and scatter plots.

Calculation of Central Tendency Measures

This involves determining the mean, median, and mode of a dataset. These measures indicate where the center of the dataset lies.

Calculation of Dispersion Measures

This involves calculating the range, variance, standard deviation, and interquartile range. These measures indicate how spread out the data is.

Calculation of Position Measures

This involves determining percentiles and quartiles, which tell us about the position of particular data points within the overall data distribution.

Calculation of Association Measures

This involves calculating statistics like correlation and covariance to understand relationships between variables.

Summary Statistics

Often, a collection of several descriptive statistics is presented together in what’s known as a “summary statistics” table. This provides a comprehensive snapshot of the data at a glanc

Descriptive Statistics Examples

Descriptive Statistics Examples are as follows:

Example 1: Student Grades

Let’s say a teacher has the following set of grades for 7 students: 85, 90, 88, 92, 78, 88, and 94. The teacher could use descriptive statistics to summarize this data:

  • Mean (average) : (85 + 90 + 88 + 92 + 78 + 88 + 94)/7 = 88
  • Median (middle value) : First, rearrange the grades in ascending order (78, 85, 88, 88, 90, 92, 94). The median grade is 88.
  • Mode (most frequent value) : The grade 88 appears twice, more frequently than any other grade, so it’s the mode.
  • Range (difference between highest and lowest) : 94 (highest) – 78 (lowest) = 16
  • Variance and Standard Deviation : These would be calculated using the appropriate formulas, providing a measure of the dispersion of the grades.

Example 2: Survey Data

A researcher conducts a survey on the number of hours of TV watched per day by people in a particular city. They collect data from 1,000 respondents and can use descriptive statistics to summarize this data:

  • Mean : Calculate the average hours of TV watched by adding all the responses and dividing by the total number of respondents.
  • Median : Sort the data and find the middle value.
  • Mode : Identify the most frequently reported number of hours watched.
  • Histogram : Create a histogram to visually display the frequency of responses. This could show, for example, that the majority of people watch 2-3 hours of TV per day.
  • Standard Deviation : Calculate this to find out how much variation there is from the average.

Importance of Descriptive Statistics

Descriptive statistics are fundamental in the field of data analysis and interpretation, as they provide the first step in understanding a dataset. Here are a few reasons why descriptive statistics are important:

  • Data Summarization : Descriptive statistics provide simple summaries about the measures and samples you have collected. With a large dataset, it’s often difficult to identify patterns or tendencies just by looking at the raw data. Descriptive statistics provide numerical and graphical summaries that can highlight important aspects of the data.
  • Data Simplification : They simplify large amounts of data in a sensible way. Each descriptive statistic reduces lots of data into a simpler summary, making it easier to understand and interpret the dataset.
  • Identification of Patterns and Trends : Descriptive statistics can help identify patterns and trends in the data, providing valuable insights. Measures like the mean and median can tell you about the central tendency of your data, while measures like the range and standard deviation tell you about the dispersion.
  • Data Comparison : By summarizing data into measures such as the mean and standard deviation, it’s easier to compare different datasets or different groups within a dataset.
  • Data Quality Assessment : Descriptive statistics can help identify errors or outliers in the data, which might indicate issues with data collection or entry.
  • Foundation for Further Analysis : Descriptive statistics are typically the first step in data analysis. They help create a foundation for further statistical or inferential analysis. In fact, advanced statistical techniques often assume that one has first examined their data using descriptive methods.

When to use Descriptive Statistics

They can be used in a wide range of situations, including:

  • Understanding a New Dataset : When you first encounter a new dataset, using descriptive statistics is a useful first step to understand the main characteristics of the data, such as the central tendency, dispersion, and distribution.
  • Data Exploration in Research : In the initial stages of a research project, descriptive statistics can help to explore the data, identify trends and patterns, and generate hypotheses for further testing.
  • Presenting Research Findings : Descriptive statistics can be used to present research findings in a clear and understandable way, often using visual aids like graphs or charts.
  • Monitoring and Quality Control : In fields like business or manufacturing, descriptive statistics are often used to monitor processes, track performance over time, and identify any deviations from expected standards.
  • Comparing Groups : Descriptive statistics can be used to compare different groups or categories within your data. For example, you might want to compare the average scores of two groups of students, or the variance in sales between different regions.
  • Reporting Survey Results : If you conduct a survey, you would use descriptive statistics to summarize the responses, such as calculating the percentage of respondents who agree with a certain statement.

Applications of Descriptive Statistics

Descriptive statistics are widely used in a variety of fields to summarize, represent, and analyze data. Here are some applications:

  • Business : Businesses use descriptive statistics to summarize and interpret data such as sales figures, customer feedback, or employee performance. For instance, they might calculate the mean sales for each month to understand trends, or use graphical representations like bar charts to present sales data.
  • Healthcare : In healthcare, descriptive statistics are used to summarize patient data, such as age, weight, blood pressure, or cholesterol levels. They are also used to describe the incidence and prevalence of diseases in a population.
  • Education : Educators use descriptive statistics to summarize student performance, like average test scores or grade distribution. This information can help identify areas where students are struggling and inform instructional decisions.
  • Social Sciences : Social scientists use descriptive statistics to summarize data collected from surveys, experiments, and observational studies. This can involve describing demographic characteristics of participants, response frequencies to survey items, and more.
  • Psychology : Psychologists use descriptive statistics to describe the characteristics of their study participants and the main findings of their research, such as the average score on a psychological test.
  • Sports : Sports analysts use descriptive statistics to summarize athlete and team performance, such as batting averages in baseball or points per game in basketball.
  • Government : Government agencies use descriptive statistics to summarize data about the population, such as census data on population size and demographics.
  • Finance and Economics : In finance, descriptive statistics can be used to summarize past investment performance or economic data, such as changes in stock prices or GDP growth rates.
  • Quality Control : In manufacturing, descriptive statistics can be used to summarize measures of product quality, such as the average dimensions of a product or the frequency of defects.

Limitations of Descriptive Statistics

While descriptive statistics are a crucial part of data analysis and provide valuable insights about a dataset, they do have certain limitations:

  • Lack of Depth : Descriptive statistics provide a summary of your data, but they can oversimplify the data, resulting in a loss of detail and potentially significant nuances.
  • Vulnerability to Outliers : Some descriptive measures, like the mean, are sensitive to outliers. A single extreme value can significantly skew your mean, making it less representative of your data.
  • Inability to Make Predictions : Descriptive statistics describe what has been observed in a dataset. They don’t allow you to make predictions or generalizations about unobserved data or larger populations.
  • No Insight into Correlations : While some descriptive statistics can hint at potential relationships between variables, they don’t provide detailed insights into the nature or strength of these relationships.
  • No Causality or Hypothesis Testing : Descriptive statistics cannot be used to determine cause and effect relationships or to test hypotheses. For these purposes, inferential statistics are needed.
  • Can Mislead : When used improperly, descriptive statistics can be used to present a misleading picture of the data. For instance, choosing to only report the mean without also reporting the standard deviation or range can hide a large amount of variability in the data.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Probability Histogram

Probability Histogram – Definition, Examples and...

Substantive Framework

Substantive Framework – Types, Methods and...

Factor Analysis

Factor Analysis – Steps, Methods and Examples

Graphical Methods

Graphical Methods – Types, Examples and Guide

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Grounded Theory

Grounded Theory – Methods, Examples and Guide

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • *New* Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

analysis for descriptive research

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Descriptive Analytics? 5 Examples

Professional looking at descriptive analytics on computer

  • 09 Nov 2021

Data analytics is a valuable tool for businesses aiming to increase revenue, improve products, and retain customers. According to research by global management consulting firm McKinsey & Company, companies that use data analytics are 23 times more likely to outperform competitors in terms of new customer acquisition than non-data-driven companies. They were also nine times more likely to surpass them in measures of customer loyalty and 19 times more likely to achieve above-average profitability.

Data analytics can be broken into four key types :

  • Descriptive, which answers the question, “What happened?”
  • Diagnostic , which answers the question, “Why did this happen?”
  • Predictive , which answers the question, “What might happen in the future?”
  • Prescriptive , which answers the question, “What should we do next?”

Each type of data analysis can help you reach specific goals and be used in tandem to create a full picture of data that informs your organization’s strategy formulation and decision-making.

Descriptive analytics can be leveraged on its own or act as a foundation for the other three analytics types. If you’re new to the field of business analytics, descriptive analytics is an accessible and rewarding place to start.

Access your free e-book today.

What Is Descriptive Analytics?

Descriptive analytics is the process of using current and historical data to identify trends and relationships. It’s sometimes called the simplest form of data analysis because it describes trends and relationships but doesn’t dig deeper.

Descriptive analytics is relatively accessible and likely something your organization uses daily. Basic statistical software, such as Microsoft Excel or data visualization tools , such as Google Charts and Tableau, can help parse data, identify trends and relationships between variables, and visually display information.

Descriptive analytics is especially useful for communicating change over time and uses trends as a springboard for further analysis to drive decision-making .

Here are five examples of descriptive analytics in action to apply at your organization.

Related: 5 Business Analytics Skills for Professionals

5 Examples of Descriptive Analytics

1. traffic and engagement reports.

One example of descriptive analytics is reporting. If your organization tracks engagement in the form of social media analytics or web traffic, you’re already using descriptive analytics.

These reports are created by taking raw data—generated when users interact with your website, advertisements, or social media content—and using it to compare current metrics to historical metrics and visualize trends.

For example, you may be responsible for reporting on which media channels drive the most traffic to the product page of your company’s website. Using descriptive analytics, you can analyze the page’s traffic data to determine the number of users from each source. You may decide to take it one step further and compare traffic source data to historical data from the same sources. This can enable you to update your team on movement; for instance, highlighting that traffic from paid advertisements increased 20 percent year over year.

The three other analytics types can then be used to determine why traffic from each source increased or decreased over time, if trends are predicted to continue, and what your team’s best course of action is moving forward.

2. Financial Statement Analysis

Another example of descriptive analytics that may be familiar to you is financial statement analysis. Financial statements are periodic reports that detail financial information about a business and, together, give a holistic view of a company’s financial health.

There are several types of financial statements, including the balance sheet , income statement , cash flow statement , and statement of shareholders’ equity. Each caters to a specific audience and conveys different information about a company’s finances.

Financial statement analysis can be done in three primary ways: vertical, horizontal, and ratio.

Vertical analysis involves reading a statement from top to bottom and comparing each item to those above and below it. This helps determine relationships between variables. For instance, if each line item is a percentage of the total, comparing them can provide insight into which are taking up larger and smaller percentages of the whole.

Horizontal analysis involves reading a statement from left to right and comparing each item to itself from a previous period. This type of analysis determines change over time.

Finally, ratio analysis involves comparing one section of a report to another based on their relationships to the whole. This directly compares items across periods, as well as your company’s ratios to the industry’s to gauge whether yours is over- or underperforming.

Each of these financial statement analysis methods are examples of descriptive analytics, as they provide information about trends and relationships between variables based on current and historical data.

Credential of Readiness | Master the fundamentals of business | Learn More

3. Demand Trends

Descriptive analytics can also be used to identify trends in customer preference and behavior and make assumptions about the demand for specific products or services.

Streaming provider Netflix’s trend identification provides an excellent use case for descriptive analytics. Netflix’s team—which has a track record of being heavily data-driven—gathers data on users’ in-platform behavior. They analyze this data to determine which TV series and movies are trending at any given time and list trending titles in a section of the platform’s home screen.

Not only does this data allow Netflix users to see what’s popular—and thus, what they might enjoy watching—but it allows the Netflix team to know which types of media, themes, and actors are especially favored at a certain time. This can drive decision-making about future original content creation, contracts with existing production companies, marketing, and retargeting campaigns.

4. Aggregated Survey Results

Descriptive analytics is also useful in market research. When it comes time to glean insights from survey and focus group data, descriptive analytics can help identify relationships between variables and trends.

For instance, you may conduct a survey and identify that as respondents’ age increases, so does their likelihood to purchase your product. If you’ve conducted this survey multiple times over several years, descriptive analytics can tell you if this age-purchase correlation has always existed or if it was something that only occurred this year.

Insights like this can pave the way for diagnostic analytics to explain why certain factors are correlated. You can then leverage predictive and prescriptive analytics to plan future product improvements or marketing campaigns based on those trends.

Related: What Is Marketing Analytics?

5. Progress to Goals

Finally, descriptive analytics can be applied to track progress to goals. Reporting on progress toward key performance indicators (KPIs) can help your team understand if efforts are on track or if adjustments need to be made.

For example, if your organization aims to reach 500,000 monthly unique page views, you can use traffic data to communicate how you’re tracking toward it. Perhaps halfway through the month, you’re at 200,000 unique page views. This would be underperforming because you’d like to be halfway to your goal at that point—at 250,000 unique page views. This descriptive analysis of your team’s progress can allow further analysis to examine what can be done differently to improve traffic numbers and get back on track to hit your KPI.

