Resources you can trust

Using ratio

Using ratio

All reviews

Have you used this resource?

Resources you might like

GCSE Tutoring Programme

"Our chosen students improved 1.19 of a grade on average - 0.45 more than those who didn't have the tutoring."

In order to access this I need to be confident with:

This topic is relevant for:

GCSE Maths

Ratio Problem Solving

Here we will learn about ratio problem solving, including how to set up and solve problems. We will also look at real life ratio problems.

There are also ratio problem solving worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What is ratio problem solving?

Ratio problem solving is a collection of word problems that link together aspects of ratio and proportion into more real life questions. This requires you to be able to take key information from a question and use your knowledge of ratios (and other areas of the curriculum) to solve the problem.

A ratio is a relationship between two or more quantities . They are usually written in the form a:b where a and b are two quantities. When problem solving with a ratio, the key facts that you need to know are,

  • What is the ratio involved?
  • What order are the quantities in the ratio?
  • What is the total amount / what is the part of the total amount known?
  • What are you trying to calculate ?

As with all problem solving, there is not one unique method to solve a problem. However, this does not mean that there aren’t similarities between different problems that we can use to help us find an answer. 

The key to any problem solving is being able to draw from prior knowledge and use the correct piece of information to allow you to get to the next step and then the solution.

Let’s look at a couple of methods we can use when given certain pieces of information.

What is ratio problem solving?

When solving ratio problems it is very important that you are able to use ratios. This includes being able to use ratio notation. 

For example, Charlie and David share some sweets in the ratio of 3:5. This means that for every 3 sweets Charlie gets, David receives 5 sweets.

Charlie and David share 40 sweets, how many sweets do they each get?

We use the ratio to divide 40 sweets into 8 equal parts. 

Then we multiply each part of the ratio by 5.

3 x 5:5 x 5 = 15:25

This means that Charlie will get 15 sweets and David will get 25 sweets.

  • Dividing ratios

Step-by-step guide: Dividing ratios (coming soon)

You have been given


And you want to

Step 1: Add the parts of the ratio
together.

Step 2: Divide the quantity by the
sum of the parts.

Step 3: Multiply the share value by each
part in the ratio.
For example

Share £100 in the
ratio 4:1 .

(£80:£20)
You have been given


And you want to find

Step 1: Identify which part of the ratio
has been given.

Step 2: Calculate the individual share
value.

Step 3: Multiply the other quantities
in the ratio by the
share value.
For example

A bag of sweets is shared
between boys and girls in
the ratio of 5:6.

Each person receives the
same number of sweets. If
there are 15 boys, how many
girls are there?

(18)

Ratios and fractions (proportion problems)

We also need to consider problems involving fractions. These are usually proportion questions where we are stating the proportion of the total amount as a fraction.

You have been given


And you want to find

Step 1: Add the parts of the ratio
for the denominator.

Step 2: State the required part of the
ratio as the numerator.
For example

The ratio of red to green counters
is 3:5. What fraction of
the counters are green?

(\frac{5}{8})
You have been given


And you want to find

Step 1: Subtract the numerator from
the denominator of the fraction.

Step 2: State the parts of the ratio
in the correct order.
For example

if \frac{9}{10} students are right handed,
write the ratio of right handed
students to left handed students.

(9:1)

Simplifying and equivalent ratios

  • Simplifying ratios
You have been given


And you want to find

Step 1: Calculate the highest
common factor of the parts
of the ratio.

Step 2: Divide each part of the
ratio by the highest common
factor.
For example

Simplify the ratio 10:15.

(2:3)

Equivalent ratios

You have been given


And you want to find

Step 1: Identify which part of the
ratio is to equal 1.

Step 2: Divide all parts of the
ratio by this value.
For example

Write the ratio 4:15
in the form 1:n.

(1:3.75)
You have been given


And you want to find

Step 1: Multiply all parts of the
ratio by the same amount.
For example

A map uses the scale 1:500.
How many centimetres in real life
is 3cm on the map?

(1:500 = 3:1500, so 1500 cm)

Units and conversions ratio questions

Units and conversions are usually equivalent ratio problems (see above).

  • If £1:\$1.37 and we wanted to convert £10 into dollars, we would multiply both sides of the ratio by 10 to get £10 is equivalent to \$13.70.
  • The scale on a map is 1:25,000. I measure 12cm on the map. How far is this in real life, in kilometres? After multiplying both parts of the ratio by 12 you must then convert 12 \times 25000=300000 \ cm to km by dividing the solution by 100 \ 000 to get 3km.

