Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Data mining articles from across Nature Portfolio

Data mining is the process of extracting potentially useful information from data sets. It uses a suite of methods to organise, examine and combine large data sets, including machine learning, visualisation methods and statistical analyses. Data mining is used in computational biology and bioinformatics to detect trends or patterns without knowledge of the meaning of the data.

research paper related to data mining

DNA polymerase ε produces elevated C-to-T mutations at methylated CpG dinucleotides

C-to-T mutations in CpG dinucleotides are widespread in cancers and are also observed in normal cells. By developing and using a technique to quantify DNA polymerase errors (polymerase error rate sequencing, PER-seq), we reveal that C-to-T mutations in CpG dinucleotides constitute part of the error signature of both wild-type and mutant cancer-associated DNA polymerase ε.

Latest Research and Reviews

research paper related to data mining

MetaCGRP is a high-precision meta-model for large-scale identification of CGRP inhibitors using multi-view information

  • Nalini Schaduangrat
  • Phisit Khemawoot
  • Watshara Shoombuatong

research paper related to data mining

Benchmarking machine learning methods for synthetic lethality prediction in cancer

A comprehensive benchmarking of existing synthetic lethality (SL) prediction methods is lacking. Here, the authors compare 12 recently developed machine learning methods for SL prediction, assess their performance, and provide guidance on the selection of the most suitable method.

  • Yimiao Feng

research paper related to data mining

The alternative splicing landscape of infarcted mouse heart identifies isoform level therapeutic targets

  • Jianghua Shen

research paper related to data mining

Interpretable discovery of patterns in tabular data via spatially semantic topographic maps

A strategy leveraging spatially semantic 2D topographic maps can be used to unravel intertwined relationships in tabular data, as shown for a wide range of tabular biomedical datasets.

  • Md Tauhidual Islam

research paper related to data mining

Comprehensive risk factor-based nomogram for predicting one-year mortality in patients with sepsis-associated encephalopathy

  • Guangyong Jin
  • Menglu Zhou

research paper related to data mining

Seeing the unseen in characterizing RNA editome during rice endosperm development

A systematic study of the RNA editome during rice endosperm development suggests that predominant C-to-U CDS-recoding editing events produce conserved hydrophobic amino acids, and affect structures and functions of mitochondrial proteins.

  • Zhang Zhang

Advertisement

News and Comment

research paper related to data mining

A cellular reference atlas across human brain regions

We present the Brain Cell Atlas, integrating single-cell transcriptomes of 26 million cells from 70 human and 103 mouse studies, covering 14 major brain regions. This atlas takes advantage of the integration of big data, enabling the discovery of putative neural progenitors in adults and microglial regional variations.

research paper related to data mining

Stopped clinical trials give evidence for the value of genetics

A new analysis of clinical trials that were stopped early generates insights on the role of genetics in drug development and provides a new resource for researchers aiming to improve success rates of clinical trials.

research paper related to data mining

The hidden impact of in-source fragmentation in metabolic and chemical mass spectrometry data interpretation

  • Martin Giera
  • Aries Aisporna
  • Gary Siuzdak

research paper related to data mining

Discrete latent embeddings illuminate cellular diversity in single-cell epigenomics

CASTLE, a deep learning approach, extracts interpretable discrete representations from single-cell chromatin accessibility data, enabling accurate cell type identification, effective data integration, and quantitative insights into gene regulatory mechanisms.

research paper related to data mining

Discovering cryptic natural products by substrate manipulation

Cryptic halogenation reactions result in natural products with diverse structural motifs and bioactivities. However, these halogenated species are difficult to detect with current analytical methods because the final products are often not halogenated. An approach to identify products of cryptic halogenation using halide depletion has now been discovered, opening up space for more effective natural product discovery.

