The Russell Kirk Center

Education and the Information Revolution

Aug 22, 2010

The major ceremonies of the academic community have traditionally been the fall convocation and the spring commencement. This year Russell Kirk, a nationally recognized historian, author, educator and political theorist, played an important role in Grand Valley’s observance of both of these occasions. Kirk, a native of Michigan who resides in Mecosta, received an honorary Doctor of Letters degree at GVSC’s 1983 commencement. He recently returned to the campus to deliver a thought-provoking convocation address which has been the subject of lively discussion throughout the Grand Valley community. His convocation remarks were taken from the following text.

T he people of the United States spend annually upon higher learning more money, probably, than did all the nations of the world combined, from the foundation of the ancient universities down to the beginning of the Second World War.

In the United States, ever since the Second World War and especially during the past two decades, the lowering of standards for admission and graduation, the notorious disgrace of “grade inflation,” and the loss of order and integration in curricula, are too widely known and regretted for me to need to labor these afflictions here.

Why are this lowering of standards and this loss of intellectual coherence ruinous to higher education? Because higher learning is intended to develop, primarily, a philosophical habit of mind. Genuine higher education is not meant, really, to “create jobs” or to train technicians. Incidentally, higher education does tend to have such results, too, but only as by-products. We stand in danger of forgetting the fundamental aim in the pursuit of the incidentals.

Benefits of the College

The college is intended to confer two sorts of benefits. The first kind of benefit is the improvement of the human person, for the individual’s own sake: offering the way to some wisdom to young men and women, that there may be something beyond getting and spending in their lives.

The second kind of benefit is the preservation and advancement of society, by developing a body or class of young people who will be leaders in many walks of life: scientists, clergymen, political officials or representatives, officers, physicians, lawyers, teachers, industrialists, managers, and all the rest. The college is meant to develop their intellects, assure their competentce, and (a point often forgotten today) to help form their characters beneficially. I am not speaking of an elite, for I share T. S. Eliot’s conviction that a deliberately cultivated series of elites tends towards narrowness and arrogance. Rather, I refer to a fairly broad and numerous class of tolerably educated men and women who will leaven the lump of society, in a wide variety of ways. Most of them never will be famous, or powerful on a large scale; but they form that body of well-schooled people essential to any modern society, and especially important to a democratic society.

Now, a higher schooling that is merely technological and skill-oriented—what once would have been called a mechanical education, as opposed to a liberal education—can neither impart wisdom to the person nor supply intellectual and moral leadership to the republic. I do not object to learning a trade—far from it. But a trade is best learnt through apprenticeship, internship, on-the-job training, or technical schools. Except for the learned professions, learning a trade is ill suited to a college campus. If we convert higher education into technical training mostly, we may find ourselves living in what Irving Babbitt called “a devil’s sabbath of whirling machinery.” For if the philosophical habit of mind is developed nowhere, “the center cannot hold; mere anarchy is loosed upon the world.”

Let me descend to particulars…

Gadgets and Learning

One of the grave faults of American schooling, at every level, is the eagerness to embrace the newest gadget (mechanical or intellectual) at the expense of the tested tools of learning. Some will remember how, during the 1950’s and 1960’s, we were told that audio-visual aids would supplant the teacher for most purposes. At gigantic public expense, film-projectors, sound systems, and other impedimenta virtually were thrust upon every school. Most of this hardware soon was locked away in closets, where it reposed until obsolete. Some firms made a great deal of money from selling it.

Effective teaching still is done by effective live teachers. “Programmed learning” was another step toward the vaunted Information Revolution. By and large, programmed learning did not work well. A human being talking with other human beings, and an antiquated tool called a book, have had more satisfactory results as far as genuine development of young intellects is concerned. Television certainly worked a revolution. But does anyone still maintain that the boob-tube has improved the minds of the young? Certainly, television opened the way for an even fuller Information Revolution. The apologists for television used to tell us that their darling has moulded the minds of “the best informed generation in the history of America.” Also, it has moulded the minds of the most ignorant generation in America, if we are to judge by the much-applauded recent report of the National Commission on Excellence in Education, “A Nation at Risk.” As a witty friend of mine says, “This is the bird-brained generation.” He does not mean that young people have brains the size of birds; instead, that like birds, boys and girls flit from flower to flower, watching the flickering screen, never settling long enough to learn anything important.

For information is not knowledge, and knowledge is not wisdom.

Aye, where is the knowledge we have lost in information—not to mention the wisdom? What the college used to endeavor to impart was not miscellaneous information, a random accumulation of facts, but an integrated and ordered body of knowledge that would develop the philosophical habit of mind—from which cast of mind one might find the way to wisdom of many sorts.

Doubtless the development of computers will confer various material benefits upon us. But as far as genuine education goes, the computer and its Informational Society may amount to a blight. They seem calculated to enfeeble the individual reason and make most of us dependent upon an elite of computer programmers (at the higher level of the Informational Society, I mean); they may develop into vigorous enemies of the philosophical habit of mind.

An Overwhelming Mass of Miscellaneous Information

Now doubtless it always has been desirable for more Americans to know about affairs abroad; it is especially desirable today. But information scarcely is lacking already. Are there no newspapers, popular magazines, serious periodicals, radios, television sets, teachers? The mass of miscellaneous information thrust upon us already is overwhelming and dismaying. What we need is not more information; what we require, as a public, is the ability to discriminate and integrate that mass of information, and to reflect upon it.

For thirteen years, I was a syndicated newspaper columnist. I found it quite impossible, though I was paid for the work, to gather and integrate all the information about everything that happened everywhere. I did not even learn to “understand Africa,” though I traveled there and read many serious books and articles about that continent.

Simple “speeding up” of the deluge of information cannot be of help to us : for already information rushes upon us daily with a terrible velocity that the average man and woman, or even skilled journalist, cannot endure. How many newspapers are we to read, how many books on current affairs are we to absorb, how many lectures are we to hear?

But possibly what the evangels of the Informational Society have in mind is this: to so select and pre-digest the information that the public will receive such facts and opinions as the elite of the Informational Society think it well they should receive. Already we are subjected to a mild dose of this treatment by the pundits of television. It would be an exaggeration, and impolite, to call such arrangement and distribution of information “brainwashing.” Yet this facile delivery of allegedly accurate information may be ominous for the American democracy. Big Brother will inform us. We are four months away from 1984.

The enthusiasts for the Informational Society may be found everywhere—even, or perhaps especially, in the staff of the federal Department of Education. Members of that staff inserted belligerent praise of “computer science” in the Report of the Commission on Excellence in Education; they even made that alleged science one of their Five New Basics, commended to every school, along with English,mathematics, science, and social studies. (These latter basics do not seem particularly new to me.) Here is the Report’s paragraph on New Basic 5:

“The teaching of computer science in high school should equip graduates to: (a) understand the computer as an information, computation, and communication device; (b) use the computer in the study of the other basics and for personal and work-related purposes; and (c) understand the world of computers, electronics, and related technologies.”

There is no more reason to object to learning how to use a computer in school, or at home, than there is to object to learning how to use a typewriter in school or at home. But are we to elevate computer operation and apprehension to a level equivalent with all the genuine sciences, which are lumped together as Basic 3?

Drying up the Springs of Scientific Imagination

The development of electronic computers results from the genuine sciences of physics and mathematics. If we are to be masters of the computer, rather than its subjects, we need to understand physics and mathematics. Otherwise we are passive vessels, at best skilled operatives. And if facility with operating computers tends to be emphasized at the expense of serious study of physics and mathematics, the springs of the scientific imagination gradually may dry up. This zeal for making “computer science” compulsory for practically everybody is rather as if, when Morse invented the telegraph, every school had been urged to devote a large part of its time and funds to teaching young people to be telegraphers. Is not the computer business, and industry in general, capable of instructing its own technicians?

Nevertheless, various educational institutions already have proclaimed their fealty to Holy Computer, including at least one which has made the completion of a course in computer science a requirement for graduation. I am not aware that this institution requires all undergraduates to study physics or the higher forms of mathematics. “Relevance” is all—even when it is irrelevant to a philosophical habit of mind.

So let usdrop some grains of salt into the Informational Society stew. Young people cannot come to “understand” other societies through barrages of fact. To acquire some tolerable knowledge of Europe and Asia and Africa and the Americas, it remains necessary—more necessary than in yesteryear—to study seriously the disciplines of history, geography, politics, anthropology, and economics; also it is highly important to gain a knowledge of literatures that cannot be conveyed by electronic computers. Such integrated knowledge cannot be obtained in a brief time. But such are the limits of human understanding.