Business Analytics | Become a data-driven leader | Learn More

Using Data to Identify Relationships and Trends

“Never before has so much data about so many different things been collected and stored every second of every day,” says Harvard Business School Professor Jan Hammond in the online course Business Analytics . “In this world of big data, data literacy —the ability to analyze, interpret, and even question data—is an increasingly valuable skill.”

Leveraging descriptive analytics to communicate change based on current and historical data and as a foundation for diagnostic, predictive, and prescriptive analytics has the potential to take you and your organization far.

Do you want to become a data-driven professional? Explore our eight-week Business Analytics course and our three-course Credential of Readiness (CORe) program to deepen your analytical skills and apply them to real-world business problems.

analysis for descriptive research

About the Author

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Qualitative Descriptive Methods in Health Science Research

Karen jiggins colorafi.

1 College of Nursing & Health Innovation, Arizona State University, Phoenix, AZ, USA

Bronwynne Evans

The purpose of this methodology paper is to describe an approach to qualitative design known as qualitative descriptive that is well suited to junior health sciences researchers because it can be used with a variety of theoretical approaches, sampling techniques, and data collection strategies.

Background:

It is often difficult for junior qualitative researchers to pull together the tools and resources they need to embark on a high-quality qualitative research study and to manage the volumes of data they collect during qualitative studies. This paper seeks to pull together much needed resources and provide an overview of methods.

A step-by-step guide to planning a qualitative descriptive study and analyzing the data is provided, utilizing exemplars from the authors’ research.

This paper presents steps to conducting a qualitative descriptive study under the following headings: describing the qualitative descriptive approach, designing a qualitative descriptive study, steps to data analysis, and ensuring rigor of findings.

Conclusions:

The qualitative descriptive approach results in a summary in everyday, factual language that facilitates understanding of a selected phenomenon across disciplines of health science researchers.

There is an explosion in qualitative methodologies among health science researchers because social problems lend themselves toward thoughtful exploration, such as when issues of interest are complex, have variables or concepts that are not easily measured, or involve listening to populations who have traditionally been silenced ( Creswell, 2013 ). Creswell (2013 , p. 48) suggests qualitative research is preferred when health science researchers seek to (a) share individual stories, (b) write in a literary, flexible style, (c) understand the context or setting of issues, (d) explain mechanisms or linkages in causal theories, (e) develop theories, and (f) when traditional quantitative statistical analyses do not fit the problem at hand. Typically, qualitative textbooks present learners with five approaches for qualitative inquiry: narrative, phenomenological, grounded theory, case study, and ethnography. Yet eminent researcher Margarete Sandelowski argues that in “the now vast qualitative methods literature, there is no comprehensive description of qualitative description as a distinctive method of equal standing with other qualitative methods, although it is one of the most frequently employed methodological approaches in the practice disciplines” ( Sandelowski, 2000 ). Qualitative description is especially amenable to health environments research because it provides factual responses to questions about how people feel about a particular space, what reasons they have for using features of the space, who is using particular services or functions of a space, and the factors that facilitate or hinder use.

The purpose of this methodology article is to define and outline qualitative description for health science researchers, providing a starter guide containing important primary sources for those who wish to become better acquainted with this methodological approach.

Describing the Qualitative Descriptive Approach

In two seminal articles, Sandelowski promotes the mainstream use of qualitative description ( Sandelowski, 2000 , 2010 ) as a well-developed but unacknowledged method which provides a “comprehensive summary of an event in the every day terms of those events” ( Sandelowski, 2000 , p. 336). Such studies are characterized by lower levels of interpretation than are high-inference qualitative approaches such as phenomenology or grounded theory and require a less “conceptual or otherwise highly abstract rendering of data” ( Sandelowski, 2000 , p. 335). Researchers using qualitative description “stay closer to their data and to the surface of words and events” ( Sandelowski, 2000 , p. 336) than many other methodological approaches. Qualitative descriptive studies focus on low-inference description, which increases the likelihood of agreement among multiple researchers. The difference between high and low inference approaches is not one of rigor but refers to the amount of logical reasoning required to move from a data-based premise to a conclusion. Researchers who use qualitative description may choose to use the lens of an associated interpretive theory or conceptual framework to guide their studies, but they are prepared to alter that framework as necessary during the course of the study ( Sandelowski, 2010 ). These theories and frameworks serve as conceptual hooks upon which hang study procedures, analysis, and re-presentation. Findings are presented in straightforward language that clearly describes the phenomena of interest.

Other cardinal features of the qualitative descriptive approach include (a) a broad range of choices for theoretical or philosophical orientations, (b) the use of virtually any purposive sampling technique (e.g., maximum variation, homogenous, typical case, criterion), (c) the use of observations, document review, or minimally to moderately structured interview or focus group questions, (d) content analysis and descriptive statistical analysis as data analysis techniques, and (e) the provision of a descriptive summary of the informational contents of the data organized in a way that best fits the data ( Neergaard, Olesen, Andersen, & Sondergaard, 2009 ; Sandelowski, 2000 , 2001 , 2010 ).

Designing a Qualitative Descriptive Study

Methodology.

Unlike traditional qualitative methodologies such as grounded theory, which are built upon a particular, prescribed constellation of procedures and techniques, qualitative description is grounded in the general principles of naturalistic inquiry. Lincoln and Guba suggest that naturalistic inquiry deals with the concept of truth, whereby truth is “a systematic set of beliefs, together with their accompanying methods” ( Lincoln & Guba, 1985 , p. 16). Using an often eclectic compilation of sampling, data collection, and data analysis techniques, the researcher studies something in its natural state and does not attempt to manipulate or interfere with the ordinary unfolding of events. Taken together, these practices lead to “true understanding” or “ultimate truth.” Table 1 describes design elements in two exemplar qualitative descriptive studies and serves as guide to the following discussion.

Example of Study Design Elements for Two Studies.

Theoretical Framework

Theoretical frameworks serve as organizing structures for research design: sampling, data collection, analysis, and interpretation, including coding schemes, and formatting hypothesis for further testing ( Evans, Coon, & Ume, 2011 ; Miles, Huberman, & Saldana, 2014 ; Sandelowski, 2010 ). Such frameworks affect the way in which data are ultimately viewed; qualitative description supports and allows for the use of virtually any theory ( Sandelowski, 2010 ). Creswell’s chapter on “Philosophical Assumptions and Interpretative Frameworks” (2013) is a useful place to gain understanding about how to embed a theory into a study.

Sampling choices place a boundary around the conclusions you can draw from your qualitative study and influence the confidence you and others place in them ( Miles et al., 2014 ). A hallmark of the qualitative descriptive approach is the acceptability of virtually any sampling technique (e.g., maximum variation where you aim to collect as many different cases as possible or homogenous whereby participants are mostly the same). See Miles, Huberman, and Saldana’s (2014 , p. 30) “Bounding the Collection of Data” discussion to select an appropriate and congruent purposive sampling strategy for your qualitative study.

Data Collection

In qualitative descriptive studies, data collection attempts to discover “the who, what and where of events” or experiences ( Sandelowski, 2000 , p.339). This includes, but is not limited to focus groups, individual interviews, observation, and the examination of documents or artifacts.

Data Analysis

Content analysis refers to a technique commonly used in qualitative research to analyze words or phrases in text documents. Hsieh and Shannon (2005) present three types of content analysis, any of which could be used in a qualitative descriptive study. Conventional content analysis is used in studies that aim to describe a phenomenon where exiting research and theory are limited. Data are collected from open-ended questions, read word for word, and then coded. Notes are made and codes are categorized. Directed content analysis is used in studies where existing theory or research exists: it can be used to further describe phenomena that are incomplete or would benefit from further description. Initial codes are created from theory or research and applied to data and unlabeled portions of text are given new codes. Summative content analysis is used to quantify and interpret words in context, exploring their usage. Data sources are typically seminal texts or electronic word searches.

Quantitative data can be included in qualitative descriptive studies if they aim to more adequately or fully describe the participants or phenomenon of interest. Counting is conceptualized as a “means to and end, not the end itself” by Sandelowski (2000 , p. 338) who emphasizes that careful descriptive statistical analysis is an effort to understand the content of data, not simply the means and frequencies, and results in a highly nuanced description of the patterns or regularities of the phenomenon of interest ( Sandelowski, 2000 , 2010 ). The use of validated measures can assist with generating dependable and meaningful findings, especially when the instrument (e.g., survey, questionnaire, or list of questions) used in your study has been used in others, helping to build theory, improve predictions, or make recommendations ( Miles et al., 2014 ).

Data Re-Presentation

In clear and simple terms, the “expected outcome of qualitative descriptive studies is a straight forward descriptive summary of the informational contents of data organized in a way that best fits the data” ( Sandelowski, 2000 , p. 339). Data re-presentation techniques allow for tremendous creativity and variation among researchers and studies. Several good resources are provided to spur imagination ( Miles et al., 2014 ; Munhall & Chenail, 2008 ; Wolcott, 2009 ).

Steps to Data Analysis

It is often difficult for junior health science researchers to know what to do with the volumes of data collected during a qualitative study and formal course work in traditional qualitative methods courses are typically sparse regarding the specifics of data management. It is for those reasons that this section of our article will provide a detailed description of the data analysis techniques used in qualitative descriptive methodology. The following steps are case examples of a study undertaken by one author (K.J.C.) after completing a data management course offered by another author (B.E.). Examples are offered from the two studies noted in Table 1 . It is offered in list format for general readability, but the qualitative researcher should recognize that qualitative analyses are iterative and recursive by nature.

Example of a Coding Manual.

Note . SES = socioeconomic status.

Reading from the left in Table 2 , codes were given a number and letter for use in marking sections of text. Next, the code name indicating a theme was entered in boldface type with a definition in the code immediately under it. The second column provided an exemplar of each code, along with a notation indicating where it was found in the data, so that coders could recognize instances of that particular code when they saw them.

The coding manual was tested against data gathered in a preliminary study and was revised as codes found to overlap or be missing entirely. We continued to revise it iteratively during the study as data collection and analysis proceeded and then used it to recode previously coded data. Using this procedure, it was used to revisit the data several times.

  • Each transcribed document was formatted with wide right margins that allowed the investigator to apply codes and generate marginal remarks by hand. Marginal remarks are handwritten comments entered by the investigator. They represent an attempt to stay “alert” about analysis, forming ideas and recording reactions to the meaning of what is seen in the data. Marginal remarks often suggest new interpretations, leads, and connections or distinctions with other parts of the data ( Miles et al., 2014 ). Such remarks are preanalytic and add meaning and clarity to transcripts.

Level 1 Coding With Meaning Units.

  • Conceptually similar codes were organized into categories (coding groups of coded themes that were increasingly abstract) through revisiting the theory framing the study (asking, “does this system of coding make sense according to the chosen theory?”). Miles et al. (2014) provide many examples for creating, categorizing, and revising codes, including highlighting a technique used by Corbin and Strauss ( Corbin & Strauss, 2015 ) that includes growing a list of codes and then applying a slightly more abstract label to the code, creating new categories of codes with each revision. This is often referred to as second-level or pattern coding, a way of grouping data into a smaller number of sets, themes, or constructs. During the analysis of data, patterns were generated and the researcher spent significant amounts of time with different categorizations, asking questions, checking relationships, and generally resisting the urge to be “locked too quickly into naming a pattern” ( Miles et al., 2014 , p. 69).
  • During this phase of analysis, pattern codes were revised and redefined in the coding manual and exemplars were used to clarify the understanding of each code. Miles et al. (2014) suggest that software can be helpful during this categorization (counting) step, so lists of observed engagement behaviors were also recorded in Dedoose software ( Dedoose, 2015 ) by code so that frequencies could be captured and analyzed. Despite the assistance of Dedoose, the researcher found that hand sorting codes into themes and categories was best done on paper.

An external file that holds a picture, illustration, etc.
Object name is nihms-1638767-f0001.jpg

Example of an analytic memo used in qualitative description analysis.

Data Matrix.

Note . The CLOX is an executive clock drawing task that tests cognition and was used in this study with the caregiver (CG) and the care recipient (CR). The CG Strain and the CG Gain scores were derived by the researcher through a qualitative content analysis ( Evans, Coon, & Belyea, 2006 ).

  • Finally, the data are re-presented in a creative but rigorous way that are judged to best fit the findings ( Miles et al., 2014 ; Sandelowski & Leeman, 2012 ; Stake, 2010 ; Wolcott, 2009 ).