  • Ludek Sehnal
  • Libera Lo Presti
  • Nadine Ziemert

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research paper related to data mining

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Advertisement

Advertisement

A comprehensive survey of data mining

  • Original Research
  • Published: 06 February 2020
  • Volume 12 , pages 1243–1257, ( 2020 )

Cite this article

research paper related to data mining

  • Manoj Kumar Gupta   ORCID: orcid.org/0000-0002-4481-8432 1 &
  • Pravin Chandra 1  

5387 Accesses

61 Citations

Explore all metrics

Data mining plays an important role in various human activities because it extracts the unknown useful patterns (or knowledge). Due to its capabilities, data mining become an essential task in large number of application domains such as banking, retail, medical, insurance, bioinformatics, etc. To take a holistic view of the research trends in the area of data mining, a comprehensive survey is presented in this paper. This paper presents a systematic and comprehensive survey of various data mining tasks and techniques. Further, various real-life applications of data mining are presented in this paper. The challenges and issues in area of data mining research are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

research paper related to data mining

A Review of the Development and Future Trends of Data Mining Tools

research paper related to data mining

A Survey on Big Data, Mining: (Tools, Techniques, Applications and Notable Uses)

research paper related to data mining

Data Mining—A Tool for Handling Huge Voluminous Data

Explore related subjects.

  • Artificial Intelligence

Fayadd U, Piatesky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AAAI Press/The MIT Press, Massachusetts Institute of Technology. ISBN 0–262 56097–6 Fayap

Fayadd U, Piatesky-Shapiro G, Smyth P (1996) Knowledge discovery and data mining: towards a unifying framework. In: Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, pp 82–88

Heikki M (1996) Data mining: machine learning, statistics, and databases. In: SSDBM ’96: proceedings of the eighth international conference on scientific and statistical database management, June 1996, pp 2–9

Arora RK, Gupta MK (2017) e-Governance using data warehousing and data mining. Int J Comput Appl 169(8):28–31

Google Scholar  

Morik K, Bhaduri K, Kargupta H (2011) Introduction to data mining for sustainability. Data Min Knowl Discov 24(2):311–324

Han J, Kamber M, Pei J (2012) Data mining concepts and techniques, 3rd edn. Elsevier, Netherlands

MATH   Google Scholar  

Friedman JH (1997) Data mining and statistics: What is the connection? in: Keynote Speech of the 29th Symposium on the Interface: Computing Science and Statistics, Houston, TX, 1997

Turban E, Aronson JE, Liang TP, Sharda R (2007) Decision support and business intelligence systems. 8 th edn, Pearson Education, UK

Gheware SD, Kejkar AS, Tondare SM (2014) Data mining: tasks, tools, techniques and applications. Int J Adv Res Comput Commun Eng 3(10):8095–8098

Kiranmai B, Damodaram A (2014) A review on evaluation measures for data mining tasks. Int J Eng Comput Sci 3(7):7217–7220

Sharma M (2014) Data mining: a literature survey. Int J Emerg Res Manag Technol 3(2):1–4

Venkatadri M, Reddy LC (2011) A review on data mining from past to the future. Int J Comput Appl 15(7):19–22

Chen M, Han J, Yu PS (1996) Data mining: an overview from a database perspective. IEEE Trans Knowl Data Eng 8(6):866–883

Gupta MK, Chandra P (2019) A comparative study of clustering algorithms. In: Proceedings of the 13th INDIACom-2019; IEEE Conference ID: 461816; 6th International Conference on “Computing for Sustainable Global Development”

Ponniah P (2001) Data warehousing fundamentals. Wiley, USA

Chandra P, Gupta MK (2018) Comprehensive survey on data warehousing research. Int J Inform Technol 10(2):217–224

Weiss SH, Indurkhya N (1998) Predictive data mining: a practical guide. Morgan Kaufmann Publishers, San Francisco

Fu Y (1997) Data mining: tasks, techniques, and applications. IEEE Potentials 16(4):18–20

Abuaiadah D (2015) Using bisect k-means clustering technique in the analysis of arabic documents. ACM Trans Asian Low-Resour Lang Inf Process 15(3):1–17

Algergawy A, Mesiti M, Nayak R, Saake G (2011) XML data clustering: an overview. ACM Comput Surv 43(4):1–25

Angiulli F, Fassetti F (2013) Exploiting domain knowledge to detect outliers. Data Min Knowl Discov 28(2):519–568

MathSciNet   MATH   Google Scholar  

Angiulli F, Fassetti F (2016) Toward generalizing the unification with statistical outliers: the gradient outlier factor measure. ACM Trans Knowl Discov Data 10(3):1–26

Bhatnagar V, Ahuja S, Kaur S (2015) Discriminant analysis-based cluster ensemble. Int J Data Min Modell Manag 7(2):83–107