Notice that for all three of these examples, the units are important. For example if we write the mapping example as the ratio 4cm:1km, this means that 4cm on the map is 1km in real life.

Top tip: if you are converting units, always write the units in your ratio.

Usually with ratio problem solving questions, the problems are quite wordy . They can involve missing values , calculating ratios , graphs , equivalent fractions , negative numbers , decimals and percentages .

Highlight the important pieces of information from the question, know what you are trying to find or calculate , and use the steps above to help you start practising how to solve problems involving ratios.

How to do ratio problem solving

In order to solve problems including ratios:

Identify key information within the question.

Know what you are trying to calculate.

Use prior knowledge to structure a solution.

Explain how to do ratio problem solving

Explain how to do ratio problem solving

Ratio problem solving worksheet

Get your free ratio problem solving worksheet of 20+ questions and answers. Includes reasoning and applied questions.

Related lessons on ratio

Ratio problem solving is part of our series of lessons to support revision on ratio . You may find it helpful to start with the main ratio lesson for a summary of what to expect, or use the step by step guides below for further detail on individual topics. Other lessons in this series include:

  • How to work out ratio  
  • Ratio to fraction
  • Ratio scale
  • Ratio to percentage

Ratio problem solving examples

Example 1: part:part ratio.

Within a school, the number of students who have school dinners to packed lunches is 5:7. If 465 students have a school dinner, how many students have a packed lunch?

Within a school, the number of students who have school dinners to packed lunches is \bf{5:7.} If \bf{465} students have a school dinner , how many students have a packed lunch ?

Here we can see that the ratio is 5:7 where the first part of the ratio represents school dinners (S) and the second part of the ratio represents packed lunches (P).

We could write this as

Ratio problem solving example 1 step 1

Where the letter above each part of the ratio links to the question.

We know that 465 students have school dinner.

2 Know what you are trying to calculate.

From the question, we need to calculate the number of students that have a packed lunch, so we can now write a ratio below the ratio 5:7 that shows that we have 465 students who have school dinners, and p students who have a packed lunch.

Ratio problem solving example 1 step 2

We need to find the value of p.

3 Use prior knowledge to structure a solution.

We are looking for an equivalent ratio to 5:7. So we need to calculate the multiplier. We do this by dividing the known values on the same side of the ratio by each other.

So the value of p is equal to 7 \times 93=651.

There are 651 students that have a packed lunch.

Example 2: unit conversions

The table below shows the currency conversions on one day.

Ratio problem solving example 2

Use the table above to convert £520 (GBP) to Euros € (EUR).

Ratio problem solving example 2

Use the table above to convert \bf{£520} (GBP) to Euros \bf{€} (EUR).

The two values in the table that are important are GBP and EUR. Writing this as a ratio, we can state

Ratio problem solving example 2 step 1 image 2

We know that we have £520.

We need to convert GBP to EUR and so we are looking for an equivalent ratio with GBP = £520 and EUR = E.

Ratio problem solving example 2 step 2

To get from 1 to 520, we multiply by 520 and so to calculate the number of Euros for £520, we need to multiply 1.17 by 520.

1.17 \times 520=608.4

So £520 = €608.40.

Example 3: writing a ratio 1:n

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the 500ml of concentrated plant food must be diluted into 2l of water. Express the ratio of plant food to water respectively in the ratio 1:n.

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the \bf{500ml} of concentrated plant food must be diluted into \bf{2l} of water . Express the ratio of plant food to water respectively as a ratio in the form 1:n.

Using the information in the question, we can now state the ratio of plant food to water as 500ml:2l. As we can convert litres into millilitres, we could convert 2l into millilitres by multiplying it by 1000.

2l = 2000ml

So we can also express the ratio as 500:2000 which will help us in later steps.

We want to simplify the ratio 500:2000 into the form 1:n.

We need to find an equivalent ratio where the first part of the ratio is equal to 1. We can only do this by dividing both parts of the ratio by 500 (as 500 \div 500=1 ).

Ratio problem solving example 3 step 3

So the ratio of plant food to water in the form 1:n is 1:4.

Example 4: forming and solving an equation

Three siblings, Josh, Kieran and Luke, receive pocket money per week proportional to their age. Kieran is 3 years older than Josh. Luke is twice Josh’s age. If Josh receives £8 pocket money, how much money do the three siblings receive in total?