Strategies for Ensuring Rigor of Findings

Many qualitative researchers do not provide enough information in their reports about the analytic strategies used to ensure verisimilitude or the “ring of truth” for the conclusions. Miles, Huberman, and Saldana (2014) outline 13 tactics for generating meaning from data and another 13 for testing or confirming findings. They also provide five standards for assessing the quality of conclusions. The techniques relied upon most heavily during a qualitative descriptive study ought to be addressed within the research report. It is important to establish “trustworthiness” and “authenticity” in qualitative research that are similar to the terms validity and reliability in quantitative research. The five standards (objectivity, dependability, credibility, transferability, and application) typically used in qualitative descriptive studies to assess quality and legitimacy (trustworthiness and authenticity) of the conclusions are discussed in the next sections ( Lincoln & Guba, 1985 ; Miles et al., 2014 ).

Objectivity

First, objectivity (confirmability) is conceptualized as relative neutrality and reasonable freedom from researcher bias and can be addressed by (a) describing the study’s methods and procedures in explicit detail, (b) sharing the sequence of data collection, analysis, and presentation methods to create an audit trail, (c) being aware of and reporting personal assumptions and potential bias, (d) retaining study data and making it available to collaborators for evaluation.

Dependability

Second, dependability (reliability or auditability) can be fostered by consistency in procedures across participants over time through various methods, including the use of semistructured interview questions and an observation data collection worksheet. Quality control ( Miles et al., 2014 ) can be fostered by:

  • deriving study procedures from clearly outlined research questions and conceptual theory, so that data analysis could be linked back to theoretical constructs;
  • clearly describing the investigator’s role and status at the research site;
  • demonstrating parallelism in findings across sources (i.e., interview vs. observation, etc.);
  • triangulation through the use of observations, interviews, and standardized measures to more adequately describe various characteristics of the sample population ( Denzin & Lincoln, 1994 );
  • demonstrating consistency in data collection for all participants (i.e., using the same investigator and preprinted worksheets, asking the same questions in the same order);
  • developing interview questions and observation techniques based on theory, revised, and tested during preliminary work;
  • developing a coding manual a priori to guide data analysis, containing a “start list” of codes derived from the theoretical framework and relevant literature ( Fonteyn et al., 2008 ; Hsieh & Shannon, 2005 ; Miles et al., 2014 ); and
  • developing a monitoring plan (fidelity) to ensure that junior researchers, especially do not go “beyond the data” ( Sandelowski, 2000 ) in interpretation. In keeping with the qualitative tradition, data analysis and collection should occur simultaneously, giving the investigator the opportunity to correct errors or make revisions.

Credibility

Third, credibility or verisimilitude (internal validity) is defined as the truth value of data: Do the findings of the study make sense ( Miles et al., 2014 , p. 312). Credibility in qualitative work promotes descriptive and evaluative understanding, which can be addressed by (a) providing context-rich “thick descriptions,” that is, the work of interpretation based on data ( Sandelowski, 2004 ), (b) checking with other practitioners or researchers that the findings “ring true,” (c) providing a comprehensive account, (d) using triangulation strategies, (e) searching for negative evidence, and (f) linking findings to a theoretical framework.

Transferability

Fourth, transferability (external validity or “fittingness”) speaks to whether the findings of your study have larger import and application to other settings or studies. This includes a discussion of generalizability. Sample to population generalizability is important to quantitative researchers and less helpful to qualitative researchers who seek more of an analytic or case-to-case transfer ( Miles et al., 2014 ). Nonetheless, transferability can be aided by (a) describing the characteristics of the participants fully so that comparisons with other groups may be made, (b) adequately describing potential threats to generalizability through sample and setting sections, (c) using theoretical sampling, (d) presenting findings that are congruent with theory, and (e) suggesting ways that findings from your study could be tested further by other researchers.

Application

Finally, Miles et al. (2014) speak to the utilization, application, or action orientation of the data. “Even if we know that a study’s findings are valid and transferable,” they write, “we still need to know what the study does for its participants and its consumers” ( Miles et al., 2014 , p. 314). To address application, findings of qualitative descriptive studies are typically made accessible to potential consumers of information through the publication of manuscripts, poster presentations, and summary reports written for consumers. In addition, qualitative descriptive study findings may stimulate further research, promote policy discussions, or suggest actual changes to a product or environment.

Implications for Practice

The qualitative description clarified and advocated by Sandelowski (2000 , 2010 ) is an excellent methodological choice for the healthcare environments designer, practitioner, or health sciences researcher because it provides rich descriptive content from the subjects’ perspective. Qualitative description allows the investigator to select from any number of theoretical frameworks, sampling strategies, and data collection techniques. The various content analysis strategies described in this paper serve to introduce the investigator to methods for data analysis that promote staying “close” to the data, thereby avoiding high-inference techniques likely challenging to the novice investigator. Finally, the devotion to thick description (interpretation based on data) and flexibility in the re-presentation of study findings is likely to produce meaningful information to designers and healthcare leaders. The practical, step-by-step nature of this article should serve as a starting guide to researchers interested in this technique as a way to answer their own burning questions.

Acknowledgments

The author would like to recognize the other members of her dissertation committee for their contributions to the study: Gerri Lamb, Karen Dorman Marek, and Robert Greenes.

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Research assistance for data analysis and manuscript development was supported by training funds from the National Institutes of Health/National Institute on Nursing Research (NIH/NINR), award T32 1T32NR012718-01 Transdisciplinary Training in Health Disparities Science (C. Keller, P.I.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the NINR. This research was supported through the Hartford Center of Gerontological Nursing Excellence at Arizona State University College of Nursing & Health Innovation.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

  • Corbin J, & Strauss A (2015). Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed.). Thousand Oaks, CA: Sage. [ Google Scholar ]
  • Creswell J (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Creswell J, & Plano-Clark V (2007). Designing and conducting mixed methods research . Thousand Oaks, CA: Sage. [ Google Scholar ]
  • Dedoose. (2015). Version 6.1.18, web application for managing, analyzing, and presenting qualitative and mixed method research data Los Angeles, CA: SocioCultural Research Consultants, LLC; Retrieved from www.dedoose.com [ Google Scholar ]
  • Denzin N, & Lincoln Y (1994). The handbook of qualitative research . New York, NY: Sage. [ Google Scholar ]
  • Denzin N, Lincoln Y, & Giardina M (2006). Disciplining qualitative research . International Journal of Qualitative Studies in Education , 19 , 769–782. [ Google Scholar ]
  • Evans BC, Belyea MJ, Coon DW, & Ume E (2012). Activities of daily living in Mexican American caregivers: The key to continuing informal care . Journal of Family Nursing , 18 , 439–466. doi:410.1177/1074840712450210. Epub 1074840 712452012 Jun 1074840712450226 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Evans BC, Belyea MJ, & Ume E (2011). Mexican-American males providing personal care for their mothers . Hispanic Journal of Behavioral Sciences , 33 , 234–260. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Evans B, Coon D, & Belyea M (2006). Worry among Mexican American caregivers of community-dwelling elders . Public Health Nursing , 23 ( 3 ), 284–291. doi: 10.1111/j.1525-1446.2006.230312.x [ CrossRef ] [ Google Scholar ]
  • Evans BC, Coon DW, & Ume E (2011). Use of theoretical frameworks as a pragmatic guide for mixed methods studies: A methodological necessity? Journal of Mixed Methods Research , 5 , 276–292. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Fonteyn ME, Vettese M, Lancaster DR, & Bauer-Wu S (2008). Developing a codebook to guide content analysis of expressive writing transcripts . Applied Nursing Research , 21 , 165–168. doi: 10.1016/j.apnr.2006.08.005 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hsieh H, & Shannon S (2005). Three approaches to qualitative content analysis . Qualitative Health Research , 15 , 1277–1288. [ PubMed ] [ Google Scholar ]
  • Jiggins Colorafi K (2015). Patient centered health information technology: Engagement with the plan of care among older adults with multi-morbidities . Retrieved from ProQuest. [ Google Scholar ]
  • Lincoln Y, & Guba E (1985). Naturalistic inquiry . New York, NY: Sage. [ Google Scholar ]
  • Miles M, Huberman M, & Saldana J (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). Thousand Oaks, CA: Sage. [ Google Scholar ]
  • Munhall P, & Chenail R (2008). Qualitative research proposals and reports: A guide (3rd ed.). Boston, MA: Jones and Bartlett. [ Google Scholar ]
  • Neergaard MA, Olesen F, Andersen RS, & Sondergaard J (2009). Qualitative description - the poor cousin of health research? BMC Medical Research Methodology , 9 , 52. doi: 10.1186/1471-2288-9-52 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M (2000). Whatever happened to qualitative description? Research in Nursing & Health , 23 , 334–340. [ PubMed ] [ Google Scholar ]
  • Sandelowski M (2001). Focus on research methods. Real qualitative researchers do not count: The use of numbers in qualitative research . Research in Nursing & Health , 24 , 230–240. [ PubMed ] [ Google Scholar ]
  • Sandelowski M (2004). Counting cats in Zanzibar . Research in Nursing & Health , 27 , 215–216. [ PubMed ] [ Google Scholar ]
  • Sandelowski M (2010). What’s in a name? Qualitative description revisited . Research in Nursing & Health , 33 , 77–84. doi: 10.1002/nur.20362 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M, & Leeman J (2012). Writing usable qualitative health research findings . Qualitative Health Research , 22 , 1404–1413. [ PubMed ] [ Google Scholar ]
  • Spradley J (1980). Patricipant observation . Belmont, CA: Wadsworth Cengage Learning. [ Google Scholar ]
  • Stake R (2010). Qualitative research: Studying how things work . New York, NY: The Guilford Press. [ Google Scholar ]
  • Wolcott H (2009). Writing up qualitative research (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

PESTLE Analysis

SWOT and Business Analysis Tools

What is Descriptive Research Analysis

✏️ Oct 8, 2019 Updated: Sep 29, 2022 by Kiesha Frue

The descriptive research analysis is a type of study that companies use to understand the specific subject matter. It’s something anyone can do, but only if they understand the purpose of this analysis. It can only do so much, and if you’re not aware, it may not be helpful.

In this article, you’ll discover:

  • What descriptive research analysis is.
  • How companies apply it to make strategic business decisions.
  • The qualities and characteristics of this analysis.
  • Plus the pros and cons of using descriptive research analysis.

Let’s begin by answering the more basic question.

What is a descriptive research analysis?

Descriptive research is understanding the “what” rather than the “why” about a particular phenomenon. The focus falls to what something is based on unbiased information.

Here’s an example: A company wants to understand the purchasing habits of seniors in California. They decide to conduct descriptive research to learn what seniors’ buying habits are. The “why” is irrelevant. But if the company knows what Californian seniors are buying most, they can draw conclusions based on this evidence.

Descriptive research helps companies branch into new industries, market more effectively, and develop new products or services.

Qualities of descriptive research

Descriptive research analysis relies on data analysis and asking specific people (the targets of interests) research questions. These two necessary components are broken down into four characteristics:

Cross-sectional studies: The final result of this analysis will involve using other studies to reach the final result.

Uncontrolled variables: The biggest point of descriptive research is the variables; they must not be influenced in any way. For this reason, the researcher must collect information by observing and not influence the data.

Quantitative research: Since this analysis often deals with numerical values, collecting appropriate quantifiable information is absolutely necessary. It’s with this information that companies can accurately describe demographic segments.

Additional information: Once the researcher and company have all the information necessary, it may be used in other facets for the company, such as SWOT analysis or PESTLE analysis .

How to conduct a descriptive research analysis?

You may use three main tools for descriptive research analysis: Case studies, survey research, and observational methods.

Case studies describe a hypothesis. Unfortunately, their predictions aren’t always accurate; the creators of case studies may be folly to bias.

Surveys can be polls and questionnaires where the company asks specific audience questions about a topic. The company can receive this data from the audiences’ mouth and use this information for the analysis. A good survey will combine open-ended and closed-ended questions. Companies send out surveys online, in-person, or via phone.

The Observational method is the most popular tool of choice for descriptive research. It uses both quantitative and qualitative observations.

Quantitative observation uses statistical data — no opinions, just numbers. If used in a survey, quantitative numeric values like weight, age, and volume.

Qualitative observation is all about the characteristics. The researcher will monitor the topic from afar (to not influence the environment) and note the natural characteristics of the subjects.

Descriptive research analysis examples

The results of your descriptive analysis apply to a variety of topics. Researchers will use several techniques for the analysis, depending on the objective:

Ask questions about characteristics. Researchers can draw conclusions based on the research questions they ask. New traits, patterns, and behaviors can be discovered. For instance, let’s say you want to know how often children are watching TV weekly. By uncovering this information, businesses can make strategic decisions about this topic.

Discover data trends. Data trends use statistical information, and this statistical information often reveals patterns. It’s incredibly useful for research descriptive analysis. Researchers find patterns in many subjects and topics, including genders, age groups, locations, and ethnicities. All you have to do is choose a topic and time frame, then dig in.

Highlight comparisons. It may be viable to compare information about two different groups. For example, a company may ask customers how they feel about the service lately. When the results are in, the company may compare how their customers are feelings based on income and age, and compare the differences or similarities between these groups.