Bouguessa M (2013) Clustering categorical data in projected spaces. Data Min Knowl Discov 29(1):3–38

MathSciNet   Google Scholar  

Campello RJGB, Moulavi D, Zimek A, Sander J (2015) Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans Knowl Discov Data 10(1):1–51

Carpineto C, Osinski S, Romano G, Weiss D (2009) A survey of web clustering engines. ACM Comput. Surv. 41(3):1–38

Ceglar A, Roddick JF (2006) Association mining. ACM Comput Surv 38(2):1–42

Chen YL, Weng CH (2009) Mining fuzzy association rules from questionnaire data. Knowl Based Syst 22(1):46–56

Fan Chin-Yuan, Fan Pei-Shu, Chan Te-Yi, Chang Shu-Hao (2012) Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals. Expert Syst Appl 39:8844–8851

Das R, Kalita J, Bhattacharya (2011) A pattern matching approach for clustering gene expression data. Int J Data Min Model Manag 3(2):130–149

Dincer E (2006) The k-means algorithm in data mining and an application in medicine. Kocaeli Univesity, Kocaeli

Geng L, Hamilton HJ (2006) Interestingness measures for data mining: a survey. ACM Comput Surv 38(3):1–32

Gupta MK, Chandra P (2019) P-k-means: k-means using partition based cluster initialization method. In: Proceedings of the international conference on advancements in computing and management (ICACM 2019), Elsevier SSRN, pp 567–573

Gupta MK, Chandra P (2019) An empirical evaluation of k-means clustering algorithm using different distance/similarity metrics. In: Proceedings of the international conference on emerging trends in information technology (ICETIT-2019), emerging trends in information technology, LNEE 605 pp 884–892 DOI: https://doi.org/10.1007/978-3-030-30577-2_79

Hea Z, Xua X, Huangb JZ, Denga S (2004) Mining class outliers: concepts, algorithms and applications in CRM. Expert Syst Appl 27(4):681e97

Hung LN, Thu TNT, Nguyen GC (2015) An efficient algorithm in mining frequent itemsets with weights over data stream using tree data structure. IJ Intell Syst Appl 12:23–31

Hung LN, Thu TNT (2016) Mining frequent itemsets with weights over data stream using inverted matrix. IJ Inf Technol Comput Sci 10:63–71

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput. Surv 31(3):1–60

Jin H, Wang S, Zhou Q, Li Y (2014) An improved method for density-based clustering. Int J Data Min Model Manag 6(4):347–368

Khandare A, Alvi AS (2017) Performance analysis of improved clustering algorithm on real and synthetic data. IJ Comput Netw Inf Secur 10:57–65

Koh YS, Ravana SD (2016) Unsupervised rare pattern mining: a survey. ACM Trans Knowl Discov Data 10(4):1–29

Kosina P, Gama J (2015) Very fast decision rules for classification in data streams. Data Min Knowl Discov 29(1):168–202

Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268

Kumar D, Bezdek JC, Rajasegarar S, Palaniswami M, Leckie C, Chan J, Gubbi J (2016) Adaptive cluster tendency visualization and anomaly detection for streaming data. ACM Trans Knowl Discov Data 11(2):1–24

Lee G, Yun U (2017) A new efficient approach for mining uncertain frequent patterns using minimum data structure without false positives. Future Gener Comput Syst 68:89–110

Li G, Zaki MJ (2015) Sampling frequent and minimal boolean patterns: theory and application in classification. Data Min Knowl Discov 30(1):181–225. https://doi.org/10.1007/s10618-015-0409-y

Article   MathSciNet   MATH   Google Scholar  

Liao TW, Triantaphyllou E (2007) Recent advances in data mining of enterprise data: algorithms and applications. World Scientific Publishing, Singapore, pp 111–145

Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern mining algorithms. ACM Comput Surv 43:1

Mampaey M, Vreeken J (2011) Summarizing categorical data by clustering attributes. Data Min Knowl Discov 26(1):130–173

Menardi G, Torelli N (2012) Training and assessing classification rules with imbalanced data. Data Min Knowl Discov 28(1):4–28. https://doi.org/10.1007/s10618-012-0295-5

Mukhopadhyay A, Maulik U, Bandyopadhyay S (2015) A survey of multiobjective evolutionary clustering. ACM Comput Surv 47(4):1–46