Three siblings, Josh, Kieran and Luke, receive pocket money per week proportional to their ages. Kieran is \bf{3} years older than Josh . Luke is twice Josh’s age. If Luke receives \bf{£8} pocket money, how much money do the three siblings receive in total ?

We can represent the ages of the three siblings as a ratio. Taking Josh as x years old, Kieran would therefore be x+3 years old, and Luke would be 2x years old. As a ratio, we have

Ratio problem solving example 4 step 1

We also know that Luke receives £8.

We want to calculate the total amount of pocket money for the three siblings.

We need to find the value of x first. As Luke receives £8, we can state the equation 2x=8 and so x=4.

Now we know the value of x, we can substitute this value into the other parts of the ratio to obtain how much money the siblings each receive.

Ratio problem solving example 4 step 3

The total amount of pocket money is therefore 4+7+8=£19.

Example 5: simplifying ratios

Below is a bar chart showing the results for the colours of counters in a bag.

Ratio problem solving example 5

Express this data as a ratio in its simplest form.

From the bar chart, we can read the frequencies to create the ratio.

Ratio problem solving example 5 step 1

We need to simplify this ratio.

To simplify a ratio, we need to find the highest common factor of all the parts of the ratio. By listing the factors of each number, you can quickly see that the highest common factor is 2.

\begin{aligned} &12 = 1, {\color{red} 2}, 3, 4, 6, 12 \\\\ &16 = 1, {\color{red} 2}, 4, 8, 16 \\\\ &10 = 1, {\color{red} 2}, 5, 10 \end{aligned}

HCF (12,16,10) = 2

Dividing all the parts of the ratio by 2 , we get

Ratio problem solving example 5 step 3

Our solution is 6:8:5 .

Example 6: combining two ratios

Glass is made from silica, lime and soda. The ratio of silica to lime is 15:2. The ratio of silica to soda is 5:1. State the ratio of silica:lime:soda.

Glass is made from silica, lime and soda. The ratio of silica to lime is \bf{15:2.} The ratio of silica to soda is \bf{5:1.} State the ratio of silica:lime:soda .

We know the two ratios

Ratio problem solving example 6 step 1

We are trying to find the ratio of all 3 components: silica, lime and soda.

Using equivalent ratios we can say that the ratio of silica:soda is equivalent to 15:3 by multiplying the ratio by 3.

Ratio problem solving example 6 step 3 image 1

We now have the same amount of silica in both ratios and so we can now combine them to get the ratio 15:2:3.

Ratio problem solving example 6 step 3 image 2

Example 7: using bar modelling

India and Beau share some popcorn in the ratio of 5:2. If India has 75g more popcorn than Beau, what was the original quantity?

India and Beau share some popcorn in the ratio of \bf{5:2.} If India has \bf{75g} more popcorn than Beau , what was the original quantity?

We know that the initial ratio is 5:2 and that India has three more parts than Beau.

We want to find the original quantity.

Drawing a bar model of this problem, we have

Ratio problem solving example 7 step 1

Where India has 5 equal shares, and Beau has 2 equal shares.

Each share is the same value and so if we can find out this value, we can then find the total quantity.

From the question, India’s share is 75g more than Beau’s share so we can write this on the bar model.

Ratio problem solving example 7 step 3 image 1

We can find the value of one share by working out 75 \div 3=25g.

Ratio problem solving example 7 step 3 image 2

We can fill in each share to be 25g.

Ratio problem solving example 7 step 3 image 3

Adding up each share, we get

India = 5 \times 25=125g

Beau = 2 \times 25=50g

The total amount of popcorn was 125+50=175g.

Common misconceptions

  • Mixing units

Make sure that all the units in the ratio are the same. For example, in example 6 , all the units in the ratio were in millilitres. We did not mix ml and l in the ratio.

  • Ratio written in the wrong order

For example the number of dogs to cats is given as the ratio 12:13 but the solution is written as 13:12.

  • Ratios and fractions confusion

Take care when writing ratios as fractions and vice-versa. Most ratios we come across are part:part. The ratio here of red:yellow is 1:2. So the fraction which is red is \frac{1}{3} (not \frac{1}{2} ).