Validate current knowledge. Companies use descriptive research analysis to also understand existing patterns and confirm these patterns are still valid. Using quantitative and qualitative observations allows the company or researcher to create a detailed analysis of the results.

Check the time frame. Comparing results at varying times will also showcase new results. You may see new information and patterns when doing the analysis a week from now or three months from now.

The pros and cons of descriptive research analysis

Companies use descriptive research analysis, but it has both advantages and disadvantages.

It’s the best way to collect data without bias. Companies can collect data first-hand based on stats and unbiased information. The results apply to various other topics and departments, too.

Cost-effective and fast. Compared to other forms of analysis, collecting the necessary data for research analysis is quicker and easier.

Helpful for decision-making. It’s easier for companies to make smarter business decisions when they use this analysis. It focuses on the “what” of a topic with number-based values and statistics; the information is factual and unbiased.

Worry. When a researcher asks questions, the person may feel uncomfortable. They may feel like they’re being “monitored” and act unnaturally. In this case, the validity of the data may be compromised. Similarly, the researcher could have a bias that could seep into the data too.

Questionable samples. The samples the researcher collects could be random, which makes it more difficult to validate. In most cases, samples are small, which means it may not accurately reflect the population in which the sample is taken.

No “why”. This analysis only answers the “what”. If you want to understand the “why” or “how”, this isn’t the analysis for you.

Bottom line:

The descriptive research analysis is straightforward. It explains the “what” about a topic, by using data, statistics, and trends. It employs the use of many common characteristics companies already have access to, like case studies, surveys, and customers. It’s cheaper than other forms of analysis and if much of this information is already on hand, it’s quicker too.

Image by  rawpixel  

  • Open supplemental data
  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, learning scientific observation with worked examples in a digital learning environment.

analysis for descriptive research

  • 1 Department Educational Sciences, Chair for Formal and Informal Learning, Technical University Munich School of Social Sciences and Technology, Munich, Germany
  • 2 Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Freising, Germany

Science education often aims to increase learners’ acquisition of fundamental principles, such as learning the basic steps of scientific methods. Worked examples (WE) have proven particularly useful for supporting the development of such cognitive schemas and successive actions in order to avoid using up more cognitive resources than are necessary. Therefore, we investigated the extent to which heuristic WE are beneficial for supporting the acquisition of a basic scientific methodological skill—conducting scientific observation. The current study has a one-factorial, quasi-experimental, comparative research design and was conducted as a field experiment. Sixty two students of a German University learned about scientific observation steps during a course on applying a fluvial audit, in which several sections of a river were classified based on specific morphological characteristics. In the two experimental groups scientific observation was supported either via faded WE or via non-faded WE both presented as short videos. The control group did not receive support via WE. We assessed factual and applied knowledge acquisition regarding scientific observation, motivational aspects and cognitive load. The results suggest that WE promoted knowledge application: Learners from both experimental groups were able to perform the individual steps of scientific observation more accurately. Fading of WE did not show any additional advantage compared to the non-faded version in this regard. Furthermore, the descriptive results reveal higher motivation and reduced extraneous cognitive load within the experimental groups, but none of these differences were statistically significant. Our findings add to existing evidence that WE may be useful to establish scientific competences.

1 Introduction

Learning in science education frequently involves the acquisition of basic principles or generalities, whether of domain-specific topics (e.g., applying a mathematical multiplication rule) or of rather universal scientific methodologies (e.g., performing the steps of scientific observation) ( Lunetta et al., 2007 ). Previous research has shown that worked examples (WE) can be considered particularly useful for developing such cognitive schemata during learning to avoid using more cognitive resources than necessary for learning successive actions ( Renkl et al., 2004 ; Renkl, 2017 ). WE consist of the presentation of a problem, consecutive solution steps and the solution itself. This is especially advantageous in initial cognitive skill acquisition, i.e., for novice learners with low prior knowledge ( Kalyuga et al., 2001 ). With growing knowledge, fading WE can lead from example-based learning to independent problem-solving ( Renkl et al., 2002 ). Preliminary work has shown the advantage of WE in specific STEM domains like mathematics ( Booth et al., 2015 ; Barbieri et al., 2021 ), but less studies have investigated their impact on the acquisition of basic scientific competencies that involve heuristic problem-solving processes (scientific argumentation, Schworm and Renkl, 2007 ; Hefter et al., 2014 ; Koenen et al., 2017 ). In the realm of natural sciences, various basic scientific methodologies are employed to acquire knowledge, such as experimentation or scientific observation ( Wellnitz and Mayer, 2013 ). During the pursuit of knowledge through scientific inquiry activities, learners may encounter several challenges and difficulties. Similar to the hurdles faced in experimentation, where understanding the criteria for appropriate experimental design, including the development, measurement, and evaluation of results, is crucial ( Sirum and Humburg, 2011 ; Brownell et al., 2014 ; Dasgupta et al., 2014 ; Deane et al., 2014 ), scientific observation additionally presents its own set of issues. In scientific observation, e.g., the acquisition of new insights may be somewhat incidental due to spontaneous and uncoordinated observations ( Jensen, 2014 ). To address these challenges, it is crucial to provide instructional support, including the use of WE, particularly when observations are carried out in a more self-directed manner.

For this reason, the aim of the present study was to determine the usefulness of digitally presented WE to support the acquisition of a basic scientific methodological skill—conducting scientific observations—using a digital learning environment. In this regard, this study examined the effects of different forms of digitally presented WE (non-faded vs. faded) on students’ cognitive and motivational outcomes and compared them to a control group without WE. Furthermore, the combined perspective of factual and applied knowledge, as well as motivational and cognitive aspects, represent further value added to the study.

2 Theoretical background

2.1 worked examples.

WE have been commonly used in the fields of STEM education (science, technology, engineering, and mathematics) ( Booth et al., 2015 ). They consist of a problem statement, the steps to solve the problem, and the solution itself ( Atkinson et al., 2000 ; Renkl et al., 2002 ; Renkl, 2014 ). The success of WE can be explained by their impact on cognitive load (CL) during learning, based on assumptions from Cognitive Load Theory ( Sweller, 2006 ).

Learning with WE is considered time-efficient, effective, and superior to problem-based learning (presentation of the problem without demonstration of solution steps) when it comes to knowledge acquisition and transfer (WE-effect, Atkinson et al., 2000 ; Van Gog et al., 2011 ). Especially WE can help by reducing the extraneous load (presentation and design of the learning material) and, in turn, can lead to an increase in germane load (effort of the learner to understand the learning material) ( Paas et al., 2003 ; Renkl, 2014 ). With regard to intrinsic load (difficulty and complexity of the learning material), it is still controversially discussed if it can be altered by instructional design, e.g., WE ( Gerjets et al., 2004 ). WE have a positive effect on learning and knowledge transfer, especially for novices, as the step-by-step presentation of the solution requires less extraneous mental effort compared to problem-based learning ( Sweller et al., 1998 ; Atkinson et al., 2000 ; Bokosmaty et al., 2015 ). With growing knowledge, WE can lose their advantages (due to the expertise-reversal effect), and scaffolding learning via faded WE might be more successful for knowledge gain and transfer ( Renkl, 2014 ). Faded WE are similar to complete WE, but fade out solution steps as knowledge and competencies grow. Faded WE enhance near-knowledge transfer and reduce errors compared to non-faded WE ( Renkl et al., 2000 ).

In addition, the reduction of intrinsic and extraneous CL by WE also has an impact on learner motivation, such as interest ( Van Gog and Paas, 2006 ). Um et al. (2012) showed that there is a strong positive correlation between germane CL and the motivational aspects of learning, like satisfaction and emotion. Gupta (2019) mentions a positive correlation between CL and interest. Van Harsel et al. (2019) found that WE positively affect learning motivation, while no such effect was found for problem-solving. Furthermore, learning with WE increases the learners’ belief in their competence in completing a task. In addition, fading WE can lead to higher motivation for more experienced learners, while non-faded WE can be particularly motivating for learners without prior knowledge ( Paas et al., 2005 ). In general, fundamental motivational aspects during the learning process, such as situational interest ( Lewalter and Knogler, 2014 ) or motivation-relevant experiences, like basic needs, are influenced by learning environments. At the same time, their use also depends on motivational characteristics of the learning process, such as self-determined motivation ( Deci and Ryan, 2012 ). Therefore, we assume that learning with WE as a relevant component of a learning environment might also influence situational interest and basic needs.

2.1.1 Presentation of worked examples

WE are frequently used in digital learning scenarios ( Renkl, 2014 ). When designing WE, the application via digital learning media can be helpful, as their content can be presented in different ways (video, audio, text, and images), tailored to the needs of the learners, so that individual use is possible according to their own prior knowledge or learning pace ( Mayer, 2001 ). Also, digital media can present relevant information in a timely, motivating, appealing and individualized way and support learning in an effective and needs-oriented way ( Mayer, 2001 ). The advantages of using digital media in designing WE have already been shown in previous studies. Dart et al. (2020) presented WE as short videos (WEV). They report that the use of WEV leads to increased student satisfaction and more positive attitudes. Approximately 90% of the students indicated an active learning approach when learning with the WEV. Furthermore, the results show that students improved their content knowledge through WEV and that they found WEV useful for other courses as well.

Another study ( Kay and Edwards, 2012 ) presented WE as video podcasts. Here, the advantages of WE regarding self-determined learning in terms of learning location, learning time, and learning speed were shown. Learning performance improved significantly after use. The step-by-step, easy-to-understand explanations, the diagrams, and the ability to determine the learning pace by oneself were seen as beneficial.

Multimedia WE can also be enhanced with self-explanation prompts ( Berthold et al., 2009 ). Learning from WE with self-explanation prompts was shown to be superior to other learning methods, such as hypertext learning and observational learning.

In addition to presenting WE in different medial ways, WE can also comprise different content domains.

2.1.2 Content and context of worked examples

Regarding the content of WE, algorithmic and heuristic WE, as well as single-content and double-content WE, can be distinguished ( Reiss et al., 2008 ; Koenen et al., 2017 ; Renkl, 2017 ). Algorithmic WE are traditionally used in the very structured mathematical–physical field. Here, an algorithm with very specific solution steps is to learn, for example, in probability calculation ( Koenen et al., 2017 ). In this study, however, we focus on heuristic double-content WE. Heuristic WE in science education comprise fundamental scientific working methods, e.g., conducting experiments ( Koenen et al., 2017 ). Furthermore, double-content WE contain two learning domains that are relevant for the learning process: (1) the learning domain describes the primarily to be learned abstract process or concept, e.g., scientific methodologies like observation (see section 2.2), while (2) the exemplifying domain consists of the content that is necessary to teach this process or concept, e.g., mapping of river structure ( Renkl et al., 2009 ).

Depending on the WE content to be learned, it may be necessary for learning to take place in different settings. This can be in a formal or informal learning setting or a non-formal field setting. In this study, the focus is on learning scientific observation (learning domain) through river structure mapping (exemplary domain), which takes place with the support of digital media in a formal (university) setting, but in an informal context (nature).

2.2 Scientific observation

Scientific observation is fundamental to all scientific activities and disciplines ( Kohlhauf et al., 2011 ). Scientific observation must be clearly distinguished from everyday observation, where observation is purely a matter of noticing and describing specific characteristics ( Chinn and Malhotra, 2001 ). In contrast to this everyday observation, scientific observation as a method of knowledge acquisition can be described as a rather complex activity, defined as the theory-based, systematic and selective perception of concrete systems and processes without any fundamental manipulation ( Wellnitz and Mayer, 2013 ). Wellnitz and Mayer (2013) described the scientific observation process via six steps: (1) formulation of the research question (s), (2) deduction of the null hypothesis and the alternative hypothesis, (3) planning of the research design, (4) conducting the observation, (5) analyzing the data, and (6) answering the research question(s) on this basis. Only through reliable and qualified observation, valid data can be obtained that provide solid scientific evidence ( Wellnitz and Mayer, 2013 ).

Since observation activities are not trivial and learners often observe without generating new knowledge or connecting their observations to scientific explanations and thoughts, it is important to provide support at the related cognitive level, so that observation activities can be conducted in a structured way according to pre-defined criteria ( Ford, 2005 ; Eberbach and Crowley, 2009 ). Especially during field-learning experiences, scientific observation is often spontaneous and uncoordinated, whereby random discoveries result in knowledge gain ( Jensen, 2014 ).

To promote successful observing in rather unstructured settings like field trips, instructional support for the observation process seems useful. To guide observation activities, digitally presented WE seem to be an appropriate way to introduce learners to the individual steps of scientific observation using concrete examples.