Pei Y, Fern XZ, Tjahja TV, Rosales R (2016) ‘Comparing clustering with pairwise and relative constraints: a unified framework. ACM Trans Knowl Discov Data 11:2

Rafalak M, Deja M, Wierzbicki A, Nielek R, Kakol M (2016) Web content classification using distributions of subjective quality evaluations. ACM Trans Web 10:4

Reddy D, Jana PK (2014) A new clustering algorithm based on Voronoi diagram. Int J Data Min Model Manag 6(1):49–64

Rustogi S, Sharma M, Morwal S (2017) Improved Parallel Apriori Algorithm for Multi-cores. IJ Inf Technol Comput Sci 4:18–23

Shah-Hosseini H (2013) Improving K-means clustering algorithm with the intelligent water drops (IWD) algorithm. Int J Data Min Model Manag 5(4):301–317

Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho ACPLF, Gama J (2013) Data stream clustering: a survey. ACM Comput Surv 46(1):1–31

Silva A, Antunes C (2014) Multi-relational pattern mining over data streams. Data Min Knowl Discov 29(6):1783–1814. https://doi.org/10.1007/s10618-014-0394-6

Sim K, Gopalkrishnan V, Zimek A, Cong G (2012) A survey on enhanced subspace clustering. Data Min Knowl Discov 26(2):332–397

Sohrabi MK, Roshani R (2017) Frequent itemset mining using cellular learning automata. Comput Hum Behav 68:244–253

Craw Susan, Wiratunga Nirmalie, Rowe Ray C (2006) Learning adaptation knowledge to improve case-based reasoning. Artif Intell 170:1175–1192

Tan KC, Teoh EJ, Yua Q, Goh KC (2009) A hybrid evolutionary algorithm for attribute selection in data mining. Expert Syst Appl 36(4):8616–8630

Tew C, Giraud-Carrier C, Tanner K, Burton S (2013) Behavior-based clustering and analysis of interestingness measures for association rule mining. Data Min Knowl Discov 28(4):1004–1045

Wang L, Dong M (2015) Exemplar-based low-rank matrix decomposition for data clustering. Data Min Knowl Discov 29:324–357

Wang F, Sun J (2014) Survey on distance metric learning and dimensionality reduction in data mining. Data Min Knowl Discov 29:534–564

Wang B, Rahal I, Dong A (2011) Parallel hierarchical clustering using weighted confidence affinity. Int J Data Min Model Manag 3(2):110–129

Zacharis NZ (2018) Classification and regression trees (CART) for predictive modeling in blended learning. IJ Intell Syst Appl 3:1–9

Zhang W, Li R, Feng D, Chernikov A, Chrisochoides N, Osgood C, Ji S (2015) Evolutionary soft co-clustering: formulations, algorithms, and applications. Data Min Knowl Discov 29:765–791

Han J, Fu Y (1996) Exploration of the power of attribute-oriented induction in data mining. Adv Knowl Discov Data Min. AAAI/MIT Press, pp 399-421

Gupta A, Mumick IS (1995) Maintenance of materialized views: problems, techniques, and applications. IEEE Data Eng Bull 18(2):3

Sawant V, Shah K (2013) A review of distributed data mining using agents. Int J Adv Technol Eng Res 3(5):27–33

Gupta MK, Chandra P (2019) An efficient approach for selection of initial cluster centroids for k-means clustering algorithm. In: Proceedings international conference on recent developments in science engineering and technology (REDSET-2019), November 15–16 2019

Gupta MK, Chandra P (2019) MP-K-means: modified partition based cluster initialization method for k-means algorithm. Int J Recent Technol Eng 8(4):1140–1148

Gupta MK, Chandra P (2019) HYBCIM: hypercube based cluster initialization method for k-means. IJ Innov Technol Explor Eng 8(10):3584–3587. https://doi.org/10.35940/ijitee.j9774.0881019

Article   Google Scholar  

Enke David, Thawornwong Suraphan (2005) The use of data mining and neural networks for forecasting stock market returns. Expert Syst Appl 29:927–940

Mezyk Edward, Unold Olgierd (2011) Machine learning approach to model sport training. Comput Hum Behav 27:1499–1506

Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv 45(1):1–34

Hüllermeier Eyke (2005) Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets Syst 156:387–406

Hullermeier Eyke (2011) Fuzzy sets in machine learning and data mining. Appl Soft Comput 11:1493–1505

Gengshen Du, Ruhe Guenther (2014) Two machine-learning techniques for mining solutions of the ReleasePlanner™ decision support system. Inf Sci 259:474–489

Smith Kate A, Gupta Jatinder ND (2000) Neural networks in business: techniques and applications for the operations researcher. Comput Oper Res 27:1023–1044

Huang Mu-Jung, Tsou Yee-Lin, Lee Show-Chin (2006) Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge. Knowl Based Syst 19:396–403

Padhraic S (2000) Data mining: analysis on grand scale. Stat Method Med Res 9(4):309–327. https://doi.org/10.1191/096228000701555181

Article   MATH   Google Scholar  

Saeed S, Ali M (2012) Privacy-preserving back-propagation and extreme learning machine algorithms. Data Knowl Eng 79–80:40–61

Singh Y, Bhatia PK, Sangwan OP (2007) A review of studies on machine learning techniques. Int J Comput Sci Secur 1(1):70–84

Yahia ME, El-taher ME (2010) A new approach for evaluation of data mining techniques. Int J Comput Sci Issues 7(5):181–186

Jackson J (2002) Data mining: a conceptual overview. Commun Assoc Inf Syst 8:267–296

Heckerman D (1998) A tutorial on learning with Bayesian networks. Learning in graphical models. Springer, Netherlands, pp 301–354

Politano PM, Walton RO (2017) Statistics & research methodol. Lulu. com

Wetherill GB (1987) Regression analysis with application. Chapman & Hall Ltd, UK

Anderberg MR (2014) Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks, vol 19. Academic Press, USA

Mihoci A (2017) Modelling limit order book volume covariance structures. In: Hokimoto T (ed) Advances in statistical methodologies and their application to real problems. IntechOpen, Croatia. https://doi.org/10.5772/66152

Chapter   Google Scholar  

Thompson B (2004) Exploratory and confirmatory factor analysis: understanding concepts and applications. American Psychological Association, Washington, DC (ISBN:1-59147-093-5)

Kuzey C, Uyar A, Delen (2014) The impact of multinationality on firm value: a comparative analysis of machine learning techniques. Decis Support Syst 59:127–142

Chan Philip K, Salvatore JS (1997) On the accuracy of meta-learning for scalable data mining. J Intell Inf Syst 8:5–28

Tsai Chih-Fong, Hsu Yu-Feng, Lin Chia-Ying, Lin Wei-Yang (2009) Intrusion detection by machine learning: a review. Expert Syst Appl 36:11994–12000

Liao SH, Chu PH, Hsiao PY (2012) Data mining techniques and applications—a decade review from 2000 to 2011. Expert Syst Appl 39:11303–11311

Kanevski M, Parkin R, Pozdnukhov A, Timonin V, Maignan M, Demyanov V, Canu S (2004) Environmental data mining and modelling based on machine learning algorithms and geostatistics. Environ Model Softw 19:845–855

Jain N, Srivastava V (2013) Data mining techniques: a survey paper. Int J Res Eng Technol 2(11):116–119

Baker RSJ (2010) Data mining for education. In: McGaw B, Peterson P, Baker E (eds) International encyclopedia of education, 3rd edn. Elsevier, Oxford, UK

Lew A, Mauch H (2006) Introduction to data mining and its applications. Springer, Berlin

Mukherjee S, Shaw R, Haldar N, Changdar S (2015) A survey of data mining applications and techniques. Int J Comput Sci Inf Technol 6(5):4663–4666

Data mining examples: most common applications of data mining (2019). https://www.softwaretestinghelp.com/data-mining-examples/ . Accessed 27 Dec 2019

Devi SVSG (2013) Applications and trends in data mining. Orient J Comput Sci Technol 6(4):413–419

Data mining—applications & trends. https://www.tutorialspoint.com/data_mining/dm_applications_trends.htm

Keleş MK (2017) An overview: the impact of data mining applications on various sectors. Tech J 11(3):128–132

Top 14 useful applications for data mining. https://bigdata-madesimple.com/14-useful-applications-of-data-mining/ . Accessed 20 Aug 2014

Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inf Technol Decis Making 5(4):597–604

Padhy N, Mishra P, Panigrahi R (2012) A survey of data mining applications and future scope. Int J Comput Sci Eng Inf Technol 2(3):43–58

Gibert K, Sanchez-Marre M, Codina V (2010) Choosing the right data mining technique: classification of methods and intelligent recommendation. In: International Congress on Environment Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada

Download references

Author information

Authors and affiliations.