The Restoration of Learning

One thing to remember, then, in discussing what higher education should do for people in the dawning years, is that waves of technological innovation commonly carry in a mass of flotsam and jetsam. A disagreeable mass of educational flotsam and jetsam was flung upon the beaches of academe by the ideological tempests of the 1960’s and the1970’s. At college and university, we are only beginning to recover from the damage done to the philosophical habit of mind by that storm. The gentlefolk and scholars of the academy would be highly imprudent if they should assist in fresh devastation by selling gadgetry above intellectual discipline.

What the good college will essay, in the remaining years of this century and the early decades of the next, is the restoration of learning. We may hope to educate a good many knowledgeable people, and some wise ones. What we ought to discourage is a schooling that turns out young people who know the price of everything and the value of nothing : people replete with information and unable to digest it. Offer the rising generation a discipline of mind and conscience, ladies and gentlemen; a body of firm knowledge and an enlivened imagination; and if the rising generation does not bless you, at least posterity will. Do that, and we may transcend the Informational Society; we may even achieve a Tolerable Society.

Horizons (Fall 1983), pp. 1–2.

The University Bookman

  • Bookman Home
  • Departments
  • Search for:

Explore Past Articles

The University Bookman Follow

ubookman

More than Regime Change, We Need a New Cosmological Vision

Revolution and Counter Revolution

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Information: A Very Short Introduction

  • < Previous chapter
  • Next chapter >

Information: A Very Short Introduction

1 (page 3) p. 3 The Information Revolution

  • Published: February 2010
  • Cite Icon Cite
  • Permissions Icon Permissions

We are now in the midst of ‘the information revolution’. Mankind has been living in an information society since the Bronze Age, but only recently have our lives depended so much on managing the life cycle of information. History has had many metrics, based on natural cycles, religion, or society, to name a few. However, they all depend on systems which record information about the past. Science has constantly changed our view of the world through revolutions, and now we are experiencing an information revolution as we begin to inhabit the ‘infosphere’. However, action must be taken now to prevent future discrimination and inequality between the information-rich and information-poor.

Signed in as

Institutional accounts.

  • GoogleCrawler [DO NOT DELETE]
  • Google Scholar Indexing

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code

Institutional access

  • Sign in with a library card Sign in with username/password Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Sign in through your institution

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Sign in with a library card

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Subscriber Services
  • For Authors
  • Publications
  • Archaeology
  • Art & Architecture
  • Bilingual dictionaries
  • Classical studies
  • Encyclopedias
  • English Dictionaries and Thesauri
  • Language reference
  • Linguistics
  • Media studies
  • Medicine and health
  • Names studies
  • Performing arts
  • Science and technology
  • Social sciences
  • Society and culture
  • Overview Pages
  • Subject Reference
  • English Dictionaries
  • Bilingual Dictionaries

Recently viewed (0)

  • Save Search
  • Share This Facebook LinkedIn Twitter

Related Content

Related overviews, more like this.

Show all results sharing this subject:

Information Revolution

Quick reference.

The radical changes wrought by computer technology on the storage of and access to information since the mid-1980s. Information previously stored on paper and manipulated manually is increasingly held on computer networks, which allow instant retrieval from anywhere in the world and sophisticated computerized processing in ways and at speeds that have not previously been possible. Also, using the same computer networks, individuals can easily communicate with each other worldwide and share information. Three factors have driven this Information Revolution. First, information-based occupations grew in importance throughout the 20th century (for example, nearly all office work deals with information), which produced a latent demand for more efficient storage and processing systems. These were provided by the second factor: the advent of cheap computing power in the 1980s and (especially) the 1990s that followed the development of the microprocessor in the 1970s. Previously, computer technology had been so expensive that it could only be used by large organizations for special purposes; now, it was so cheap that its cost was no longer a significant issue. Also, the spread of cheap personal computers with user-friendly operating systems meant that computer use was no longer confined to the computer specialist, which enabled vastly more people to make direct and convenient use of computerized information. The third factor, which made a crucial contribution from the early 1990s, was the Internet: a global computer network already in place that could be utilized to connect information providers and information consumers anywhere in the world. The Information Revolution has already had major effects on both business and personal life. Organizations can now make information readily available to staff via corporate intranets (private networks that work in the same way as the Internet); retailing companies now generally hold less stock, relying on the instant availability of stock-control information from electronic point-of-sale terminals to allow just-in-time purchasing; many questions can be answered quickly by a search of the Internet, which can also be used to buy products and services; and people can communicate worldwide via e-mail and other Internet-based technologies. Old skills have become redundant while new ones are in demand: jobs have declined in such areas as banking and printing, but new professions have been created, for example web designer and IT user support. This has led to concerns over the potential for a growing economic and social divide between those people with the skills to take advantage of the Information Revolution and those without. There are also non-economic issues, in particular concerns over privacy and whether the large amount of personal information held in computer systems is adequately protected. The answers to these questions are currently unclear. The Information Revolution is still in its early stages and the full consequences of its opportunities and problems have yet to emerge.

From:   Information Revolution   in  A Dictionary of World History »

Subjects: History

Related content in Oxford Reference

Reference entries.

View all related items in Oxford Reference »

Search for: 'Information Revolution' in Oxford Reference »

  • Oxford University Press

PRINTED FROM OXFORD REFERENCE (www.oxfordreference.com). (c) Copyright Oxford University Press, 2023. All Rights Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single entry from a reference work in OR for personal use (for details see Privacy Policy and Legal Notice ).

date: 25 April 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [66.249.64.20|81.177.182.159]
  • 81.177.182.159

Character limit 500 /500

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

How Information Gives You Competitive Advantage

  • Michael E. Porter
  • Victor E. Millar

The information revolution is sweeping through our economy. No company can escape its effects. Dramatic reductions in the cost of obtaining, processing, and transmitting information are changing the way we do business. Most general managers know that the revolution is under way, and few dispute its importance. As more and more of their time and […]

The information revolution is sweeping through our economy. No company can escape its effects. Dramatic reductions in the cost of obtaining, processing, and transmitting information are changing the way we do business.

  • Michael E. Porter is the Bishop William Lawrence University Professor at Harvard Business School. He has served as an adviser to governments and campaigns around the world on the advancement of social policy and economic policy, including Mitt Romney’s presidential campaign. His latest paper is  The Role of Business in Society . He is an academic adviser to the Leadership Now Project.
  • VM Mr. Millar is the managing partner for practice of Arthur Andersen & Co. and is responsible for the professional practices of the firm worldwide. He has worked extensively with executives to increase their understanding of information in the management function.

Partner Center

National Academies Press: OpenBook

Information Technologies and Social Transformation (1985)

Chapter: the information age: evolution or revolution.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

The Information Age: Evolution or Revolution? MELVIN KRANZBERG Every time we pick up a newspaper or a journal or listen to the news we learn about new technological developments heralding major sociotechnical changes: "Microelectronics Revolution,'' "Postindus- tnal Society," "Computer Revolution," `'Automation Age," and so on. Since all of these involve the accumulation, manipulation, and retrieval of data by computerized electronic devices and their appli- cation to many facets of human life, it is no wonder that the headlines shout that computer developments are transforming industry and society to produce a new "Information Age." Is this transformation evolutionary or revolutionary? After all, most technologies are evolutionary in the sense that they derive from prior developments. The steam engine did not emerge full-blown out of James Watt's brain, but was based upon Thomas Newcomen's engine, which in turn rested on still earlier attempts. Similarly, Gutenberg's invention of printing derived from a whole series of previous innova- tions paper, block printing, inks, and movable type which he put together in a new way. Indeed, virtually every major technological innovation can be shown to have been the outcome of evolutionary advance, in that historians can trace the elements comprising them far back in time. Computers, the basis of the Infonnation Age, find their origins in earlier devices, such as the ancient abacus, the seventeenth-century calculators of Pascal, the work of Charles Babbage in the nineteenth 35