2.3 Research questions and hypothesis

The present study investigates the effect of digitally presented double-content WE that supports the mapping of a small Bavarian river by demonstrating the steps of scientific observation. In this analysis, we focus on the learning domain of the WE and do not investigate the exemplifying domain in detail. Distinct ways of integrating WE in the digital learning environment (faded WE vs. non-faded WE) are compared with each other and with a control group (no WE). The aim is to examine to what extent differences between those conditions exist with regard to (RQ1) learners’ competence acquisition [acquisition of factual knowledge about the scientific observation method (quantitative data) and practical application of the scientific observation method (quantified qualitative data)], (RQ2) learners’ motivation (situational interest and basic needs), and (RQ3) CL. It is assumed that (Hypothesis 1), the integration of WE (faded and non-faded) leads to significantly higher competence acquisition (factual and applied knowledge), significantly higher motivation and significantly lower extraneous CL as well as higher germane CL during the learning process compared to a learning environment without WE. No differences between the conditions are expected regarding intrinsic CL. Furthermore, it is assumed (Hypothesis 2) that the integration of faded WE leads to significantly higher competence acquisition, significantly higher motivation, and lower extraneous CL as well as higher germane CL during the learning processes compared to non-faded WE. No differences between the conditions are expected with regard to intrinsic CL.

The study took place during the field trips of a university course on the application of a fluvial audit (FA) using the German working aid for mapping the morphology of rivers and their floodplains ( Bayerisches Landesamt für Umwelt, 2019 ). FA is the leading fluvial geomorphological tool for application to data collection contiguously along all watercourses of interest ( Walker et al., 2007 ). It is widely used because it is a key example of environmental conservation and monitoring that needs to be taught to students of selected study programs; thus, knowing about the most effective ways of learning is of high practical relevance.

3.1 Sample and design

3.1.1 sample.

The study was conducted with 62 science students and doctoral students of a German University (age M  = 24.03 years; SD  = 4.20; 36 females; 26 males). A total of 37 participants had already conducted a scientific observation and would rate their knowledge in this regard at a medium level ( M  = 3.32 out of 5; SD  = 0.88). Seven participants had already conducted an FA and would rate their knowledge in this regard at a medium level ( M  = 3.14 out of 5; SD  = 0.90). A total of 25 participants had no experience at all. Two participants had to be excluded from the sample afterward because no posttest results were available.

3.1.2 Design

The study has a 1-factorial quasi-experimental comparative research design and is conducted as a field experiment using a pre/posttest design. Participants were randomly assigned to one of three conditions: no WE ( n  = 20), faded WE ( n  = 20), and non-faded WE ( n  = 20).

3.2 Implementation and material

3.2.1 implementation.

The study started with an online kick-off meeting where two lecturers informed all students within an hour about the basics regarding the assessment of the structural integrity of the study river and the course of the field trip days to conduct an FA. Afterward, within 2 weeks, students self-studied via Moodle the FA following the German standard method according to the scoresheets of Bayerisches Landesamt für Umwelt (2019) . This independent preparation using the online presented documents was a necessary prerequisite for participation in the field days and was checked in the pre-testing. The preparatory online documents included six short videos and four PDF files on the content, guidance on the German protocol of the FA, general information on river landscapes, information about anthropogenic changes in stream morphology and the scoresheets for applying the FA. In these sheets, the river and its floodplain are subdivided into sections of 100 m in length. Each of these sections is evaluated by assessing 21 habitat factors related to flow characteristics and structural variability. The findings are then transferred into a scoring system for the description of structural integrity from 1 (natural) to 7 (highly modified). Habitat factors have a decisive influence on the living conditions of animals and plants in and around rivers. They included, e.g., variability in water depth, stream width, substratum diversity, or diversity of flow velocities.

3.2.2 Materials

On the field trip days, participants were handed a tablet and a paper-based FA worksheet (last accessed 21st September 2022). 1 This four-page assessment sheet was accompanied by a digital learning environment presented on Moodle that instructed the participants on mapping the water body structure and guided the scientific observation method. All three Moodle courses were identical in structure and design; the only difference was the implementation of the WE. Below, the course without WE are described first. The other two courses have an identical structure, but contain additional WE in the form of learning videos.

3.2.3 No worked example

After a short welcome and introduction to the course navigation, the FA started with the description of a short hypothetical scenario: Participants should take the role of an employee of an urban planning office that assesses the ecomorphological status of a small river near a Bavarian city. The river was divided into five sections that had to be mapped separately. The course was structured accordingly. At the beginning of each section, participants had to formulate and write down a research question, and according to hypotheses regarding the ecomorphological status of the river’s section, they had to collect data in this regard via the mapping sheet and then evaluate their data and draw a conclusion. Since this course serves as a control group, no WE videos supporting the scientific observation method were integrated. The layout of the course is structured like a book, where it is not possible to scroll back. This is important insofar as the participants do not have the possibility to revisit information in order to keep the conditions comparable as well as distinguishable.

3.2.4 Non-faded worked example

In the course with no-faded WE, three instructional videos are shown for each of the five sections. In each of the three videos, two steps of the scientific observation method are presented so that, finally, all six steps of scientific observation are demonstrated. The mapping of the first section starts after the general introduction (as described above) with the instruction to work on the first two steps of scientific observation: the formulation of a research question and hypotheses. To support this, a video of about 4 min explains the features of scientific sound research questions and hypotheses. To this aim, a practical example, including explanations and tips, is given regarding the formulation of research questions and hypotheses for this section (e.g., “To what extent does the building development and the closeness of the path to the water body have an influence on the structure of the water body?” Alternative hypothesis: It is assumed that the housing development and the closeness of the path to the water body have a negative influence on the water body structure. Null hypothesis: It is assumed that the housing development and the closeness of the path to the watercourse have no negative influence on the watercourse structure.). Participants should now formulate their own research questions and hypotheses, write them down in a text field at the end of the page, and then skip to the next page. The next two steps of scientific observation, planning and conducting, are explained in a short 4-min video. To this aim, a practical example including explanations and tips is given regarding planning and conducting scientific for this section (e.g., “It’s best to go through each evaluation category carefully one by one that way you are sure not to forget anything!”). Now, participants were asked to collect data for the first section using their paper-based FA worksheet. Participants individually surveyed the river and reported their results in the mapping sheet by ticking the respective boxes in it. After collecting this data, they returned to the digital learning environment to learn how to use these data by studying the last two steps of scientific observation, evaluation, and conclusion. The third 4-min video explained how to evaluate and interpret collected data. For this purpose, a practical example with explanations and tips is given regarding evaluating and interpreting data for this section (e.g., “What were the individual points that led to the assessment? Have there been points that were weighted more than others? Remember the introduction video!”). At the end of the page, participants could answer their before-stated research questions and hypotheses by evaluating their collected data and drawing a conclusion. This brings participants to the end of the first mapping section. Afterward, the cycle begins again with the second section of the river that has to be mapped. Again, participants had to conduct the steps of scientific observation, guided by WE videos, explaining the steps in slightly different wording or with different examples. A total of five sections are mapped, in which the structure of the learning environment and the videos follow the same procedure.

3.2.5 Faded worked example

The digital learning environment with the faded WE follow the same structure as the version with the non-faded WE. However, in this version, the information in the WE videos is successively reduced. In the first section, all three videos are identical to the version with the non-faded WE. In the second section, faded content was presented as follows: the tip at the end was omitted in all three videos. In the third section, the tip and the practical example were omitted. In the fourth and fifth sections, no more videos were presented, only the work instructions.

3.3 Procedure

The data collection took place on four continuous days on the university campus, with a maximum group size of 15 participants on each day. The students were randomly assigned to one of the three conditions (no WE vs. faded WE vs. non-faded WE). After a short introduction to the procedure, the participants were handed the paper-based FA worksheet and one tablet per person. Students scanned the QR code on the first page of the worksheet that opened the pretest questionnaire, which took about 20 min to complete. After completing the questionnaire, the group walked for about 15 min to the nearby small river that was to be mapped. Upon arrival, there was first a short introduction to the digital learning environment and a check that the login (via university account on Moodle) worked. During the next 4 h, the participants individually mapped five segments of the river using the cartography worksheet. They were guided through the steps of scientific observation using the digital learning environment on the tablet. The results of their scientific observation were logged within the digital learning environment. At the end of the digital learning environment, participants were directed to the posttest via a link. After completing the test, the tablets and mapping sheets were returned. Overall, the study took about 5 h per group each day.

3.4 Instruments

In the pretest, sociodemographic data (age and gender), the study domain and the number of study semesters were collected. Additionally, the previous scientific observation experience and the estimation of one’s own ability in this regard were assessed. For example, it was asked whether scientific observation had already been conducted and, if so, how the abilities were rated on a 5-point scale from very low to very high. Preparation for the FA on the basis of the learning material was assessed: Participants were asked whether they had studied all six videos and all four PDF documents, with the response options not at all, partially, and completely. Furthermore, a factual knowledge test about scientific observation and questions about self-determination theory was administered. The posttest used the same knowledge test, and additional questions on basic needs, situational interest, measures of CL and questions about the usefulness of the WE. All scales were presented online, and participants reached the questionnaire via QR code.

3.4.1 Scientific observation competence acquisition

For the factual knowledge (quantitative assessment of the scientific observation competence), a single-choice knowledge test with 12 questions was developed and used as pre- and posttest with a maximum score of 12 points. It assesses the learners’ knowledge of the scientific observation method regarding the steps of scientific observation, e.g., formulating research questions and hypotheses or developing a research design. The questions are based on Wahser (2008 , adapted by Koenen, 2014 ) and adapted to scientific observation: “Although you are sure that you have conducted the scientific observation correctly, an unexpected result turns up. What conclusion can you draw?” Each question has four answer options (one of which is correct) and, in addition, one “I do not know” option.

For the applied knowledge (quantified qualitative assessment of the scientific observation competence), students’ scientific observations written in the digital learning environment were analyzed. A coding scheme was used with the following codes: 0 = insufficient (text field is empty or includes only insufficient key points), 1 = sufficient (a research question and no hypotheses or research question and inappropriate hypotheses are stated), 2 = comprehensive (research question and appropriate hypothesis or research question and hypotheses are stated, but, e.g., incorrect null hypothesis), 3 = very comprehensive (correct research question, hypothesis and null hypothesis are stated). One example of a very comprehensive answer regarding the research question and hypothesis is: To what extent does the lack of riparian vegetation have an impact on water body structure? Hypothesis: The lack of shore vegetation has a negative influence on the water body structure. Null hypothesis: The lack of shore vegetation has no influence on the water body structure. Afterward, a sum score was calculated for each participant. Five times, a research question and hypotheses (steps 1 and 2 in the observation process) had to be formulated (5 × max. 3 points = 15 points), and five times, the research questions and hypotheses had to be answered (steps 5 and 6 in the observation process: evaluation and conclusion) (5 × max. 3 points = 15 points). Overall, participants could reach up to 30 points. Since the observation and evaluation criteria in data collection and analysis were strongly predetermined by the scoresheet, steps 3 and 4 of the observation process (planning and conducting) were not included in the analysis.

All 600 cases (60 participants, each 10 responses to code) were coded by the first author. For verification, 240 cases (24 randomly selected participants, eight from each course) were cross-coded by an external coder. In 206 of the coded cases, the raters agreed. The cases in which the raters did not agree were discussed together, and a solution was found. This results in Cohen’s κ = 0.858, indicating a high to very high level of agreement. This indicates that the category system is clearly formulated and that the individual units of analysis could be correctly assigned.

3.4.2 Self-determination index

For the calculation of the self-determination index (SDI-index), Thomas and Müller (2011) scale for self-determination was used in the pretest. The scale consists of four subscales: intrinsic motivation (five items; e.g., I engage with the workshop content because I enjoy it; reliability of alpha = 0.87), identified motivation (four items; e.g., I engage with the workshop content because it gives me more options when choosing a career; alpha = 0.84), introjected motivation (five items; e.g., I engage with the workshop content because otherwise I would have a guilty feeling; alpha = 0.79), and external motivation (three items, e.g., I engage with the workshop content because I simply have to learn it; alpha = 0.74). Participants could indicate their answers on a 5-point Likert scale ranging from 1 = completely disagree to 5 = completely agree. To calculate the SDI-index, the sum of the self-determined regulation styles (intrinsic and identified) is subtracted from the sum of the external regulation styles (introjected and external), where intrinsic and external regulation are scored two times ( Thomas and Müller, 2011 ).

3.4.3 Motivation

Basic needs were measured in the posttest with the scale by Willems and Lewalter (2011) . The scale consists of three subscales: perceived competence (four items; e.g., during the workshop, I felt that I could meet the requirements; alpha = 0.90), perceived autonomy (five items; e.g., during the workshop, I felt that I had a lot of freedom; alpha = 0.75), and perceived autonomy regarding personal wishes and goals (APWG) (four items; e.g., during the workshop, I felt that the workshop was how I wish it would be; alpha = 0.93). We added all three subscales to one overall basic needs scale (alpha = 0.90). Participants could indicate their answers on a 5-point Likert scale ranging from 1 = completely disagree to 5 = completely agree.