University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, Delhi, 110078, India

Manoj Kumar Gupta & Pravin Chandra

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Manoj Kumar Gupta .

Rights and permissions

Reprints and permissions

About this article

Gupta, M.K., Chandra, P. A comprehensive survey of data mining. Int. j. inf. tecnol. 12 , 1243–1257 (2020). https://doi.org/10.1007/s41870-020-00427-7

Download citation

Received : 29 June 2019

Accepted : 20 January 2020

Published : 06 February 2020

Issue Date : December 2020

DOI : https://doi.org/10.1007/s41870-020-00427-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Data mining techniques
  • Data mining tasks
  • Data mining applications
  • Classification
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) An Overview of Data Mining -A Survey Paper

    research paper related to data mining

  2. 1-s2

    research paper related to data mining

  3. (PDF) Investigating of Data Mining with Big Data

    research paper related to data mining

  4. Write My Paper

    research paper related to data mining

  5. (PDF) A Review: Data Mining Techniques and Its Applications

    research paper related to data mining

  6. (PDF) Data Mining Methods: A Review

    research paper related to data mining

VIDEO

  1. Deepfake Videos Just With One Photo and This is Better Than Real (Microsoft Vasa-1)

  2. Définition Data mining

  3. How to Write Chapter II Theoretical Background/Review of Related Literature and Studies

  4. What is Data Mining |Data Mining for Beginners

  5. Data Mining || NPTEL week 8 assignment answers 2024 #nptel #datamining #skumaredu #2024

  6. NPTEL data mining week 8 assignment answers

COMMENTS

  1. 345193 PDFs | Review articles in DATA MINING - ResearchGate

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on DATA MINING. Find methods information, sources, references or conduct a literature review on...

  2. (PDF) Data mining techniques and applications - ResearchGate

    The paper discusses few of the data mining techniques, algorithms and some of the organizations which have adapted data mining technology to improve their businesses and found excellent...

  3. Data Mining for the Internet of Things: Literature Review and ...

    Data mining involves discovering novel, interesting, and potentially useful patterns from data and applying algorithms to the extraction of hidden information. In this paper, we survey the data mining in 3 different views: knowledge view, technique view, and application view.

  4. Data mining - Latest research and news | Nature

    Data mining is the process of extracting potentially useful information from data sets. It uses a suite of methods to organise, examine and combine large data sets, including machine learning,...

  5. Knowledge Discovery: Methods from data mining and machine ...

    In this paper, we first assess the contribution of data mining to theory innovation from an epistemological view and discuss the rise of big data and its implications. We situate the new frontier of knowledge discovery and data mining in the philosophical and methodological traditions of scientific research and clarify both the strengths and ...

  6. A comprehensive survey of data mining | International Journal ...

    This paper presents a systematic and comprehensive survey of various data mining tasks and techniques. Further, various real-life applications of data mining are presented in this paper. The challenges and issues in area of data mining research are also presented in this paper.

  7. Trends in data mining research: A two-decade review using ...

    PDF | This work analyses the intellectual structure of data mining as a scientific discipline. To do this, we use topic analysis (namely, latent... | Find, read and cite all the research you...

  8. Recent advances in domain-driven data mining | International ...

    The papers accepted in this special issue explored novel factors and challenges such as socioeconomic, organizational, human-centered, and cultural aspects in different data mining tasks. In the following, we first provide a summary of the selected papers in the special issue.

  9. Data mining techniques and applications — A decade review

    This paper reviews data mining techniques and its applications such as educational data mining (EDM), finance, commerce, life sciences and medical etc. We group existing approaches to determine how the data mining can be used in different fields.

  10. A comprehensive survey of data mining - Springer

    This paper presents a systematic and comprehensive survey of various data mining tasks and techniques. Further, various real-life applications of data mining are presented in this paper. The challenges and issues in area of data mining research are also presented in this paper.