36 MELVIN KRANZBERG century, and Herman Hollenth's development of punched-card oper- ations for the U.S. Census in the lS90s.~ Even though such technologies evolve over a long period of time, they can have revolutionary technical and social impacts even during the process of reaching full development and application. However, history indicates that changes in individual technologies do not by themselves have revolutionary sociocultural effects. Thus the medieval improvements in power sources—the introduction of the windmill and the waterwheel on a wide scal~did not produce a "revolution" because they remained based in a small-scale agrarian society. Most people continued to live in rural villages with farming as their chief occupation; hence there were no major changes in where and how people lived and worked. Not until the eighteenth century did a whole series of technological innovations come together to produce the classical Industrial Revo- lution. Although popular opinion credits Watt's steam engine with starting industrialization, many of its elements, such as power-driven machinery, the factory organization of work, and specialization of labor, had already begun in the textile industry long before Watt.2 Concomitant changes were occurring in mining and metallurgy, and transportation was being improved by the development of canals and roadways. Furthermore, the foundation of a national banking system and extension of joint-stock companies helped provide the capital and financial requirements for technical investment and commercial growth. The point is that a single major technical advance does not in itself constitute a technological revolution. There must be other and related technical advances plus major changes occurring in the political- economic-social-cultural context of the times. Nevertheless, scholars delight in labeling an era by its most advanced technology, even when that technology is at first very limited in its application. For example, even though the "Age of Steam" is said to have begun with James Watt, for almost a century after Watt's engine more aggregate power was generated in Britain by waterpower than by steam; and it took nearly 100 years after Fulton's creation ofthe "Steam- boat Era" before sailing vessels disappeared from oceanic commerce. Similarly, the Wright Brothers at the beginning of this century began the "Era of Flight," but then it was postponed for another 25 years until Lindberghts famous solo flight from New York to Paris; yet the "Aviation Age" really did not take off until after World War II. In similar fashion, the "Space Age" was said to have dawned with Sputnik, but more than a quarter of a century has elapsed since then,

THE INFORMATION ACE: EVOLUTION OR EVOLUTION? 37 and we have scarcely begun to exploit space. That is indeed a long day's dawning! Obviously, a single technological feat, no matter how much attention is showered upon it, does not by itself constitute a complete techno- logical transformation. Indeed, one of the characteristics of a true technological revolution is that a great many innovations take place at about the same time. Their coming together creates a synergistic, indeed, explosive, impact upon the production of goods and services. But technology does not occur in a vacuum. Instead, it takes place in a social matrix and interacts with society. Thus, despite the evolutionary nature of its individual technical components, the British Industrial Revolution marked a truly revolutionary transformation of society because it changed where and how people worked, lived, thought, played, and prayed. For millennia, agriculture had been the chief source of production. The home-and-hearth was the center of work, education, social relationships, recreation, and, indeed, all life. The Industrial Revolution changed all that. With the Industrial Revolution the factory became the workplace, and the city became the dwelling place. Family relationships changed as the father left home each day to earn wages in a factory while the mother stayed home with the children; other new social patterns emerged in the crowded cities, while some traditional institutions, such as the church, saw their hold on people's lives weakened in the urban environment. Technological and societal changes interacted, overturning old patterns of living, thinking, and working, and creating new institutional systems and cultural values. Using the classical Industrial Revolution of the eighteenth and nineteenth centuries as our criterion, we learn that an industrial revolution consists of two chief elements: (1) a series of fundamental technical changes in the production and distribution of goods accom- panied by sometimes caused by, sometimes reflecting, but in any event, interconnected with - 2) a series of social and cultural changes of the first magnitude. Both elements must be present; a series of technological changes alone would not constitute an industrial revo- lution, nor would sociocultural changes without concomitant techno- logical developments produce a new industrial era.3 To see if the much-heralded, incoming Information Age is truly a revolutionary phenomenon, let us analyze both the technological and sociocultural changes in the classical Industrial Revolution and see if parallel transformations are occu~nog today.

38 MELVIN KRANZBERG THE CLASSICAL INDUSTRIAL REVOLUTION Looking at the main technical features of the classical Industrial Revolution, we find: . . the use of new basic matenals, chiefly iron and steel; new energy sources, deriving from new prime movers and fuels, such as coal and the steam engine, and, later, electncity, petroleum, and the internal-combustion engine; mechanical inventions, such as the spinning jenny, the power loom, and machine tools, which increased production with a smaller expenditure of human energy; the centralized organization of work in the factory system, which entailed the further division of labor and specialization of function, and these, together with improved machines, making possible interchangeable parts and mass prodllction;4 the quickening of transportation and communication through the steamship, the steam locomotive, the automobile, and eventually the airplane; and in communications, the telegraph, telephone, and radio; and · the development of a science of technology.5 In the nonindustrial technological sphere, agricultural improvements embodying many of the same technical changes made possible the provision of food for a larger population. All these technological developments involved larger use of natural resources, increased efficiency, and the low-cost, mass production and distribution of food, manufactured goods, and accompanying services.6 Not so incidentally, all these technical advances also involved information. After all, technology is a form of knowledge—knowledge of how to make and do things—which is why we sometimes refer to it as "know-how.'' Technology implies hands and minds working together to produce more efficient machines, processes? products, and services. All of these require the application of new and better information or at least the bringing together of old items of information in a new and different way. Thus, the industrial transformation of the eighteenth and nineteenth centuries was based upon the application of new and better information to improve traditional methods and ma- chines and, in the process, to create new products and services. And their synergistic interaction accelerated the pace of change. While political revolutions occur rather quickly—or at least can sometimes be assigned definite dates sociocultural revolutions, in- volving dee~seated changes in the ways in which people work, think, and live, require somewhat more time for their ejects to manifest themselves. Nevertheless, they too are revolutionary in their impact. We can see that in the nontechnical elements the economic-social-

THE INFO~ATIOA AGE: EVOL=lON OR EVOLUTION? 39 political-cultural transformations that accompanied and became part of the classical Industrial Revolution: · the decline of land as the chief source of wealth in the face of the immense wealth created by industrial production; · political changes reflecting this shift in economic power, as well as new state policies corresponding to the needs of an industrialized, rather than . . . almanac, society; and · sweeping demographic and social changes, including the growth of cities, the development of working-class movements (indeed, the birth of a whole new social class, the urban factory proletariat), and the emergence of new patterns of authority within the family and at work.7 There were other broad cultural transformations. Workers were forced to acquire new and distinctive skills, and their relation to their work shifted; instead of being craftsmen working with hand tools, workers became machine operators, subject to factory discipline. Also, there were major psychological changes in people's confidence in their power over nature, and, of course, in hedonistic satisfaction. For industrialization made possible a torrent of material goods, which ultimately brought about a higher standard of living. Advances in agriculture, combined withy progress in medical knowledge and public health measures, meant that hunger began to disappear as a major threat in the industrially advanced nations. People lived longer and better, In terms of material goods. This was indeed a revolution, because it transformed individual lives and society. And it was an Industrial Revolution because the devel- opment of industrial technology provided the basis for the sociocultural changes. A CURRENT TECHNOLOGICAL REVOLUTION? Are the technological and the sociocultural changes occumog in relation to today's advances in computers of sufficient magnitude to hail ours as a revolutionary '`Information Age?" Certainly the technical foundation has been built, including a change in basic materials.8 Let us remember that the introduction of new technologies does not always mean the complete demise of older technologies, especially in the case of materials. After all, wood continued to be a major material source even when the Age of Steel developed. While today's improvements in materials composites, plastics, synthetic fibers, sophisticated ceramics, and the introduction of new alloys and lighter metals not mean that iron and steel are outmoded any more than the coming of the Age of Steel meant that