Situational interest was measured in the posttest with the 12-item scale by Lewalter and Knogler (2014 ; Knogler et al., 2015 ; Lewalter, 2020 ; alpha = 0.84). The scale consists of two subscales: catch (six items; e.g., I found the workshop exciting; alpha = 0.81) and hold (six items; e.g., I would like to learn more about parts of the workshop; alpha = 0.80). Participants could indicate their answers on a 5-point Likert scale ranging from 1 = completely disagree to 5 = completely agree.

3.4.4 Cognitive load

In the posttest, CL was used to examine the mental load during the learning process. The intrinsic CL (three items; e.g., this task was very complex; alpha = 0.70) and extraneous CL (three items; e.g., in this task, it is difficult to identify the most important information; alpha = 0.61) are measured with the scales from Klepsch et al. (2017) . The germane CL (two items; e.g., the learning session contained elements that supported me to better understand the learning material; alpha = 0.72) is measured with the scale from Leppink et al. (2013) . Participants could indicate their answers on a 5-point Likert scale ranging from 1 = completely disagree to 5 = completely agree.

3.4.5 Attitudes toward worked examples

To measure how effective participants rated the WE, we used two scales related to the WE videos as instructional support. The first scale from Renkl (2001) relates to the usefulness of WE. The scale consists of four items (e.g., the explanations were helpful; alpha = 0.71). Two items were recoded because they were formulated negatively. The second scale is from Wachsmuth (2020) and relates to the participant’s evaluation of the WE. The scale consists of nine items (e.g., I always did what was explained in the learning videos; alpha = 0.76). Four items were recoded because they were formulated negatively. Participants could indicate their answers on a 5-point Likert scale ranging from 1 = completely disagree to 5 = completely agree.

3.5 Data analysis

An ANOVA was used to calculate if the variable’s prior knowledge and SDI index differed between the three groups. However, as no significant differences between the conditions were found [prior factual knowledge: F (2, 59) = 0.15, p  = 0.865, η 2  = 0.00 self-determination index: F (2, 59) = 0.19, p  = 0.829, η 2  = 0.00], they were not included as covariates in subsequent analyses.

Furthermore, a repeated measure, one-way analysis of variance (ANOVA), was conducted to compare the three treatment groups (no WE vs. faded WE vs. non-faded WE) regarding the increase in factual knowledge about the scientific observation method from pretest to posttest.

A MANOVA (multivariate analysis) was calculated with the three groups (no WE vs. non-faded WE vs. faded WE) as a fixed factor and the dependent variables being the practical application of the scientific observation method (first research question), situational interest, basic needs (second research question), and CL (third research question).

Additionally, to determine differences in applied knowledge even among the three groups, Bonferroni-adjusted post-hoc analyses were conducted.

The descriptive statistics between the three groups in terms of prior factual knowledge about the scientific observation method and the self-determination index are shown in Table 1 . The descriptive statistics revealed only small, non-significant differences between the three groups in terms of factual knowledge.

www.frontiersin.org

Table 1 . Means (standard deviations) of factual knowledge tests (pre- and posttest) and self-determination index for the three different groups.

The results of the ANOVA revealed that the overall increase in factual knowledge from pre- to posttest just misses significance [ F (1, 57) = 3.68, p  = 0.060, η 2  = 0 0.06]. Furthermore, no significant differences between the groups were found regarding the acquisition of factual knowledge from pre- to posttest [ F (2, 57) = 2.93, p  = 0.062, η 2  = 0.09].

An analysis of the descriptive statistics showed that the largest differences between the groups were found in applied knowledge (qualitative evaluation) and extraneous load (see Table 2 ).

www.frontiersin.org

Table 2 . Means (standard deviations) of dependent variables with the three different groups.

Results of the MANOVA revealed significant overall differences between the three groups [ F (12, 106) = 2.59, p  = 0.005, η 2  = 0.23]. Significant effects were found for the application of knowledge [ F (2, 57) = 13.26, p  = <0.001, η 2  = 0.32]. Extraneous CL just missed significance [ F (2, 57) = 2.68, p  = 0.065, η 2  = 0.09]. There were no significant effects for situational interest [ F (2, 57) = 0.44, p  = 0.644, η 2  = 0.02], basic needs [ F (2, 57) = 1.22, p  = 0.302, η 2  = 0.04], germane CL [ F (2, 57) = 2.68, p  = 0.077, η 2  = 0.09], and intrinsic CL [ F (2, 57) = 0.28, p  = 0.757, η 2  = 0.01].

Bonferroni-adjusted post hoc analysis revealed that the group without WE had significantly lower scores in the evaluation of the applied knowledge than the group with non-faded WE ( p  = <0.001, M diff  = −8.90, 95% CI [−13.47, −4.33]) and then the group with faded WE ( p  = <0.001, M diff  = −7.40, 95% CI [−11.97, −2.83]). No difference was found between the groups with faded and non-faded WE ( p  = 1.00, M diff  = −1.50, 95% CI [−6.07, 3.07]).

The descriptive statistics regarding the perceived usefulness of WE and participants’ evaluation of the WE revealed that the group with the faded WE rated usefulness slightly higher than the participants with non-faded WE and also reported a more positive evaluation. However, the results of a MANOVA revealed no significant overall differences [ F (2, 37) = 0.32, p  = 0.732, η 2  = 0 0.02] (see Table 3 ).

www.frontiersin.org

Table 3 . Means (standard deviations) of dependent variables with the three different groups.

5 Discussion

This study investigated the use of WE to support students’ acquisition of science observation. Below, the research questions are answered, and the implications and limitations of the study are discussed.

5.1 Results on factual and applied knowledge

In terms of knowledge gain (RQ1), our findings revealed no significant differences in participants’ results of the factual knowledge test both across all three groups and specifically between the two experimental groups. These results are in contradiction with related literature where WE had a positive impact on knowledge acquisition ( Renkl, 2014 ) and faded WE are considered to be more effective in knowledge acquisition and transfer, in contrast to non-faded WE ( Renkl et al., 2000 ; Renkl, 2014 ). A limitation of the study is the fact that the participants already scored very high on the pretest, so participation in the intervention would likely not yield significant knowledge gains due to ceiling effects ( Staus et al., 2021 ). Yet, nearly half of the students reported being novices in the field prior to the study, suggesting that the difficulty of some test items might have been too low. Here, it would be important to revise the factual knowledge test, e.g., the difficulty of the distractors in further study.

Nevertheless, with regard to application knowledge, the results revealed large significant differences: Participants of the two experimental groups performed better in conducting scientific observation steps than participants of the control group. In the experimental groups, the non-faded WE group performed better than the faded WE group. However, the absence of significant differences between the two experimental groups suggests that faded and non-faded WE used as double-content WE are suitable to teach applied knowledge about scientific observation in the learning domain ( Koenen, 2014 ). Furthermore, our results differ from the findings of Renkl et al. (2000) , in which the faded version led to the highest knowledge transfer. Despite the fact that the non-faded WE performed best in our study, the faded version of the WE was also appropriate to improve learning, confirming the findings of Renkl (2014) and Hesser and Gregory (2015) .

5.2 Results on learners’ motivation

Regarding participants’ motivation (RQ2; situational interest and basic needs), no significant differences were found across all three groups or between the two experimental groups. However, descriptive results reveal slightly higher motivation in the two experimental groups than in the control group. In this regard, our results confirm existing literature on a descriptive level showing that WE lead to higher learning-relevant motivation ( Paas et al., 2005 ; Van Harsel et al., 2019 ). Additionally, both experimental groups rated the usefulness of the WE as high and reported a positive evaluation of the WE. Therefore, we assume that even non-faded WE do not lead to over-instruction. Regarding the descriptive tendency, a larger sample might yield significant results and detect even small effects in future investigations. However, because this study also focused on comprehensive qualitative data analysis, it was not possible to evaluate a larger sample in this study.

5.3 Results on cognitive load

Finally, CL did not vary significantly across all three groups (RQ3). However, differences in extraneous CL just slightly missed significance. In descriptive values, the control group reported the highest extrinsic and lowest germane CL. The faded WE group showed the lowest extrinsic CL and a similar germane CL as the non-faded WE group. These results are consistent with Paas et al. (2003) and Renkl (2014) , reporting that WE can help to reduce the extraneous CL and, in return, lead to an increase in germane CL. Again, these differences were just above the significance level, and it would be advantageous to retest with a larger sample to detect even small effects.

Taken together, our results only partially confirm H1: the integration of WE (both faded and non-faded WE) led to a higher acquisition of application knowledge than the control group without WE, but higher factual knowledge was not found. Furthermore, higher motivation or different CL was found on a descriptive level only. The control group provided the basis for comparison with the treatment in order to investigate if there is an effect at all and, if so, how large the effect is. This is an important point to assess whether the effort of implementing WE is justified. Additionally, regarding H2, our results reveal no significant differences between the two WE conditions. We assume that the high complexity of the FA could play a role in this regard, which might be hard to handle, especially for beginners, so learners could benefit from support throughout (i.e., non-faded WE).

In addition to the limitations already mentioned, it must be noted that only one exemplary topic was investigated, and the sample only consisted of students. Since only the learning domain of the double-content WE was investigated, the exemplifying domain could also be analyzed, or further variables like motivation could be included in further studies. Furthermore, the influence of learners’ prior knowledge on learning with WE could be investigated, as studies have found that WE are particularly beneficial in the initial acquisition of cognitive skills ( Kalyuga et al., 2001 ).

6 Conclusion

Overall, the results of the current study suggest a beneficial role for WE in supporting the application of scientific observation steps. A major implication of these findings is that both faded and non-faded WE should be considered, as no general advantage of faded WE over non-faded WE was found. This information can be used to develop targeted interventions aimed at the support of scientific observation skills.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

Ethical approval was not required for the study involving human participants in accordance with the local legislation and institutional requirements. Written informed consent to participate in this study was not required from the participants in accordance with the national legislation and the institutional requirements.

Author contributions

ML: Writing – original draft. SM: Writing – review & editing. JP: Writing – review & editing. JG: Writing – review & editing. DL: Writing – review & editing.

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feduc.2024.1293516/full#supplementary-material

1. ^ https://www.lfu.bayern.de/wasser/gewaesserstrukturkartierung/index.htm

Atkinson, R. K., Derry, S. J., Renkl, A., and Wortham, D. (2000). Learning from examples: instructional principles from the worked examples research. Rev. Educ. Res. 70, 181–214. doi: 10.3102/00346543070002181

Crossref Full Text | Google Scholar

Barbieri, C. A., Booth, J. L., Begolli, K. N., and McCann, N. (2021). The effect of worked examples on student learning and error anticipation in algebra. Instr. Sci. 49, 419–439. doi: 10.1007/s11251-021-09545-6

Bayerisches Landesamt für Umwelt. (2019). Gewässerstrukturkartierung von Fließgewässern in Bayern – Erläuterungen zur Erfassung und Bewertung. (Water structure mapping of flowing waters in Bavaria - Explanations for recording and assessment) . Available at: https://www.bestellen.bayern.de/application/eshop_app000005?SID=1020555825&ACTIONxSESSxSHOWPIC(BILDxKEY:%27lfu_was_00152%27,BILDxCLASS:%27Artikel%27,BILDxTYPE:%27PDF%27)

Google Scholar

Berthold, K., Eysink, T. H., and Renkl, A. (2009). Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instr. Sci. 37, 345–363. doi: 10.1007/s11251-008-9051-z

Bokosmaty, S., Sweller, J., and Kalyuga, S. (2015). Learning geometry problem solving by studying worked examples: effects of learner guidance and expertise. Am. Educ. Res. J. 52, 307–333. doi: 10.3102/0002831214549450

Booth, J. L., McGinn, K., Young, L. K., and Barbieri, C. A. (2015). Simple practice doesn’t always make perfect. Policy Insights Behav. Brain Sci. 2, 24–32. doi: 10.1177/2372732215601691

Brownell, S. E., Wenderoth, M. P., Theobald, R., Okoroafor, N., Koval, M., Freeman, S., et al. (2014). How students think about experimental design: novel conceptions revealed by in-class activities. Bioscience 64, 125–137. doi: 10.1093/biosci/bit016

Chinn, C. A., and Malhotra, B. A. (2001). “Epistemologically authentic scientific reasoning” in Designing for science: implications from everyday, classroom, and professional settings . eds. K. Crowley, C. D. Schunn, and T. Okada (Mahwah, NJ: Lawrence Erlbaum), 351–392.