Ratio problem solving common misconceptions

  • Counting the number of parts in the ratio, not the total number of shares

For example, the ratio 5:4 has 9 shares, and 2 parts. This is because the ratio contains 2 numbers but the sum of these parts (the number of shares) is 5+4=9. You need to find the value per share, so you need to use the 9 shares in your next line of working.

  • Ratios of the form \bf{1:n}

The assumption can be incorrectly made that n must be greater than 1 , but n can be any number, including a decimal.

Practice ratio problem solving questions

1. An online shop sells board games and computer games. The ratio of board games to the total number of games sold in one month is 3:8. What is the ratio of board games to computer games?

GCSE Quiz True

8-3=5 computer games sold for every 3 board games.

2. The volume of gas is directly proportional to the temperature (in degrees Kelvin). A balloon contains 2.75l of gas and has a temperature of 18^{\circ}K. What is the volume of gas if the temperature increases to 45^{\circ}K?

3. The ratio of prime numbers to non-prime numbers from 1-200 is 45:155. Express this as a ratio in the form 1:n.

4. The angles in a triangle are written as the ratio x:2x:3x. Calculate the size of each angle.

5. A clothing company has a sale on tops, dresses and shoes. \frac{1}{3} of sales were for tops, \frac{1}{5} of sales were for dresses, and the rest were for shoes. Write a ratio of tops to dresses to shoes sold in its simplest form.

6. During one month, the weather was recorded into 3 categories: sunshine, cloud and rain. The ratio of sunshine to cloud was 2:3 and the ratio of cloud to rain was 9:11. State the ratio that compares sunshine:cloud:rain for the month.

Ratio problem solving GCSE questions

1. One mole of water weighs 18 grams and contains 6.02 \times 10^{23} water molecules.

Write this in the form 1gram:n where n represents the number of water molecules in standard form.

2. A plank of wood is sawn into three pieces in the ratio 3:2:5. The first piece is 36cm shorter than the third piece.

Calculate the length of the plank of wood.

5-3=2 \ parts = 36cm so 1 \ part = 18cm

3. (a) Jenny is x years old. Sally is 4 years older than Jenny. Kim is twice Jenny’s age. Write their ages in a ratio J:S:K.

(b) Sally is 16 years younger than Kim. Calculate the sum of their ages.

Learning checklist

You have now learned how to:

  • Relate the language of ratios and the associated calculations to the arithmetic of fractions and to linear functions
  • Develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
  • Make and use connections between different parts of mathematics to solve problems

The next lessons are

  • Compound measures
  • Best buy maths

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

GCSE Benefits

Find out more about our GCSE maths tuition programme.

Privacy Overview

Problem solving with fractions and ratios

I can use my knowledge of fractions and ratios to solve problems.

Lesson details

Key learning points.

  • Any fraction can be turned into a ratio.
  • Moving between fractions and ratios can make a problem easier.
  • There can be lots of information, it is important to think about what is required to solve the problem.

Common misconception

Always dividing the amount by the sum of the 'parts' of the ratio to get one 'part'.

Offer opportunities to match problems to bar models ensure the same numbers are used to highlight the differences.

Proportion - Proportionality means when variables are in proportion if they have a constant multiplicative relationship.

Ratio - A ratio shows the relative sizes of 2 or more values and allows you to compare a part with another part in a whole.

This content is © Oak National Academy Limited ( 2024 ), licensed on Open Government Licence version 3.0 except where otherwise stated. See Oak's terms & conditions (Collection 2).

Starter quiz

6 questions.

An image in a quiz

Key Stage 3 Maths - Lesson Objectives, Keywords and Resources - Year 9 - Number

  • Cut-the-knot
  • Curriculum Online
  • Starter of the Day

Lesson Objectives

To be able to:

  • Compare two ratios.
  • Interpret and use ratio in a range of contexts, including solving word problems.

ratio, simplest form, proportion.

Home | Year 7 | Year 8 | Year 9 | Starter of the Day | Links

PixiMaths banner new.PNG

Applied Ratio

Lots of applied ratio here!

This new lesson on three-way ratio problem solving looks at using given ratios to create others. Students will need to understand equivalence of ratios and sharing into a ratio.

Recipes is a common exam question and the main task of this lesson is fully differentiated and focuses on the menu for the restaurant Pythagoras' Place. The extension task requires the students to work out ingredients for Shrove Tuesday for the class in question.

Best buys features lots of opportunity for discussion and plenty of relevant maths. Pair work, visual explanations and a differentiated main task with answers.