40 MELVIN KRANZB~RG wood ceased being used, these do represent a transformation in and an augmentation of materials resources affecting many other technical changes. Furthermore, the development of these new materials is roughly concomitant with the emergence of computer-aided design and manufacture. There is a synergy between technological developments as new materials find use in improving the operating effectiveness of the computers used to control manufacturing of the materials and manufacturing processes that work with the new materials. In terms of energy, with the exception of hydroelectricity, the nineteenth century brought almost total reliance on fossil fuels. Within our own times, the fear that finite fossil fuels will eventually be exhausted has been somewhat alleviated by the possibility of almost limitless energy through exploitation of the power within the atom although certain problems remain associated therewith. Also, greater emphasis is being placed upon conservation, synthetic fuels, renewable sources of energy, and greater and more efficient use of solar power. So although recurrent "energy crises" might come about through political and economic forces, we possess the requisite technical knowledge and potential to produce an abundance of energy in different foes. This represents a truly revolutionary technological advance over the fossil fuel era. However, current changes in production mechanisms follow a somewhat different, yet nevertheless revolutionary, pattern than those of the past. The Industrial Revolution introduced power machinery and centralized production by multitudes of factory workers, and the early twentieth century further rationalized this process with Henry Ford's moving assembly line and Frederick W. Taylor's Scientific Management. But nowadays, computerized information devices form the heart rather, the eyes, hands, and mind the machine and allow for completely automated machinery, robots. Instead of a machine operator, the human worker becomes a machine supervisor, overseeing a multitude of dials while the robotized machine the steel- collar worker~oes the actual work and replaces many blue-collar workers. Robots can perform dangerous operations, relieving humans from tasks that pose a threat to health and safety. They can also perform the monotonous and routine tasks which, some people claim, had made factory workers into machine s.9 The older mechanical devices had taken the burden off man's back; computerized devices also take the burden off man's mind. In transportation too, information devices play a major role. So- phisticated jet engines—highly dependent upon electronic control and monitoring -have enabled airplanes to grow larger and speedier,

THE INFORMATION AGE: EVOLUTION OR MVOLUTION? 41 replacing long-haul railroad and steamship passenger transportation. Also, we have completed the first voyages of exploration and are beginning to utilize space in new ways. These aerospace developments are linked with the microminiaturization of computerized information devices and are, indeed, dependent upon them. Still another example of the ubiquity of these revolutionary information devices is their application to the workings of automobiles and trucks performing very earthy tasks. Communications too are being transformed, with satellite transmis- sion of instantaneous information from all parts of the world. But that is only the most spectacular demonstration of how communication expertise has increased apace. Indeed, revolutionary advances in the flow, storage, manipulation, and retrieval of intonation, resulting from the improvements in computers, rightly entitle the future to be known as the Information Age. These contemporary major technical changes in materials, fuels and prime movers, machinery, the organization of work, transportation, and communication all involve more knowledge and more informa- tion. Our industrial and agricultural technologies are increasingly reliant upon the newfound and enlarged technical capacity given us by computerized information devices. As long as computers relied on vacuum tubes and were bulky, balky, and expensive, they had only a minor impact on industrial processes and structure. However, with the invention of transistors and their refinement into today's microchips, computers became omnipresent; their power was greatly multiplied, and they found many applications beyond computational number-crunching. It is this application of computerized infonnation to all facets of life and technology that makes it the centerpiece of the new technological revolution.~° The computer has repercussions far beyond the field of inflation and computer science narrowly conceived. Civil, mechanical, textile, metallurgical, chemical, ceramic, and, of course, electrical engineering also make full use of our new informational capacity and expertise. The old slide rule hanging from the belt of the engineering student has given way to the pocket computer. Increasingly at every engineering institution in the country, the students have access to desk computers wired into larger computer systems. Indeed, computer literacy is no longer a monopoly of a small group of technical experts; instead it Is being taught at the elementary school level, and it is fast becoming a necessary adjunct to liberal arts education, with personal computers becoming a ubiquitous item in educated households. Just as the old Industrial Revolution transformed agriculture as well

42 MELVIN KRA:JZBERC as industry, so today there have been revolutionary improvements in agricultural production. Less than 3 percent of the American population now lives on farms, and one American farm worker now produces enough food to feed 84 people. This is because agriculture itself has become thoroughly industrialized in methods and scale of production; like industry, it is being computerized in the breeding and feeding of livestock and poultry and in the growing of crops. Furthermore, the development of genetic technology to improve varieties of vegetables, fruit, and grain, to say nothing of livestock, rests upon biotechnological advances, which in turn rely upon enhanced computer capabilities, as do new chemical fertilizers and pesticides. Agricultural technology is thus one of the chief beneficiaries of and contributors to the new Information Age. The R&D laboratory, which grew out of the German chemical industry in the latter part of the nineteenth century, helped create a science of technology engineering science and that is reflected in the education and practices of today's engineers.'2 Research and development, which has become characteristic of all technologically advanced industry, has, of course, been enhanced by our heightened informational capabilities. As a result our scientific/technical knowledge increases apace. In beef, the Inflation Age has indeed revolutionized the technical elements of industrial society. But does it have similar revolutionary implications for nontechnical institutions, values, and society as a whole? A CURRENT SOCIETAL REVOLUTION? Let us look at some of the nontechnical changes that are occurring, partly as a result of the technological changes but also causing the advance of technology because of the synergistic relationship between technology and society. We can see that revolutionary changes are occurring in the pattern of industrial society, just as it marked a vast transformation from the preceding agrarian society. Certainly, formidable economic changes are taking place which depart greatly from nineteenth-century industrial concentration. A1- though financial concentration is now occurIing on an unprecedented scale, the economics and production technology of the older Industrial Revolution, which favored the consolidation of production, are now giving way to decentralized facilities and on an international scale. Henry Ford's River Rouge plant represented the peak of the older development: raw materials went in one end, and finished automobiles

THE INFORMATION AGE: EVOLUTION OR EVOLUTION? 43 came out the other end. It was a marvel for its time, and people came from all over the world to see the wonders of "Fordismus." But no one ever built another River Rouge; instead, it was discovered to be more efficient and economical to disperse production facilities. Today's greater reliance upon more sophisticated materials and technologies reinforces the tendency toward dispersion with, of course, profound impact upon the former centers of Amenca's smokestack industries. Similarly, when the first electronic computers were introduced some decades ago, their complexity, size, and expense seemed to dictate that the computerized information would perforce be concentrated and hence be susceptible to control by relatively few individuals. Indeed, this appeared to lend substance to George Orwell's vision of 1984 when all information and hence all thought would be controlled by "Big Brother.'' However, the introduction of the transistor and the development of the microchip allowed for the miniaturization of computing devices, so that today's small, hand-held computer can rival the past giants in information capacity and activity. As the young hackers at CalTech showed when they took over control of the scoreboard at the 1983 Rose Bowl game, the problem is no longer that Big Brother is watching you, but that "Little Brother" is messing up his program. As a result, while the dispersion of information capabilities makes impossible the centralized control of information and the power implied therein, new problems regarding the secrecy of data, the patentability of software, and a whole host of new socio-legal problems confront us. We are still engaged in the process of discovering these new problems, and seeing if the old legal maxims still apply or whether we must work out new legal mechanisms to ensure a proper balance between private rights and the needs of the public. Just as microcomputers make possible the diffusion as well as the centralization of inflation control, so industrialization, which had begun first on a regional, then on a national basis, is today being internationalized. Advancing technologies have made feasible the creation of new production centers, having different resource advan- tages, throughout the world. Partly this is due to the geographical dispersion of natural resources; today's sophisticated technology fre- quently requires exotic materials not available in the United States, so that we are no longer a self-sufficient nation producing all we need for our own uses and exporting to others. We even find it practical to import relatively commonplace energy supplies such as oil. Another resource advantage is lower labor costs, especially since some advanced manufacturing techniques, including those of assembling electronic

44 MELVIN KRANZB~RG devices themselves, oftentimes require only low skill levels on the part of production-line workers. The result is an internationalization of production of revolutionary dimensions, the implications of which are still not clearly discerned. However, it has led to a debate on "industnal policy" dealing with new mechanisms in order to provide training and gainful employment to those thrown out of work by automated manufacturing processes or by the transfer of production abroad. ~3 Yet, while employment in traditional industries declines, the statistics on the total number of employed people in the United States continue to mount. For, while computerized production technology allows us to produce a cascade of material goods with fewer workers, there has been an enlargement of the service sector of the economy. As a result, for the past 30 years more people have been employed in the service trades than in factory production, and the service sector continues to grow. One reason is the enlargement of administrative and clerical activi- ties, many of which derive from the heightened productive capability offered by automated devices and the consequent enhancement of service activities. Information automation in the office is proceeding apace,~4 and we histonans, while having 20/20 hindsight, do not possess 20/20 foresight about its social impact. Other writers, however, apparently possess a clearer vision of the future. For example, Alvin Toffler points out that computers will enable information workers to do their work at home, being tied in with central computers at the office.'5 Yes, it is indeed possible for more people to work at home. But the fact is that, with very few exceptions in certain occupations, such as editing and writing and the piece-rate processing of insurance forms and the like, that is simply not happening on a wide scale. The reason is that, as the ancient philosophers pointed out, man is a social and political animal. People like to congregate together; they derive intellectual stimulus and social satisfaction from personal contacts. The workplace is not only a spot for making a living but is also the site of the social interchange that is apparently a hallmark of our human species. 16 SO, just because computers might offer us certain capabilities, this does not mean that we would want to take advantage of them, nor does it mean that they would necessarily be advantageous for the social interchange that, in the vast majority of cases, is essential for individual fulfillment. Besides, Toffler neglects the fact that new technologies do not im- mediately and completely replace older forms. Instead, as we can see from the example of the classical Industrial Revolution, old technologies