Dart, S., Pickering, E., and Dawes, L. (2020). Worked example videos for blended learning in undergraduate engineering. AEE J. 8, 1–22. doi: 10.18260/3-1-1153-36021

Dasgupta, A., Anderson, T. R., and Pelaez, N. J. (2014). Development and validation of a rubric for diagnosing students’ experimental design knowledge and difficulties. CBE Life Sci. Educ. 13, 265–284. doi: 10.1187/cbe.13-09-0192

PubMed Abstract | Crossref Full Text | Google Scholar

Deane, T., Nomme, K. M., Jeffery, E., Pollock, C. A., and Birol, G. (2014). Development of the biological experimental design concept inventory (BEDCI). CBE Life Sci. Educ. 13, 540–551. doi: 10.1187/cbe.13-11-0218

Deci, E. L., and Ryan, R. M. (2012). Self-determination theory. In P. A. M. LangeVan, A. W. Kruglanski, and E. T. Higgins (Eds.), Handbook of theories of social psychology , 416–436.

Eberbach, C., and Crowley, K. (2009). From everyday to scientific observation: how children learn to observe the Biologist’s world. Rev. Educ. Res. 79, 39–68. doi: 10.3102/0034654308325899

Ford, D. (2005). The challenges of observing geologically: third graders’ descriptions of rock and mineral properties. Sci. Educ. 89, 276–295. doi: 10.1002/sce.20049

Gerjets, P., Scheiter, K., and Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: molar versus modular presentation of solution procedures. Instr. Sci. 32, 33–58. doi: 10.1023/B:TRUC.0000021809.10236.71

Gupta, U. (2019). Interplay of germane load and motivation during math problem solving using worked examples. Educ. Res. Theory Pract. 30, 67–71.

Hefter, M. H., Berthold, K., Renkl, A., Riess, W., Schmid, S., and Fries, S. (2014). Effects of a training intervention to foster argumentation skills while processing conflicting scientific positions. Instr. Sci. 42, 929–947. doi: 10.1007/s11251-014-9320-y

Hesser, T. L., and Gregory, J. L. (2015). Exploring the Use of Faded Worked Examples as a Problem Solving Approach for Underprepared Students. High. Educ. Stud. 5, 36–46.

Jensen, E. (2014). Evaluating children’s conservation biology learning at the zoo. Conserv. Biol. 28, 1004–1011. doi: 10.1111/cobi.12263

Kalyuga, S., Chandler, P., Tuovinen, J., and Sweller, J. (2001). When problem solving is superior to studying worked examples. J. Educ. Psychol. 93, 579–588. doi: 10.1037/0022-0663.93.3.579

Kay, R. H., and Edwards, J. (2012). Examining the use of worked example video podcasts in middle school mathematics classrooms: a formative analysis. Can. J. Learn. Technol. 38, 1–20. doi: 10.21432/T2PK5Z

Klepsch, M., Schmitz, F., and Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Front. Psychol. 8:1997. doi: 10.3389/fpsyg.2017.01997

Knogler, M., Harackiewicz, J. M., Gegenfurtner, A., and Lewalter, D. (2015). How situational is situational interest? Investigating the longitudinal structure of situational interest. Contemp. Educ. Psychol. 43, 39–50. doi: 10.1016/j.cedpsych.2015.08.004

Koenen, J. (2014). Entwicklung und Evaluation von experimentunterstützten Lösungsbeispielen zur Förderung naturwissenschaftlich experimenteller Arbeitsweisen . Dissertation.

Koenen, J., Emden, M., and Sumfleth, E. (2017). Naturwissenschaftlich-experimentelles Arbeiten. Potenziale des Lernens mit Lösungsbeispielen und Experimentierboxen. (scientific-experimental work. Potentials of learning with solution examples and experimentation boxes). Zeitschrift für Didaktik der Naturwissenschaften 23, 81–98. doi: 10.1007/s40573-017-0056-5

Kohlhauf, L., Rutke, U., and Neuhaus, B. J. (2011). Influence of previous knowledge, language skills and domain-specific interest on observation competency. J. Sci. Educ. Technol. 20, 667–678. doi: 10.1007/s10956-011-9322-3

Leppink, J., Paas, F., Van der Vleuten, C. P., Van Gog, T., and Van Merriënboer, J. J. (2013). Development of an instrument for measuring different types of cognitive load. Behav. Res. Methods 45, 1058–1072. doi: 10.3758/s13428-013-0334-1

Lewalter, D. (2020). “Schülerlaborbesuche aus motivationaler Sicht unter besonderer Berücksichtigung des Interesses. (Student laboratory visits from a motivational perspective with special attention to interest)” in Handbuch Forschen im Schülerlabor – theoretische Grundlagen, empirische Forschungsmethoden und aktuelle Anwendungsgebiete . eds. K. Sommer, J. Wirth, and M. Vanderbeke (Münster: Waxmann-Verlag), 62–70.

Lewalter, D., and Knogler, M. (2014). “A questionnaire to assess situational interest – theoretical considerations and findings” in Poster Presented at the 50th Annual Meeting of the American Educational Research Association (AERA) (Philadelphia, PA)

Lunetta, V., Hofstein, A., and Clough, M. P. (2007). Learning and teaching in the school science laboratory: an analysis of research, theory, and practice. In N. Lederman and S. Abel (Eds.). Handbook of research on science education , Mahwah, NJ: Lawrence Erlbaum, 393–441.

Mayer, R. E. (2001). Multimedia learning. Cambridge University Press.

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive load theory and instructional design: recent developments. Educ. Psychol. 38, 1–4. doi: 10.1207/S15326985EP3801_1

Paas, F., Tuovinen, J., van Merriënboer, J. J. G., and Darabi, A. (2005). A motivational perspective on the relation between mental effort and performance: optimizing learner involvement in instruction. Educ. Technol. Res. Dev. 53, 25–34. doi: 10.1007/BF02504795

Reiss, K., Heinze, A., Renkl, A., and Groß, C. (2008). Reasoning and proof in geometry: effects of a learning environment based on heuristic worked-out examples. ZDM Int. J. Math. Educ. 40, 455–467. doi: 10.1007/s11858-008-0105-0

Renkl, A. (2001). Explorative Analysen zur effektiven Nutzung von instruktionalen Erklärungen beim Lernen aus Lösungsbeispielen. (Exploratory analyses of the effective use of instructional explanations in learning from worked examples). Unterrichtswissenschaft 29, 41–63. doi: 10.25656/01:7677

Renkl, A. (2014). “The worked examples principle in multimedia learning” in Cambridge handbook of multimedia learning . ed. R. E. Mayer (Cambridge University Press), 391–412.

Renkl, A. (2017). Learning from worked-examples in mathematics: students relate procedures to principles. ZDM 49, 571–584. doi: 10.1007/s11858-017-0859-3

Renkl, A., Atkinson, R. K., and Große, C. S. (2004). How fading worked solution steps works. A cognitive load perspective. Instr. Sci. 32, 59–82. doi: 10.1023/B:TRUC.0000021815.74806.f6

Renkl, A., Atkinson, R. K., and Maier, U. H. (2000). “From studying examples to solving problems: fading worked-out solution steps helps learning” in Proceeding of the 22nd Annual Conference of the Cognitive Science Society . eds. L. Gleitman and A. K. Joshi (Mahwah, NJ: Erlbaum), 393–398.

Renkl, A., Atkinson, R. K., Maier, U. H., and Staley, R. (2002). From example study to problem solving: smooth transitions help learning. J. Exp. Educ. 70, 293–315. doi: 10.1080/00220970209599510

Renkl, A., Hilbert, T., and Schworm, S. (2009). Example-based learning in heuristic domains: a cognitive load theory account. Educ. Psychol. Rev. 21, 67–78. doi: 10.1007/s10648-008-9093-4

Schworm, S., and Renkl, A. (2007). Learning argumentation skills through the use of prompts for self-explaining examples. J. Educ. Psychol. 99, 285–296. doi: 10.1037/0022-0663.99.2.285

Sirum, K., and Humburg, J. (2011). The experimental design ability test (EDAT). Bioscene 37, 8–16.

Staus, N. L., O’Connell, K., and Storksdieck, M. (2021). Addressing the ceiling effect when assessing STEM out-of-school time experiences. Front. Educ. 6:690431. doi: 10.3389/feduc.2021.690431

Sweller, J. (2006). The worked example effect and human cognition. Learn. Instr. 16, 165–169. doi: 10.1016/j.learninstruc.2006.02.005

Sweller, J., Van Merriënboer, J. J. G., and Paas, F. (1998). Cognitive architecture and instructional design. Educ. Psychol. Rev. 10, 251–295. doi: 10.1023/A:1022193728205

Thomas, A. E., and Müller, F. H. (2011). “Skalen zur motivationalen Regulation beim Lernen von Schülerinnen und Schülern. Skalen zur akademischen Selbstregulation von Schüler/innen SRQ-A [G] (überarbeitete Fassung)” in Scales of motivational regulation in student learning. Student academic self-regulation scales SRQ-A [G] (revised version). Wissenschaftliche Beiträge aus dem Institut für Unterrichts- und Schulentwicklung Nr. 5 (Klagenfurt: Alpen-Adria-Universität)

Um, E., Plass, J. L., Hayward, E. O., and Homer, B. D. (2012). Emotional design in multimedia learning. J. Educ. Psychol. 104, 485–498. doi: 10.1037/a0026609

Van Gog, T., Kester, L., and Paas, F. (2011). Effects of worked examples, example-problem, and problem- example pairs on novices’ learning. Contemp. Educ. Psychol. 36, 212–218. doi: 10.1016/j.cedpsych.2010.10.004

Van Gog, T., and Paas, G. W. C. (2006). Optimising worked example instruction: different ways to increase germane cognitive load. Learn. Instr. 16, 87–91. doi: 10.1016/j.learninstruc.2006.02.004

Van Harsel, M., Hoogerheide, V., Verkoeijen, P., and van Gog, T. (2019). Effects of different sequences of examples and problems on motivation and learning. Contemp. Educ. Psychol. 58, 260–275. doi: 10.1002/acp.3649

Wachsmuth, C. (2020). Computerbasiertes Lernen mit Aufmerksamkeitsdefizit: Unterstützung des selbstregulierten Lernens durch metakognitive prompts. (Computer-based learning with attention deficit: supporting self-regulated learning through metacognitive prompts) . Chemnitz: Dissertation Technische Universität Chemnitz.

Wahser, I. (2008). Training von naturwissenschaftlichen Arbeitsweisen zur Unterstützung experimenteller Kleingruppenarbeit im Fach Chemie (Training of scientific working methods to support experimental small group work in chemistry) . Dissertation

Walker, J., Gibson, J., and Brown, D. (2007). Selecting fluvial geomorphological methods for river management including catchment scale restoration within the environment agency of England and Wales. Int. J. River Basin Manag. 5, 131–141. doi: 10.1080/15715124.2007.9635313

Wellnitz, N., and Mayer, J. (2013). Erkenntnismethoden in der Biologie – Entwicklung und evaluation eines Kompetenzmodells. (Methods of knowledge in biology - development and evaluation of a competence model). Z. Didaktik Naturwissensch. 19, 315–345.

Willems, A. S., and Lewalter, D. (2011). “Welche Rolle spielt das motivationsrelevante Erleben von Schülern für ihr situationales Interesse im Mathematikunterricht? (What role does students’ motivational experience play in their situational interest in mathematics classrooms?). Befunde aus der SIGMA-Studie” in Erziehungswissenschaftliche Forschung – nachhaltige Bildung. Beiträge zur 5. DGfE-Sektionstagung “Empirische Bildungsforschung”/AEPF-KBBB im Frühjahr 2009 . eds. B. Schwarz, P. Nenninger, and R. S. Jäger (Landau: Verlag Empirische Pädagogik), 288–294.

Keywords: digital media, worked examples, scientific observation, motivation, cognitive load

Citation: Lechner M, Moser S, Pander J, Geist J and Lewalter D (2024) Learning scientific observation with worked examples in a digital learning environment. Front. Educ . 9:1293516. doi: 10.3389/feduc.2024.1293516

Received: 13 September 2023; Accepted: 29 February 2024; Published: 18 March 2024.

Reviewed by:

Copyright © 2024 Lechner, Moser, Pander, Geist and Lewalter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Miriam Lechner, [email protected]

Advertisement

Issue Cover

Abstract 7582: Descriptive analysis of patients with mCRPC and liver metastases receiving alpha and beta PSMA targeted radionuclide therapy (PSMA-TRT)

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Get Permissions
  • Cite Icon Cite
  • Search Site
  • Version of Record March 22 2024

Samuel Ruder , Michael Sun , Andres Ricaurte Fajardo , Jones Nauseef , Zachary Davidson , Joseph Thomas , Sandra Huicochea Castellanos , Ana Molina , Cora Sternberg , Amie Patel , Escarleth Fernandez , Sarah Yuan , Edward Fung , Vasilios Avlonitis , Elisabeth O'Dwyer , David Nanus , Joseph Osborne , Neil Bander , Scott Tagawa; Abstract 7582: Descriptive analysis of patients with mCRPC and liver metastases receiving alpha and beta PSMA targeted radionuclide therapy (PSMA-TRT). Cancer Res 15 March 2024; 84 (6_Supplement): 7582. https://doi.org/10.1158/1538-7445.AM2024-7582

Download citation file:

  • Ris (Zotero)
  • Reference Manager

Introduction: Predictors of outcomes after PSMA-TRT are still being established. Liver metastases (mets) have been associated with poor response. Mutations in genes encoding DNA damage repair (DDR) and TP53 affect radiosensitivity. Here we describe a cohort of patients with mCRPC and liver metastases treated on clinical trials of PSMA-TRT.