Exchange rates is another highly relevant topic using current exchange rates (use the given link). Answers will change along with the rates so I have not included answers for this lesson.

1.PNG

Corbettmaths

Ratio: Problem Solving Textbook Answers

Click here for answers, gcse revision cards.

ratio problem solving ks3

5-a-day Workbooks

ratio problem solving ks3

Primary Study Cards

ratio problem solving ks3

Privacy Policy

Terms and Conditions

Corbettmaths © 2012 – 2024

  • Number Charts
  • Multiplication
  • Long division
  • Basic operations
  • Telling time
  • Place value
  • Roman numerals
  • Fractions & related
  • Add, subtract, multiply,   and divide fractions
  • Mixed numbers vs. fractions
  • Equivalent fractions
  • Prime factorization & factors
  • Fraction Calculator
  • Decimals & Percent
  • Add, subtract, multiply,   and divide decimals
  • Fractions to decimals
  • Percents to decimals
  • Percentage of a number
  • Percent word problems
  • Classify triangles
  • Classify quadrilaterals
  • Circle worksheets
  • Area & perimeter of rectangles
  • Area of triangles & polygons
  • Coordinate grid, including   moves & reflections
  • Volume & surface area
  • Pre-algebra
  • Square Roots
  • Order of operations
  • Scientific notation
  • Proportions
  • Ratio word problems
  • Write expressions
  • Evaluate expressions
  • Simplify expressions
  • Linear equations
  • Linear inequalities
  • Graphing & slope
  • Equation calculator
  • Equation editor
  • Elementary Math Games
  • Addition and subtraction
  • Math facts practice
  • The four operations
  • Factoring and number theory
  • Geometry topics
  • Middle/High School
  • Statistics & Graphs
  • Probability
  • Trigonometry
  • Logic and proof
  • For all levels
  • Favorite math puzzles
  • Favorite challenging puzzles
  • Math in real world
  • Problem solving & projects
  • For gifted children
  • Math history
  • Math games and fun websites
  • Interactive math tutorials
  • Math help & online tutoring
  • Assessment, review & test prep
  • Online math curricula
→ → Ratios

Find here an unlimited supply of worksheets with simple word problems involving ratios, meant for 6th-8th grade math. In , the problems ask for a specific ratio (such as, " "). In , the problems are the same but the ratios are supposed to be simplified.

contains varied word problems, similar to these:

Options include choosing the number of problems, the amount of workspace, font size, a border around each problem, and more. The worksheets can be generated as PDF or html files.


Each worksheet is randomly generated and thus unique. The and is placed on the second page of the file.

You can generate the worksheets — both are easy to print. To get the PDF worksheet, simply push the button titled " " or " ". To get the worksheet in html format, push the button " " or " ". This has the advantage that you can save the worksheet directly from your browser (choose File → Save) and then in Word or other word processing program.

Sometimes the generated worksheet is not exactly what you want. Just try again! To get a different worksheet using the same options:



What is the ratio given in the word problem? (grade 6)

   
 

What is the ratio given in the word problem? (with harder numbers; grade 6)

   
 

Solve ratio word problems (grade 7)
 

   
 

Solve ratio word problems
(more workspace; grade 7)

   
 

Use the generator to make customized ratio worksheets. Experiment with the options to see what their effect is.

 
(These determine the number of problems)


(only for levels 1 & 2):
      Range from
Page orientation:
    Font Size: 


Workspace: lines below each problem
Additional title & instructions  (HTML allowed)


Primary Grade Challenge Math cover

Primary Grade Challenge Math by Edward Zaccaro

A good book on problem solving with very varied word problems and strategies on how to solve problems. Includes chapters on: Sequences, Problem-solving, Money, Percents, Algebraic Thinking, Negative Numbers, Logic, Ratios, Probability, Measurements, Fractions, Division. Each chapter’s questions are broken down into four levels: easy, somewhat challenging, challenging, and very challenging.

  • International
  • Education Jobs
  • Schools directory
  • Resources Education Jobs Schools directory News Search

Ratio Cars Themed Maths Word Problems

Ratio Cars Themed Maths Word Problems

Subject: Mathematics

Age range: 11-14

Resource type: Worksheet/Activity

Tutor Cloud Shop

Last updated

24 August 2024

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

ratio problem solving ks3

We are excited to present our latest teaching resource designed to engage and inspire students in the world of mathematics. Our “Ratio Cars Themed Maths Word Problems” is a comprehensive set of 8 word questions that are both challenging and fun, aimed at improving students’ understanding of ratios through real-life scenarios.

Why Choose Our Resource?

Engaging Theme: The car-themed word problems are designed to capture the interest of students, making learning both enjoyable and relevant.

Real-life Application: By connecting mathematics to a familiar concept like cars, students can understand the practical implications of ratios in a meaningful way.

Critical Thinking: Each word problem is crafted to encourage critical thinking and problem-solving skills, helping students develop a deeper understanding of mathematical concepts.

How to Use the Resource:

Classroom Activities: Incorporate the word problems into your lessons as class activities or homework assignments to reinforce learning.

Group Work: Encourage collaboration and discussion among students by having them work on the problems in groups, fostering peer-to-peer learning.

Assessment Tool: Use the word problems as assessment tools to evaluate students’ understanding of ratios and identify areas for further development.

Please note that the PDF is not editable to maintain the integrity of the content.

Tes paid licence How can I reuse this?

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

This resource hasn't been reviewed yet

To ensure quality for our reviews, only customers who have purchased this resource can review it

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

IMAGES

  1. How To Work Out Ratio Problems Ks3

    ratio problem solving ks3

  2. Problem Solving

    ratio problem solving ks3

  3. how to do ratio problem solving

    ratio problem solving ks3

  4. Ratio and Proportion for KS3 Maths

    ratio problem solving ks3

  5. How To Work Out Ratio Problems Ks3

    ratio problem solving ks3

  6. How To Work Out Ratio Problems Ks3

    ratio problem solving ks3

VIDEO

  1. Ratio problem solving vid 18

  2. A Collection of Maths Problem Solving Questions:#2

  3. A Collection of Maths Problem Solving Questions:#33

  4. Trigonometry Problem Explained

  5. ratio problem solving method

  6. Ratio: solving a problem where you're given 2 separate ratios

COMMENTS

  1. Ratio Practice Questions

    The Corbettmaths Practice Questions on Ratio. Previous: Percentages of an Amount (Non Calculator) Practice Questions

  2. 15 Ratio Questions & Practice Problems

    Ratio in KS3 and KS4. In KS3, ratio questions will involve writing and simplifying ratios, using equivalent ratios, dividing quantities into a given ratio and will begin to look at solving problems involving ratio. In KS4 these skills are recapped and the focus will be more on problem solving questions using your knowledge of ratio.

  3. Ratio: Problem Solving Textbook Exercise

    The Corbettmaths Textbook Exercise on Ratio: Problem Solving. Welcome; Videos and Worksheets; Primary; 5-a-day. 5-a-day GCSE 9-1; 5-a-day Primary; 5-a-day Further Maths ... Ratio: Problem Solving Textbook Exercise. Click here for Questions. Textbook Exercise. Previous: Ratio: Difference Between Textbook Exercise. Next: Reflections Textbook ...

  4. GCSE/KS3

    Age range: 11-14. Resource type: Worksheet/Activity. File previews. rtf, 427.03 KB. doc, 20 KB. Ratio Harvesting Apples: Ratio and Proportion GCSE Problem Worksheets in word document. Tes classic free licence. Exactly what I needed for my ratio lesson. I adapted it slightly to suit the needs of this group of children.

  5. Solving Problems

    Lesson Objectives. To be able to: Reduce a ratio to its simplest form, including a ratio expressed in different units, recognising links with fraction notation; Divide a quantity into two or more parts in a given ratio. Use the unitary method to solve simple word problems involving ratio and direct proportion. Compare two ratios.

  6. Lesson: Ratio problems

    Q2. Which ratio could be described by the statement: A is 3/5 of B. All options are given in the form A : B. 2 : 3. 2 : 8. 3 : 5. 3 : 8. Q3. At a bake sale 25% of the cupcakes on sale are chocolate. 3/5 of the cupcakes are vanilla and the rest are peanut butter.

  7. Ratio and proportion

    Browse our tried-and-tested teaching resources for ratio, proportion, rates of change and units for KS3, GCSE and A-Level. Perfect for introducing topics, practising skills and concepts, and for maths revision. ... The ratio questions in these resources include ratio problem solving, such as sharing orange juice into a given ratio or dividing a ...

  8. Lesson: Ratio problems

    In this lesson, we will be solving problems using knowledge of ratio. Licence This content is made available by Oak National Academy Limited and its partners and licensed under Oak's terms & conditions (Collection 1), except where otherwise stated.

  9. Unit: Ratio

    In this lesson, we will identify multiplicative relationships between 'times tables' and use patterns to solve problems in direct proportion contexts. 1 Slide deck. 1 Worksheet. ... In this lesson, we will divide a quantity into a ratio of the form a : b and compare the relative sizes of the parts to each other and to the whole. 1 Slide deck. 1 ...

  10. KS3: Introduction to Ratio and Proportion [Level 4/5]

    ppt, 1.34 MB. ppt, 770.5 KB. Lesson 1: Introduction to Proportion. Lesson 2: Introduction to Direction Proportion. Lesson 3: Introduction to Ratio. Lesson 4: Ratio and Proportion Problems. Suitable for lower and middle set year 7's. Mostly worksheet free. Creative Commons "Sharealike".

  11. 15 Ratio Questions And Practice Problems Worksheet

    Help your students prepare for their Maths GCSE with this free Ratio worksheet of 15 questions and answers. Section 1 of the Ratio worksheet contains 6 multiple choice questions, with a mix of worded problems and deeper problem solving questions. Section 2 contains 9 foundation and higher level GCSE exam style Ratio questions.

  12. KS3 Maths Ratio worksheet

    KS3 Maths Ratio worksheet. Subject: Mathematics. Age range: 11-14. Resource type: Worksheet/Activity. File previews. docx, 29.64 KB. KS3 Maths Worksheet. Homework or Classwork. Objective: to be able to simplify ratios and share amounts by a given ratio A worksheet for simplifying and sharing with ratios.

  13. Using ratio worksheet

    A KS3 maths worksheet on using ratio to find one quantity when the other is known, given ratios of teachers to students needed for various school activities. ... Problem solving. Christmas. Maths. Number. Resource type. Game/quiz. Student activity. Worksheet. File. 613.99 KB. Download. File. 2.58 MB. Download. File. 361.31 KB. Free download.

  14. Ratio Problem Solving

    Ratio problem solving GCSE questions. 1. One mole of water weighs 18 18 grams and contains 6.02 \times 10^ {23} 6.02 × 1023 water molecules. Write this in the form 1gram:n 1gram: n where n n represents the number of water molecules in standard form. (3 marks)

  15. Ratio, Proportion & Rates of Change

    You and your class can revel in a whole host of worksheets and general resources that provides questions, tasks, problem solving, games and other engaging activities to enhance the educational experience. ... All Ratio and Proportion KS3 resources here presented here can also be taken advantage of by parents as well as teachers, and endeavours ...

  16. Problem solving with fractions and ratios

    6 Questions. Q1. Fill in the missing word: Variables are in proportion if they have a multiplicative relationship. constant. Q2. Select the bar model that is correctly labelled to solve this problem: Sam and Jacob share some stickers in the ratio of 3 : 7. Sam get 168 less than Jacob.

  17. Number

    Interpret and use ratio in a range of contexts, including solving word problems. Keywords: ratio, simplest form, proportion. Home ...

  18. Applied Ratio

    Applied Ratio. Lots of applied ratio here! This new lesson on three-way ratio problem solving looks at using given ratios to create others. Students will need to understand equivalence of ratios and sharing into a ratio. Recipes is a common exam question and the main task of this lesson is fully differentiated and focuses on the menu for the ...

  19. Ratio: Problem Solving Textbook Answers

    Click here for Answers. . answers. Previous: Ratio: Difference Between Textbook Answers. Next: Reflections Textbook Answers. These are the Corbettmaths Textbook Exercise answers to Ratio: Problem Solving.

  20. Free worksheets for ratio word problems

    Find here an unlimited supply of worksheets with simple word problems involving ratios, meant for 6th-8th grade math. In level 1, the problems ask for a specific ratio (such as, "Noah drew 9 hearts, 6 stars, and 12 circles. What is the ratio of circles to hearts?"). In level 2, the problems are the same but the ratios are supposed to be simplified.

  21. Ratio Cars Themed Maths Word Problems

    Our "Ratio Cars Themed Maths Word Problems" is a comprehensive set of 8 word questions that are both challenging and fun, aimed at improving students' understanding of ratios through real-life scenarios. ... Each word problem is crafted to encourage critical thinking and problem-solving skills, helping students develop a deeper ...