THE INFORMATION AGE: EVOLUTION OR EVOLUTION? 45 do not immediately die, nor do they quickly fade away. Instead, the new technologies are superimposed upon them and in many cases are used to augment the older capabilities. My own guess is that we will be in the midst of the "Second-and- a-Half Wave" for a long time before we reach Toffler's "Third Wave," by which time the futurist scholars will already be talking about a "Fourth Wave." Nevertheless, we can already foresee some possible changes in political and economic power. The old Industrial Revolution shifted political and economic power from the landed nobility, whose own- ership of the land was the key to power and wealth in an almost totally agrarian society, to the industrialists. In England the new factory owners allied themselves with the old landed nobility to control the political apparatus. Yet at the same time the factory system, by concentrating workers, enabled them to organize and obtain consid- erable economic clout, not as individuals, but as a group. Then the enfranchisement of the workers in the industrially advanced states gave them a share in political power. In brief, industrialization carried with it political and social democratization and the Information Age, by facilitating widespread communication, might conceivably fortify democratic political control in the advanced industrial nations. Although we cannot be sure of that, we can be certain that governments will continue to be involved in economic policy and hence in technological activities. The nineteenth-century myth of laissez-faire blinded us to the fact that governments did in reality play a major role in developing the industrial economy: through tariffs to protect infant industries and by building or financing roads, bridges, and other elements of the transportation network and infrastructure. Indeed, the needs of a coordinated transportation system led not only to the adoption of a standard gauge for railroads but also to standard time zones. Furthermore, the increasing complexity of technology made governments encourage the development of measurement stan- dards, such as for screen threads, and then safety standards. Today's sophisticated information technology has required further government action, often on an international scale, to assign radio frequencies and thereby allow for a freer flow of communications. In addition, the widespread use of more powerful chemicals and the fears of water and atmospheric pollution require governmental policing of safety standards in many industries. Added to the technological need for governmental action is a growing public awareness of technology's importance to society, now and in the future, and hence the desire for some measure of public control.

46 MELVIN K~ZBERG Partly this is an outgrowth of a rising level of education, itself made possible through previous technological advance. As the Industrial Revolution began producing enough goods so that young children no longer had to be in the work force, they could be sent to school. Besides, the increasingly complex nature of technological devices required an educated work force. As a result, we can trace the democratization of education throughout the nineteenth and twentieth centuries in the industrially advanced nations as a function of technological growth and complexity. At first elementary education became compulsory, then secondary education, and in the twentieth century America pledged itself to give equal access to higher education to all its citizens (sometimes irrespective of their ability to take advantage of it). The new Information Age requires even more complex and sophis- ticated technology, so there is need for a still higher degree of specialized technical skills including social skills as well as manipu- lative ones. Educational responses to the needs of the Information Age are already being discussed and fought over throughout the educational establishment including, and perhaps especially, among . . ~ engineering educators. Still another revolutionary social change has been abetted by the new Information Age: the entrance of women into the work force in unparalleled numbers. Before the onset of industrialization, women worked alongside the menfolk in the fields and in the home handcraft production of the times. With the rise of the factory system and its regimen of disciplined work and hours, men became the breadwinners, while the women remained at home and were responsible for home- making and child rearing. However, machine technology has advanced to the point that brute strength is no longer a special asset, so women no longer labor under any physical disability. Machines do not know or care whether the hands that guide them are those of a man or a woman—or, for that matter, whether they are white, black, blue, purple, or green. As a result, advancing technology means that racial and gender distinctions scarcely matter in the actual production process- although, for social and cultural reasons such distinctions unfortunately persist in many parts of the world. Women possess the physical stamina, intellectual qualities, and moral virtues that make them the equals of men in an Information Society where burdensome physical work has been taken over by machines. Hence, we are in the midst of a social revolution some call it a sexual revolution that is closely linked with the technical

THE INFO~ATION AGE: EVOLUTION OR EVOLUTION? 47 advances which have given women technical equality with men, even though they may not yet have acquired the social and political power that goes with their technical equality, to say nothing of wage equality. Office automation will not only affect the clerical work that was the domain of women for almost the entire past century. Rather, it will extend to all aspects of production and distribution, since it allows for close monitoring of production processes as well as clerical tasks of billing and the like. Furthermore, it can give top managers fingertip access to information formerly supplied them by the middle managerial group. Here again, we cannot foretell with exactitude what will happen, but there will undoubtedly be further rationalization in the office procedures inherited from an earlier age, while the information user in the office will have more direct contact with the production process itself. What is equally interesting to social historians and cultural anthro- pologists is that many of the revolutionary information devices will be incorporated into the mechanisms of our daily lives without our being aware of them. Already microchips are being used in the thermostats for our home heating and air conditioning systems and in the ignition and carburetion systems of our automobiles. But we will still set our thermostat at 70°, without awareness that the microchip is increasing the energy efficiency of our heating and air conditioning systems; and we will step on the gas or on the brakes without realizing that the microchip enables us to achieve better control of the automobile. Of much greater significance than simply catering to our creature comforts are those major social changes occurring as an outgrowth of advancing information technology which will have a powerful effect upon our country's and the world's future. Among the most important are demographic changes resulting from public health, medical, and nutritional advances deriving from sophisticated computerized research in health technologies. As a result, people are living longer and this is already changing the character of American society. But there is a reverse side to this demographic coin, namely, rapidly exploding populations in the developing nations, where more than half the people are under 15 years of age. As a result, there are demands for technological development to meet the material needs of the world's growing population. At the same time there are apparently conflicting demands that this be done without plundering the earth of its resources or damaging the environment. In other words, the Information Age must stimulate technological growth to meet these demands and do so by new kinds of technical applications that will maintain the produc- tivity and salubrity of our planet for future generations.

48 MELVIN K~ZBERG Finally, we come to the psychological changes, both social and individual, effected by technological changes. Until the Industrial Revolution people had always been fearful that the vagaries of nature would deprive them of life's necessities. With the plethora of material goods and foods made available through the technological advances of the nineteenth century, people were able to keep hunger at bay, and indeed overcome many of the hardships inflicted by nature through centralized heating and air conditioning systems, electrical lighting, and the like. Not surprisingly, the world's fairs of the past century emphasized the great accomplishments of science and technology. The notion that human technical abilities would enable us to accomplish anything we attempted was given further credence some 15 years ago when man first set foot on the moon. Here was the culmination of the Scientific Revolution of the seventeenth century and the Industrial Revolution of the eighteenth and nineteenth centuries, the actual fulfillment of one of man's most ancient myths and dreams. It is no wonder that we could be accused of the old Greek sin of hubns, inordinate pride. Paradoxically, however, at almost the very same time, we began discovering that many of our previous technological triumphs were despoiling the environment and that our military technology posed a threat to the continuation of life on our planet. As a result, the new Information Age has brought with it a somewhat more equivocal view of the human relationship to nature. Instead of man's being the master of nature, it is now realized that man is a part of nature and that our future depends upon a fuller recognition of both nature's and humanity's capabilities and limitations. But, that does not necessarily mean that doomsday is forthcoming, nor need it deprive us of hope. Unlike earlier ages when human technical capacities were prescribed by the availability of certain natural resources, limited in the forms of energy that might be applied, and constrained to do and to make things in the same way as their ancestors had done, our new technology provides us with many different ways of attacking problems. We now have many and growing options in regard to the materials that we wish to employ, the energy sources that we intend to utilize, and the ways in which we go about producing and distributing food, goods, and services. Because the scientific technology of the incoming Infonnation Age offers us manifold choices, we can make decisions about the future course of society with due concern for conservation of natural resources, the preservation of the environment, and the well-being of our fellowman now and in the future.

THE INFORMATION ACE: EVOLUTIO ~ OR REVOLUTION TECHNOLOGY AND CULTURAL LAG 49 However, just because we have the ability to do new and wonderful things with our technology does not necessarily mean that we will actually do so. Many years ago the great sociologist William Fielding Ogburn postulated the concept of "cultural lag" in terms of human response to technical capabilities. ]7 He pointed out that the technologies developed in the preceding century gave mankind the opportunity to bring about a new and better social system, allowing the vast quantity of material goods being turned out by an advancing technology to redound to the benefit to all of mankind, rather than being confined to a narrow few. However, he also stated that cultural systems and human institutions governmental, legal, and the like tend to lag in responding to new opportunities offered by these technical innovations. Lewis Mumford's analysis, some 50 years ago, of the relations between technology and culture seemed to reinforce Ogburn's-thesis.'8 He claimed that the latest technical innovations were still being employed to further the aims and goals of the earlier industrial transformation based upon the exploitation of nature and of human beings. In other words, while our technology might enable us to make a better world for all, it was being employed in the service of institutions and values belonging to an older and more selfish age, one that considered neither humanity nor the natural world. The analyses of both Ogburn and Mumford were provocative when initially stated, but they appear simplistic in light of what actually happened. True, our new technology gives us capabilities to do many wonderful things, but we often continue to employ them in the service of institutions and values belonging to an older age. Mumford hoped our bright new technologies would point the way to a brave new world founded upon social justice and a concern for nature. Ogburn too felt that technology could better humanity's lot, and he deplored the "cultural lag', that prevented it from doing so. Both men implied that technology could do wonderful things for mankind, but things went wrong when we did not allow it to do so. True, but what they forgot is that technology is a quintessential human activity, so it bears the contradictions the "goods" and "bade" to be found in all complex human activities. It is designed for human use, but that means it is also subject to human misuse and abuse. If technology were the sole determinant of human actions, our current world might be a much better and certainly a di~erent- place. Here is an example of how an advance made possible by technology-

so MELVIN K~ZBERG international goodwill through better communications and more contact among different peoples throughout the world bogs down under the "cultural lag" afforded by nontechnical factors that take precedence over technical capabilities. Electronic messages can flow across the globe in a fraction of a second, irrespective of the political boundaries; hence the technical element of modern communication is indifferent to national boundaries. Similarly, there are no technical barriers to prevent airplanes from transcending national borders. In other words, modern communication and transportation have made nationalism technologically obsolete; however, any glance at the headlines con- vinces us that while nationalism might be technically obsolete, it still remains one of the most powerful forces affecting the future of mankind. EVOLUTION AND REVOLUTION Acknowledgment of this and similar facts has led me to reformulate the concepts of my predecessors who pioneered in analyzing the interactions between technical and sociocultural elements and has led me to formulate "Kranzberg's First Law." Kranzberg's First Law reads as follows: Technology is neither good nor bad, nor is it neutral. By that I mean that technology's interactions with both the social and cultural milieus sometimes lead to developments that are far removed from the original goals of the technical elements themselves. For example, Henry Ford thought of his motorcar as a means to cheapen transportation and make personalized transport available to the masses. It did that of course, but it also did much more than that, transforming where and how we work, play, live, shop, eat, sleep, and for those of you who remember rumble seats—even where we made love. In accordance with Kranzberg's First Law, the Information Age will have similar and unanticipated impacts, as the computer goes far beyond the task of number-crunching and instantaneous communica- tion of data. The variety of functions that computers serve suggests that their consequences will be mixed, unevenly distributed, and diffused, assimilated, and modified at uneven rates. Hence, we still cannot foresee exactly what some of the consequences will be, any more than the prophets at the turn of this century could foretell that the automobile would lead to the suburbanization of American society, provide the prototype for the mass production of all kinds of material goods, do away with the old distinction between city and country dweller, and, with its related industries, help produce the richest society in the world's history.

THE INFORMATION AGE: EVOLUTION OR REVOLUTION? ~1 Furthermore, as a corollary to Kranzberg~s First Law, the same technology can have quite different results when introduced into a different cultural setting. Thus, some technologies developed in ad- vanced industrial countries have quite different effects when introduced into some developing nations. Because technology functions in a sociocultural matrix and depends upon an infrastructure that includes the educational level of the population, its political and economic institutions, and its value system (including religious beliefs), it can produce markedly different results when it interacts with a culture that differs from our Western industrial society. The point I am trying to make is that this new Information Age presents mankind with many different possibilities. But because people differ historically in their cultural and social institutions throughout the world, the new technology can have quite different results when applied in differing sociocultural settings. Besides, the technology itself is still evolving, and hence might interact with our values, institutions, and attitudes along quite different lines than expected. Even so, the historical record gives us some cause for optimism. The technical advances of the Information Age, if they follow the pattern of previous technical changes, could provide us with more goods and services, increase material well-being, and help do away with poverty and misery throughout the globe. And by giving us greater knowledge of the human, social, and environmental conse- quences of our technical options through the new informational tools available for technology assessment and impact analysis, the Infor- mation Age might help us avoid catastrophic assaults upon nature and upon our fellow human beings. For computer technology along with its associated cluster of increasingly sophisticated analytic software, simulation models, and data bases- permits more complex analyses than have been previously possible in the social sciences. Indeed, the more information people have about nature, technology, and society, the more it might not only enable them to improve their living standards but also to do away with hatred and fanaticism although we cannot be sure of that. One thing we do know. Despite the many defects we can find in highly industrialized societies, including our own, the fact is that the most technologically advanced nations are the ones that have aban- doned cruel and unusual punishments; have provided social welfare and medical services for all segments of society; have allowed for the greatest measure of racial, religious, and sexual equality; and have, in large measure, provided for freedom and a humane life for all. The Information Age promises to carry those hopes for the good

52 MELVIN KRANZBERG life even further. While it might be evolutionary, in the sense that all the changes and benefits will not appear overnight, it will be revolu- tionary in its ejects upon our society. NOTES 1. Although it was written before some recent, major developments, Jeremy Bernstein, The Analytical Engine: Computers—Past, Present, and Future (New York: Random House, 1964) provides a good popular account of computer history. See also Nancy Stern and Robert Stern, Computers in Society (Englewood Cliffs, N.J.: Prentice Hall, 1983). The Annals of the History of Computing, published by the American Federation of Information Processing Societies, contains articles about the recent as well as the "ancient history" of computers. 2. Terry S. Reynolds, "Medieval Roots of the Industrial Revolution," Scientific American, Vol. 251, No. 1 (July 1984):122-30. 3. Melvin Kranzberg, "Prerequisites for Industrialization," in Kranzberg and Carol W. Pursell, Technology in Western Civilization, 2 vols. (New York: Oxford University Press, 1967), Vol. 1, Chap. 13. 4. Although Britain was the birthplace of the Industrial Revolution, these developments were carried further in the "American System of Manufactures." See Otto Mayr and Robert C. Post, eds., Yankee Enterprise: The Rise of the American System of Manufactures (Washington, D.C.: Smithsonian Press, 1981); and David A. Houn- shell, From the American System to Mass Production, 1800-1932: The Development of Manufacturing Technology in the United States (Baltimore: Johns Hopkins University Press, 1984). 5. A major article on this topic is Edwin T. Layton, "Mirror-Image Twins: The Communities of Science and Technology in l9th-Century America," Technology and Culture, Vol. 12 (Oct. 1971):562-80. 6. Standard accounts of the Industrial Revolution include David Landes, The Unbound Promotheus: Technical Change and Industrial Development in Western Europe from 1750 to the Present (London: Cambridge University Press, 1969); and T. S. Ashton, The Industrial Revolution, 1760-1970 (Oxford: Oxford University Press, 1943). 7. See E. P. Thompson, The Making of the English Working Class (New York: Random House Pantheon Books, 1963); and Raymond Williams, The Long Revo- lution (New York: Columbia University Press, 1961). 8. Melvin Kranzberg and Cyril Stanley Smith, "Matenals in History and Society," Materials Science and Engineering, Vol. 37, No. 1 (Jan. 1979):1-39; National Academy of Engineenug, Cutting Edge Technologies (Washington, D C.: National Academy Press, 1983), part III; Philip H. Abelson, "Matenals Science and Engineering," Science, Vol. 225, No. 4675 (Nov. 9, 1984):613. 9. Larry Hirschhorn? Beyond Modernization: Work and Technology in a Posti~zdustrial Age (Cambridge, Mass.: MIT Press, 1984). 10. See Tom Forester, ea., The Microelectronics Revolution: The Complete Guide to the New Technology and Its Impact on Society (Cambndge, Mass.: MIT Press, 1981). 11. Charles J. Arntzen, "Biotechnology and Agricultural Research for Crop Improve- ment," NAE, Cutting Edge Technologies, pp. 52-61. 12. Melvin Kranzberg, "The Wedding of Science and Technology: A Very Modern Marriage,~' in John Nicholas Burnett, ea., Technology and Science: Important

TlIE IN-FO~ATION AGE: EVOLUTION OR EVOLUTION? 53 Distinctions for Liberal Arts Colleges (Davidson, N.C.: Davidson College, 1984), pp. 27-37. 13. A good summation of the issues involved is provided in Bruce Babbitt, "The States and the Reindustnalization of Amenca," Issues in Science and Technology, Vol. 1, No. 1 (Fall 1984):84-93. Works featured in the debate include Lester C. Thurow, The Zero-Sum Society: Distribution and the Possibilities for Economic Change (New York: Basic Books, 1980); Bennett Harrison and Barry Bluestone, The Deindustnalization of America: Plant Closings, Community Abandonment, and the Dismantling of Basic Industry (New York: Basic Books, 1982); and Roben B. Reich, The Next American Frontier (New York: Times Books, 1983). 14. J. David Roessner et al., Impact of Ounce Automation or Office Workers, 4 vole., U.S. Department of Labor R&E Grant/Contract No. 21-13-82-13 (Atlanta: Georgia Tech Research Institute, 1983); Vincent E. Giuliano, "The Mechanization of Office Work," Scientific American, Vol. 247, No. 3 (Sept. 1982):148 64. 15. Alvin Toffler, The Third Wave (New York: Morrow, 1980). Similar optimism about the future role of information technology is to be found in John Diebold, Making the Future Work: Unleashing Our Powers of innovation for the Decades Ahead (New York: Simon and Schuster, 1984). 16. Sherry Turkle, The Second Self: Computers and the Human Spirit (New York: Simon and Schuster, 1984) provides an interesting discussion of this point. 17. William Fielding Ogburn, On Culture and Social Change: Selected Papers, edited by Otis Dudley Duncan (Chicago: University of Chicago Press, 1964). 18. Lewis Mumford, Technics and Civilization (New York: Harcourt, Brace and World, 1934). Comments GUNNAR HAMBRAEUS Chairman Royal Swedish Academy of Engineering Sciences It is my film conviction that we are only at the beginning of a tremendous development which, in its eject on the individual and on society, will be more far-reaching than anything that we have witnessed until now. The following three facts support my belief. First, we cannot yet discern any slackening of the pace in hardware development, as illustrated in Or. Mayo's paper. This pace is in speed of operations, storage capacity, and reduction in pnce. Possibly we have not yet passed the point of inflection on the traditional growth curve. Second, we still only utilize a small fraction of the capabilities of our hardware. The reason is, of course, the lag in software production and systems architecture. Ultimately software improvements will increase the productivity of present existing computers at least 10-fold. The combined effects of machine and program development will indeed be dramatic. Third, the computer in combination with instant communications will multiply research and development productivity in all herds of science and technology. Already, data logging systems make possible the harvesting and interpretation of primary experimental data on a scale that we did not dare to

This collection of papers by scholars of technology and society, based on a National Academy of Engineering symposium, explores the process of mutual adjustment between information technologies and social institutions. The topics addressed include recent developments and likely futures in information technology, comparison of information technology to historical developments in other technologies, and the interaction of information technology with businesses, homes, property rights in information, and various hierarchies of social organization.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

  • Architecture and Design
  • Asian and Pacific Studies
  • Business and Economics
  • Classical and Ancient Near Eastern Studies
  • Computer Sciences
  • Cultural Studies
  • Engineering
  • General Interest
  • Geosciences
  • Industrial Chemistry
  • Islamic and Middle Eastern Studies
  • Jewish Studies
  • Library and Information Science, Book Studies
  • Life Sciences
  • Linguistics and Semiotics
  • Literary Studies
  • Materials Sciences
  • Mathematics
  • Social Sciences
  • Sports and Recreation
  • Theology and Religion
  • Publish your article
  • The role of authors
  • Promoting your article
  • Abstracting & indexing
  • Publishing Ethics
  • Why publish with De Gruyter
  • How to publish with De Gruyter
  • Our book series
  • Our subject areas
  • Your digital product at De Gruyter
  • Contribute to our reference works
  • Product information
  • Tools & resources
  • Product Information
  • Promotional Materials
  • Orders and Inquiries
  • FAQ for Library Suppliers and Book Sellers
  • Repository Policy
  • Free access policy
  • Open Access agreements
  • Database portals
  • For Authors
  • Customer service
  • People + Culture
  • Journal Management
  • How to join us
  • Working at De Gruyter
  • Mission & Vision
  • De Gruyter Foundation
  • De Gruyter Ebound
  • Our Responsibility
  • Partner publishers

importance of information revolution essay

Your purchase has been completed. Your documents are now available to view.

book: The Second Information Revolution

The Second Information Revolution

  • Gerald W. Brock
  • X / Twitter

Please login or register with De Gruyter to order this product.

  • Language: English
  • Publisher: Harvard University Press
  • Copyright year: 2003
  • Audience: Professional and scholarly;
  • Main content: 336
  • Published: July 1, 2009
  • ISBN: 9780674028791

The Revolution of Information Economics: The Past and the Future

The economics of information has constituted a revolution in economics, providing explanations of phenomena that previously had been unexplained and upsetting longstanding presumptions, including that of market efficiency, with profound implications for economic policy. Information failures are associated with numerous other market failures, including incomplete risk markets, imperfect capital markets, and imperfections in competition, enhancing opportunities for rent seeking and exploitation. This paper puts into perspective nearly a half century of research, including recent advances in understanding the implications of imperfect information for financial market regulation, macro-stability, inequality, and public and corporate governance; and in recognizing the endogeneity of information imperfections. It explores the consequences of recent advances in technology and the policy challenges and opportunities they present for competition policy and policies regarding privacy and transparency. The paper notes the role that information economics played in stimulating other advances in economics, including contract theory and behavioral economics. It reinvigorated institutional economics, showing how institutions mattered, in some cases explaining institutional features that could not be well-understood in the conventional paradigm, and in others showing how institutional responses to market failures might or might not be welfare enhancing. The paper argues that the new paradigm provides a markedly different, and better, lens for looking at the economy than the older perfect markets competitive paradigm.

I wish to acknowledge research assistance from Andrew Kosenko and editorial assistance from Debarati Ghosh. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

More from NBER

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

importance of information revolution essay

25,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

importance of information revolution essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

importance of information revolution essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • Study Abroad Test Prep /

PTE Essay Topic: The information revolution has changed the ways of mass communication and had some negative and positive effects on individuals’ lives as well as on society.

' src=

  • Updated on  
  • May 24, 2023

The information revolution has changed the ways of mass communication and had some negative and positive effects on individuals’ lives as well as on society.

Q- The information revolution has changed the ways of mass communication and had some negative and positive effects on individuals’ lives as well as on society. To what extent do you agree or disagree?

Ans- The Information Revolution, marked by advancements in technology and the rise of mass communication platforms, has undoubtedly brought significant changes to individuals’ lives and society as a whole. I completely agree that the information revolution has profoundly transformed mass communication and has had both positive and negative effects on individuals’ lives and society as a whole. 

One of the most significant positive effects of the information revolution is the unprecedented connectivity it has brought. Communication barriers have been broken down, allowing people from different corners of the globe to connect and exchange ideas effortlessly. Social media platforms, instant messaging applications, and video conferencing tools have made it possible for individuals to maintain relationships, collaborate on projects, and engage in meaningful discussions regardless of geographical boundaries. This increased connectivity has fostered a sense of global community and has facilitated cultural exchange, tolerance, and understanding. 

However, it is essential to acknowledge that the information revolution has also presented challenges and negative effects. The overwhelming amount of information available can lead to information overload and make it difficult to discern accurate and reliable sources. This has given rise to the spread of misinformation, fake news, and online scams, which can have detrimental effects on individuals’ decision-making, public discourse, and even democratic processes. Furthermore, the increased reliance on digital communication and social media platforms has raised concerns about privacy, data security, and online harassment. Personal information shared online can be vulnerable to breaches, hacking, and misuse, potentially leading to identity theft and infringement of privacy. The addictive nature of social media can also have adverse effects on mental health and interpersonal relationships, as individuals become consumed by the need for constant validation and comparison.

In conclusion, the information revolution has undeniably revolutionized mass communication and has had a profound impact on individuals’ lives and society. While the positive effects, such as enhanced connectivity, accessibility to knowledge, and economic growth, are undeniable, it is crucial to address the challenges and negative effects associated with information overload, misinformation, and privacy concerns. By leveraging the benefits of the information revolution while actively mitigating its drawbacks, we can harness its full potential to create a more connected, informed, and prosperous world.

Related Articles

  • PTE Writing Section Syllabus
  • PTE Writing Essay-Questions Samples

Need help preparing for PTE? Check out the best  PTE preparation courses in the market offered in a live training environment by trusted educators. If you want to ease your study abroad journey, then call us at 1800572130.

' src=

Manisha Narang

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

importance of information revolution essay

Connect With Us

25,000+ students realised their study abroad dream with us. take the first step today..

importance of information revolution essay

Resend OTP in

importance of information revolution essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

importance of information revolution essay

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

importance of information revolution essay

Make your study abroad dream a reality in January 2022 with

importance of information revolution essay

India's Biggest Virtual University Fair

importance of information revolution essay

Essex Direct Admission Day

Why attend .

importance of information revolution essay

Don't Miss Out

IMAGES

  1. What is the information technology revolution and its importance. What

    importance of information revolution essay

  2. The information revolution has made the world a better place.pdf

    importance of information revolution essay

  3. (PDF) Information revolution

    importance of information revolution essay

  4. 1.What is the information revolution? by on Prezi

    importance of information revolution essay

  5. Impact of the Information Revolution on the Way Enterprises Operate

    importance of information revolution essay

  6. INFORMATION REVOLUTION

    importance of information revolution essay

VIDEO

  1. Information Technology: How Important is it for Business & the World

  2. Essay on Importance of Internet In English ||

  3. The Information Revolution: From the 90s to Now

  4. Skocpol’s vs. Sewell’s Methodologies in Explaining Revolutions

  5. Information Revolution

  6. Role and importance of IT in our life

COMMENTS

  1. PDF Information Is Not Knowledge: The Information Revolution

    The information revolution provides a particularly disequilibrating time for the University. The magnitude of change it brings has been likened to the discovery of fire, of writing, and of printing. Information is at the heart of learning and of knowledge. If we are in an information revolution, we are in a university revolution as well.

  2. Information Revolution

    The Information Revolution. HARVEY M. DEITEL, BARBARA DEITEL, in An Introduction to Information Processing, 1986 Publisher Summary. Information revolution is a period of change that might prove as significant to the lives of people. Computer technology is at the root of this change, and continuing advancements in that technology seem to ensure that this revolution would touch the lives of people.

  3. Information Revolution

    The Information Revolution is important today because it is one of the main causes of the modern global economy. The changes resulting from the Information Revolution have mostly consisted of ...

  4. PDF The Information Revolution and Soft Power

    The Information Revolution and Soft Power By Joseph S. Nye, Jr. One of the notable trends of the past century that is likely to continue to strongly influence global politics in this century is the current information revolution. And with it comes an increase in the role of soft power - the ability to obtain preferred outcomes by

  5. Education and the Information Revolution

    Education and the Information Revolution. Aug 22, 2010. The major ceremonies of the academic community have traditionally been the fall convocation and the spring commencement. This year Russell Kirk, a nationally recognized historian, author, educator and political theorist, played an important role in Grand Valley's observance of both of ...

  6. 2 The Information Revolution

    The information revolution, which is now transforming societies around the world, is also changing the nature of governments and sovereignty, increasing the role of non‐state actors, and enhancing the importance of "soft" power in foreign policy. The U.S. foreign policy needs to anticipate its effects in shaping interstate relations at ...

  7. The Information Revolution

    Abstract. We are now in the midst of 'the information revolution'. Mankind has been living in an information society since the Bronze Age, but only recently have our lives depended so much on managing the life cycle of information. History has had many metrics, based on natural cycles, religion, or society, to name a few.

  8. Information Revolution

    The Information Revolution has already had major effects on both business and personal life. Organizations can now make information readily available to staff via corporate intranets (private networks that work in the same way as the Internet); retailing companies now generally hold less stock, relying on the instant availability of stock ...

  9. PDF A Revolution in Information?

    Chapter 10 A revolution in information?1. Ann Blair and Devin Fitzgerald. The notion of a revolution in information in early modern Europe is a recent historiographical construct, inspired by the current use of the term to designate the transformations of the late 20th century.

  10. PDF The Revolution of Information Economics: the Past and The Future ...

    I. The information revolution Economists had, of course, long recognized the importance of imperfect information. Indeed, some economic discussions actually triumphed the informational efficiency of the market—arguing that efficiency can be achieved in a decentralized price system, there was no need for a central planner. All

  11. Information Revolutions, the Information Society, and the Future of the

    This paper aims to discuss the future of information history by interrogating its past. It presents in outline an account of the conditions and the trajectory of events that have culminated in ...

  12. How Information Gives You Competitive Advantage

    How Information Gives You Competitive Advantage. by. Michael E. Porter. and. Victor E. Millar. From the Magazine (July 1985) The information revolution is sweeping through our economy. No company ...

  13. The Information Age: Evolution or Revolution?

    THE INFORMATION AGE: EVOLUTION OR REVOLUTION? ~1 Furthermore, as a corollary to Kranzberg~s First Law, the same technology can have quite different results when introduced into a different cultural setting. Thus, some technologies developed in ad- vanced industrial countries have quite different effects when introduced into some developing nations.

  14. The Second Information Revolution

    The Second Information Revolution is important reading for anyone who needs to understand the functioning of American telecommunications, either to be able to analyse today's financial markets or to understand or influence public policy in this area.-- Wendy M. Grossman Times Higher Education Supplement

  15. The Global Course of the Information Revolution

    Across the diverse conference discussions, a shared vision emerged of an information revolution future of more "information work" and new business models, an increase in electronic commerce, challenges to the nation state, creation of a number of sub-, trans-, and supranational groupings, more porous borders, and new fault lines within and ...

  16. The Revolution of Information Economics: The Past and the Future

    Working Paper 23780. DOI 10.3386/w23780. Issue Date September 2017. The economics of information has constituted a revolution in economics, providing explanations of phenomena that previously had been unexplained and upsetting longstanding presumptions, including that of market efficiency, with profound implications for economic policy.

  17. The Information Revolution, Security, and International Relations: (IR

    the information revolution on security and to clarify what existing inter national relations theory can say about this challenge. These pertinent ... increasingly important concern in all sectors of society. In 1962, Arnold Wolfers wrote that national security is the absence of threat to a society's core values. If modern, economically ...

  18. The Importance of The Information Revolution in University Studies

    The Importance of the Information Revolution in University Studies - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free. Scribd is the world's largest social reading and publishing site.

  19. An essay on: Information Revolution

    An Essay on: Information Revolution 9STS-4262 : Science, Technology and Society. Eduvane, Chlouie B. 2021 August 14. Ms. Mariel Baldeo. HOLY ANGEL UNIVERSITY. The Information Revolution There are various intellectual revolutions that has defined how the society works today. These intellectual revolutions happen when a paradigm shift occur, when ...

  20. (PDF) The Effects of "Information Revolution" upon the Critical

    The rapid development of information technology or popular so -called civilization of the. "third w ave", has stron g impact on the core human values: life, h ealth, freedom and. knowledge. The ...

  21. PTE Essay Topic: The information revolution has changed the ways of

    Ans- The Information Revolution, marked by advancements in technology and the rise of mass communication platforms, has undoubtedly brought significant changes to individuals' lives and society as a whole. I completely agree that the information revolution has profoundly transformed mass communication and has had both positive and negative ...

  22. What is the impact of the Information Revolution on the world?

    The Information Revolution has made it possible for the world literally to be viewed on a laptop screen. One example of the impact of the Information Revolution has been on international commerce.

  23. Has The Information Revolution Benifited Society Essay

    The benefits of this revolution have changed how are society works, plays, and lives. These changes have brought many benefits to society and are still bringing benefits. James Snider's argument that the information revolution will be the down fall of the environment is fundamentally flawed. All of his justifications are could happens that ...