Methods: 39 patients with liver mets were enrolled on phase I/II PSMA-TRT studies between Jan 2006 to Apr 2022. Patients received alpha therapy (225Ac-J591), beta therapy (fractionated 177Lu-PSMA-617, single-dose and fractionated 177Lu-J591) or a combination of both (225Ac-591 and 177Lu-PSMA-I&T). All patients included in this analysis had CT imaging; patients enrolled after 2017 had PSMA-PET imaging. 15 patients also had genomic analysis completed.

Results: Median age was 69 (range 55-93), PSA 85.7 (2.45-9614). 39 (100%) bone mets, 33 (84.6%) LN, 9 (23.1%) lung. 22 (56.4%) greater than 1 ARPI, 23 (59.0%) greater thanc 1 chemo, 13 (33.3%) sip-T, 7 (17.9%) Ra-223, 4 (10.2%) prior TRT (with concurrent liver mets). Of the 19 with both CT and PSMA PET, 18 (94.7%) were identified on PSMA PET (including 8 PET only), 10 (55.6%) on CT (1 CT only, i.e. non-PSMA PET avid). Median whole body PSMA-imaging score (PSMA-IS) was 4 (range 1-4), with 7 (17.9%) 1-2 and 32 (82.1%) 3-4. 9 (23.0%) received alpha-TRT, 26 (66.7%) beta-TRT, and 4 (10.3%) combo-TRT. Somatic or germline analysis was completed in 15 (38.5%) of 39 patients. 8 (53.3%) had mutations in DNA repair pathways (3 in BRCA2, 3 in CHEK 2, 1 in FANC, 1 in MSH2). 7 (46.7%) had mutations in TP53. 31 patients (79.5%) had PSA decline, with 15 (38.5%) achieving PSA 50. 26 (66.7%) had baseline CTC measured; 19 (73.0%) had detectable CTC at baseline. Of these 19, 3 (15.8%) converted to undetectable after therapy and 2 (10.5%) converted to favorable CTC. PSA50 rate in alpha-TRT was 4 (44.4%), beta-TRT 8 (30.7%), combo-TRT 3 (75%). PSA50 in patients with PSMA-IS 1-2 was 1 (14.2%) compared to 14 (43.9%) in PSMA-IS 3-4. 3 (37.5%) of 8 patients with mutDDR achieved PSA50, compared to 3 (42.9%) with mutTP53.

Conclusions: This dataset adds to the collective literature of two subgroups of patients with mCRPC receiving TRT: those with liver disease and those with mutations in DNA repair pathways. The results of this study suggest higher rates of response in patients receiving alpha therapy, either alone or in combination with beta therapy, and in patients with high radiotracer uptake on PSMA-PET, based on PSMA-imaging score of 3 or 4. Genomic alterations in DRR proteins did not have clear implications.

Citation Format: Samuel Ruder, Michael Sun, Andres Ricaurte Fajardo, Jones Nauseef, Zachary Davidson, Joseph Thomas, Sandra Huicochea Castellanos, Ana Molina, Cora Sternberg, Amie Patel, Escarleth Fernandez, Sarah Yuan, Edward Fung, Vasilios Avlonitis, Elisabeth O'Dwyer, David Nanus, Joseph Osborne, Neil Bander, Scott Tagawa. Descriptive analysis of patients with mCRPC and liver metastases receiving alpha and beta PSMA targeted radionuclide therapy (PSMA-TRT) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 7582.

Citing articles via

Email alerts.

  • Online First
  • Collections
  • Online ISSN 1538-7445
  • Print ISSN 0008-5472

AACR Journals

  • Blood Cancer Discovery
  • Cancer Discovery
  • Cancer Epidemiology, Biomarkers & Prevention
  • Cancer Immunology Research
  • Cancer Prevention Research
  • Cancer Research
  • Cancer Research Communications
  • Clinical Cancer Research
  • Molecular Cancer Research
  • Molecular Cancer Therapeutics
  • Info for Advertisers
  • Information for Institutions/Librarians

analysis for descriptive research

  • Privacy Policy
  • Copyright © 2023 by the American Association for Cancer Research.

This Feature Is Available To Subscribers Only

Sign In or Create an Account

IMAGES

  1. Understanding Descriptive Research Methods

    analysis for descriptive research

  2. 18 Descriptive Research Examples (2024)

    analysis for descriptive research

  3. Understanding Descriptive Research Methods

    analysis for descriptive research

  4. PPT

    analysis for descriptive research

  5. What is Descriptive Research Analysis

    analysis for descriptive research

  6. What is Descriptive Analysis?- Types and Advantages

    analysis for descriptive research

VIDEO

  1. Reporting Descriptive Analysis

  2. Descriptive Research Design #researchmethodology

  3. Descriptive research design

  4. Descriptive Analysis

  5. Understanding Descriptive Statistics

  6. Purpose of Research: Descriptive Research

COMMENTS

  1. Descriptive Research

    Descriptive research methods. Descriptive research is usually defined as a type of quantitative research, though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable.. Surveys. Survey research allows you to gather large volumes of data that can be analyzed for frequencies, averages ...

  2. Descriptive Research Design

    Here are some common methods of data analysis for descriptive research: Descriptive Statistics. This method involves analyzing data to summarize and describe the key features of a sample or population. Descriptive statistics can include measures of central tendency (e.g., mean, median, mode) and measures of variability (e.g., range, standard ...

  3. PDF Descriptive analysis in education: A guide for researchers

    Box 1. Descriptive Analysis Is a Critical Component of Research Box 2. Examples of Using Descriptive Analyses to Diagnose Need and Target Intervention on the Topic of "Summer Melt" Box 3. An Example of Using Descriptive Analysis to Evaluate Plausible Causes and Generate Hypotheses Box 4.

  4. Descriptive Research: Design, Methods, Examples, and FAQs

    Descriptive research is an exploratory research method.It enables researchers to precisely and methodically describe a population, circumstance, or phenomenon.. As the name suggests, descriptive research describes the characteristics of the group, situation, or phenomenon being studied without manipulating variables or testing hypotheses.This can be reported using surveys, observational ...

  5. Descriptive Analysis: How-To, Types, Examples

    In descriptive analysis, it's also worth knowing the central (or average) event or response. Common measures of central tendency include the three averages — mean, median, and mode. As an example, consider a survey in which the height of 1,000 people is measured. In this case, the mean average would be a very helpful descriptive metric.

  6. What is Descriptive Analysis?- Types and Advantages

    Descriptive Analysis is the type of analysis of data that helps describe, show or summarize data points in a constructive way such that patterns might emerge that fulfill every condition of the data. It is one of the most important steps for conducting statistical data analysis. It gives you a conclusion of the distribution of your data, helps ...

  7. Descriptive Analytics

    Establishing Patterns and Relationships: Descriptive analytics helps in identifying patterns, trends, or relationships in the data, which can guide subsequent analysis or future research. For instance, researchers might look at the correlation between variables as a part of descriptive analytics.

  8. Descriptive analysis in education: A guide for researchers

    Descriptive analysis identifies patterns in data to answer questions about who, what, where, when, and to what extent. This guide describes how to more effectively approach, conduct, and communicate quantitative descriptive analysis. The primary audience for this guide includes members of the research community who conduct and publish both ...

  9. Descriptive Statistics

    Descriptive statistics summarize and organize characteristics of a data set. A data set is a collection of responses or observations from a sample or entire population. ... in bivariate and multivariate analysis. Research example You want to study the popularity of different leisure activities by gender. You distribute a survey. and ask ...

  10. Descriptive Research Design

    Descriptive research methods. Descriptive research is usually defined as a type of quantitative research, though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable.. Surveys. Survey research allows you to gather large volumes of data that can be analysed for frequencies, averages ...

  11. Descriptive Analysis: What It Is + Best Research Tips

    Descriptive analysis is a crucial research approach, regardless of whether the researcher wants to discover causal relationships between variables, explain population patterns, or develop new metrics for basic phenomena. When used correctly, it may significantly contribute to various descriptive and causal research investigations.

  12. PDF Essentials of Descriptive-Interpretive Qualitative Research: A Generic

    In this particular book, we present descriptive-interpretive qualitative research by Robert Elliott and Ladislav Timulak. This generic approach is the culmination of many years of method development and research by these authors, who were pioneers in introducing qualitative research to the psycho-therapy field.

  13. Descriptive Research: Characteristics, Methods + Examples

    Some distinctive characteristics of descriptive research are: Quantitative research: It is a quantitative research method that attempts to collect quantifiable information for statistical analysis of the population sample. It is a popular market research tool that allows us to collect and describe the demographic segment's nature.

  14. Qualitative and descriptive research: Data type versus data analysis

    Qualitative research collects data qualitatively, and the method of analysis is also primarily qualitative. This often involves an inductive exploration of the data to identify recurring themes, patterns, or concepts and then describing and interpreting those categories. Of course, in qualitative research, the data collected qualitatively can ...

  15. Descriptive Research Studies

    Descriptive research may identify areas in need of additional research and relationships between variables that require future study. Descriptive research is often referred to as "hypothesis generating research." Depending on the data collection method used, descriptive studies can generate rich datasets on large and diverse samples.

  16. Descriptive Data Analysis

    Performance Measurement and Management. Descriptive techniques often include constructing tables of means and quantiles, measures of dispersion such as variance or standard deviation, and cross-tabulations or "crosstabs" that can be used to examine many disparate hypotheses. Those hypotheses are often about observed differences across subgroups.

  17. Quantitative analysis: Descriptive statistics

    Numeric data collected in a research project can be analysed quantitatively using statistical tools in two different ways. Descriptive analysis refers to statistically describing, aggregating, and presenting the constructs of interest or associations between these constructs.Inferential analysis refers to the statistical testing of hypotheses (theory testing).

  18. Descriptive Research

    Descriptive research typically involves the collection of both qualitative and quantitative data through methods such as surveys, observational studies, case studies, or focus groups. 4. Data Analysis. Descriptive research data is analyzed to identify patterns, relationships, and trends within the data.

  19. Descriptive Statistics

    Descriptive statistics are fundamental in the field of data analysis and interpretation, as they provide the first step in understanding a dataset. ... Presenting Research Findings: Descriptive statistics can be used to present research findings in a clear and understandable way, often using visual aids like graphs or charts.

  20. What Is Descriptive Analytics? 5 Examples

    5 Examples of Descriptive Analytics. 1. Traffic and Engagement Reports. One example of descriptive analytics is reporting. If your organization tracks engagement in the form of social media analytics or web traffic, you're already using descriptive analytics. These reports are created by taking raw data—generated when users interact with ...

  21. Characteristics of Qualitative Descriptive Studies: A Systematic Review

    Qualitative description (QD) is a label used in qualitative research for studies which are descriptive in nature, particularly for examining health care and nursing-related phenomena (Polit & Beck, 2009, 2014).QD is a widely cited research tradition and has been identified as important and appropriate for research questions focused on discovering the who, what, and where of events or ...

  22. Qualitative Descriptive Methods in Health Science Research

    Describing the Qualitative Descriptive Approach. In two seminal articles, Sandelowski promotes the mainstream use of qualitative description (Sandelowski, 2000, 2010) as a well-developed but unacknowledged method which provides a "comprehensive summary of an event in the every day terms of those events" (Sandelowski, 2000, p. 336).Such studies are characterized by lower levels of ...

  23. What is Descriptive Research Analysis

    Descriptive research analysis relies on data analysis and asking specific people (the targets of interests) research questions. These two necessary components are broken down into four characteristics: Cross-sectional studies: The final result of this analysis will involve using other studies to reach the final result.

  24. Frontiers

    An analysis of the descriptive statistics showed that the largest differences between the groups were found ... Learning and teaching in the school science laboratory: an analysis of research, theory, and practice. In N. Lederman and S. Abel (Eds.). Handbook of research on science education, Mahwah, NJ: Lawrence Erlbaum, 393-441. Google Scholar.

  25. A Descriptive Analysis of the Servings Provided by Pre-Assembled

    A retrospective descriptive analysis was conducted to examine the number of servings provided. An average of 0.66 (SD ± 0.21) and 1.47 (SD ± 0.62) cups per day of fruit and vegetables were provided, respectively. ... Register to receive personalised research and resources by email. Sign me up. Taylor and Francis Group Facebook page. Taylor ...

  26. Abstract 7582: Descriptive analysis of patients with mCRPC and liver

    Descriptive analysis of patients with mCRPC and liver metastases receiving alpha and beta PSMA targeted radionuclide therapy (PSMA-TRT) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA.