• Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Public Administration
  • Public Policy
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Qualitative Research (2nd edn)

  • < Previous chapter
  • Next chapter >

31 Interpretation In Qualitative Research: What, Why, How

Allen Trent, College of Education, University of Wyoming

Jeasik Cho, Department of Educational Studies, University of Wyoming

  • Published: 02 September 2020
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter addresses a wide range of concepts related to interpretation in qualitative research, examines the meaning and importance of interpretation in qualitative inquiry, and explores the ways methodology, data, and the self/researcher as instrument interact and impact interpretive processes. Additionally, the chapter presents a series of strategies for qualitative researchers engaged in the process of interpretation and closes by presenting a framework for qualitative researchers designed to inform their interpretations. The framework includes attention to the key qualitative research concepts transparency, reflexivity, analysis, validity, evidence, and literature. Four questions frame the chapter: What is interpretation, and why are interpretive strategies important in qualitative research? How do methodology, data, and the researcher/self impact interpretation in qualitative research? How do qualitative researchers engage in the process of interpretation? And, in what ways can a framework for interpretation strategies support qualitative researchers across multiple methodologies and paradigms?

“ All human knowledge takes the form of interpretation.” In this seemingly simple statement, the late German philosopher Walter Benjamin asserted that all knowledge is mediated and constructed. In doing so, he situates himself as an interpretivist, one who believes that human subjectivity, individuals’ characteristics, feelings, opinions, and experiential backgrounds impact observations, analysis of these observations, and resultant knowledge/truth constructions. Hammersley ( 2013 ) noted,

People—unlike atoms … actively interpret or make sense of their environment and of themselves; the ways in which they do this are shaped by the particular cultures in which they live; and these distinctive cultural orientations will strongly influence not only what they believe but also what they do. (p. 26)

Contrast this perspective with positivist claims that knowledge is based exclusively on external facts, objectively observed and recorded. Interpretivists, then, acknowledge that if positivistic notions of knowledge and truth are inadequate to explain social phenomena, then positivist, hard science approaches to research (i.e., the scientific method and its variants) are also inadequate and can even have a detrimental impact. According to Polyani (1967), “The ideal of exact science would turn out to be fundamentally misleading and possibly a source of devastating fallacies” (as cited in Packer, 2018 , p. 71). So, although the literature often contrasts quantitative and qualitative research as largely a difference in kinds of data employed (numerical vs. linguistic), instead, the primary differentiation is in the foundational, paradigmatic assumptions about truth, knowledge, and objectivity.

This chapter is about interpretation and the strategies that qualitative researchers use to interpret a wide variety of “texts.” Knowledge, we assert, is constructed, both individually (constructivism) and socially (constructionism). We accept this as our starting point. Our aim here is to share our perspective on a broad set of concepts associated with the interpretive, or meaning-making, process. Although it may happen at different times and in different ways, interpretation is part of almost all qualitative research.

Qualitative research is an umbrella term that encompasses a wide array of paradigmatic views, goals, and methods. Still, there are key unifying elements that include a generally constructionist epistemological standpoint, attention to primarily linguistic data, and generally accepted protocols or syntax for conducting research. Typically, qualitative researchers begin with a starting point—a curiosity, a problem in need of solutions, a research question, and/or a desire to better understand a situation from the “native” perspectives of the individuals who inhabit that context. This is what anthropologists call the emic , or insider’s, perspective. Olivier de Sardan ( 2015 ) wrote, “It evokes the meaning that social facts have for the actors concerned. It is opposed to the term etic , which, at times, designates more external or ‘objective’ data, and, at others, the researcher’s interpretive analysis” (p. 65).

From this starting point, researchers determine the appropriate kinds of data to collect, engage in fieldwork as participant observers to gather these data, organize the data, look for patterns, and attempt to understand the emic perspectives while integrating their own emergent interpretations. Researchers construct meaning from data by synthesizing research “findings,” “assertions,” or “theories” that can be shared so that others may also gain insights from the conducted inquiry. This interpretive process has a long history; hermeneutics, the theory of interpretation, blossomed in the 17th century in the form of biblical exegesis (Packer, 2018 ).

Although there are commonalities that cut across most forms of qualitative research, this is not to say that there is an accepted, linear, standardized approach. To be sure, there are an infinite number of variations and nuances in the qualitative research process. For example, some forms of inquiry begin with a firm research question; others start without even a clear focus for study. Grounded theorists begin data analysis and interpretation very early in the research process, whereas some case study researchers, for example, may collect data in the field for a period of time before seriously considering the data and its implications. Some ethnographers may be a part of the context (e.g., observing in classrooms), but they may assume more observer-like roles, as opposed to actively participating in the context. Alternatively, action researchers, in studying issues related to their own practice, are necessarily situated toward the participant end of the participant–observer continuum.

Our focus here is on one integrated part of the qualitative research process, interpretation, the hermeneutic process of collective and individual “meaning making.” Like Willig ( 2017 ), we believe “interpretation is at the heart of qualitative research because qualitative research is concerned with meaning and the process of meaning-making … qualitative data … needs to be given meaning by the researcher” (p. 276). As we discuss throughout this chapter, researchers take a variety of approaches to interpretation in qualitative work. Four general questions guide our explorations:

What is interpretation, and why are interpretive strategies important in qualitative research?

How do methodology, data, and the researcher/self impact interpretation in qualitative research?

How do qualitative researchers engage in the process of interpretation?

In what ways can a framework for interpretation strategies support qualitative researchers across multiple methodological and paradigmatic views?

We address each of these guiding questions in our attempt to explicate our interpretation of “interpretation” and, as educational researchers, we include examples from our own work to illustrate some key concepts.

What Is Interpretation, and Why Are Interpretive Strategies Important in Qualitative Research?

Qualitative researchers and those writing about qualitative methods often intertwine the terms analysis and interpretation . For example, Hubbard and Power ( 2003 ) described data analysis as “bringing order, structure, and meaning to the data” (p. 88). To us, this description combines analysis with interpretation. Although there is nothing wrong with this construction, our understanding aligns more closely with Mills’s ( 2018 ) claim that, “put simply, analysis involves summarizing what’s in the data, whereas interpretation involves making sense of—finding meaning in—that data” (p. 176). Hesse-Biber ( 2017 ) also separated out the essential process of interpretation. She described the steps in qualitative analysis and interpretation as data preparation, data exploration, and data reduction (all part of Mills’s “analysis” processes), followed by interpretation (pp. 307–328). Willig ( 2017 ) elaborated: analysis, she claims, is “sober and systematic,” whereas interpretation is associated with “creativity and the imagination … interpretation is seen as stimulating, it is interesting and it can be illuminating” (p. 276). For the purpose of this chapter, we will adhere to Mills’s distinction, understanding analysis as summarizing and organizing and interpretation as meaning making. Unavoidably, these closely related processes overlap and interact, but our focus will be primarily on the more complex of these endeavors, interpretation. Interpretation, in this sense, is in part translation, but translation is not an objective act. Instead, translation necessarily involves selectivity and the ascribing of meaning. Qualitative researchers “aim beneath manifest behavior to the meaning events have for those who experience them” (Eisner, 1991 , p. 35). The presentation of these insider/emic perspectives, coupled with researchers’ own interpretations, is a hallmark of qualitative research.

Qualitative researchers have long borrowed from extant models for fieldwork and interpretation. Approaches from anthropology and the arts have become especially prominent. For example, Eisner’s ( 1991 ) form of qualitative inquiry, educational criticism , draws heavily on accepted models of art criticism. T. Barrett ( 2011 ), an authority on art criticism, described interpretation as a complex set of processes based on a set of principles. We believe many of these principles apply as readily to qualitative research as they do to critique. The following principles, adapted from T. Barrett’s principles of interpretation (2011), inform our examination:

Qualitative phenomena have “aboutness” : All social phenomena have meaning, but meanings in this context can be multiple, even contradictory.

Interpretations are persuasive arguments : All interpretations are arguments, and qualitative researchers, like critics, strive to build strong arguments grounded in the information, or data, available.

  Some interpretations are better than others : Barrett noted that “some interpretations are better argued, better grounded with evidence, and therefore more reasonable, more certain, and more acceptable than others.” This contradicts the argument that “all interpretations are equal,” heard in the common refrain, “Well, that’s just your interpretation.”

There can be different, competing, and contradictory interpretations of the same phenomena : As noted at the beginning of this chapter, we acknowledge that subjectivity matters, and, unavoidably, it impacts one’s interpretations. As Barrett noted, “Interpretations are often based on a worldview.”

Interpretations are not (and cannot be) “right,” but instead, they can be more or less reasonable, convincing, and informative : There is never one “true” interpretation, but some interpretations are more compelling than others.

Interpretations can be judged by coherence, correspondence, and inclusiveness : Does the argument/interpretation make sense (coherence)? Does the interpretation fit the data (correspondence)? Have all data been attended to, including outlier data that do not necessarily support identified themes (inclusiveness)?

Interpretation is ultimately a communal endeavor : Initial interpretations may be incomplete, nearsighted, and/or narrow, but eventually these interpretations become richer, broader, and more inclusive. Feminist revisionist history projects are an exemplary case. Over time, the writing, art, and cultural contributions of countless women, previously ignored, diminished, or distorted, have come to be accepted as prominent contributions given serious consideration.

So, meaning is conferred; interpretations are socially constructed arguments; multiple interpretations are to be expected; and some interpretations are better than others. As we discuss later in this chapter, what makes an interpretation “better” often hinges on the purpose/goals of the research in question. Interpretations designed to generate theory, or generalizable rules, will be better for responding to research questions aligned with the aims of more traditional quantitative/positivist research, whereas interpretations designed to construct meanings through social interaction, to generate multiple perspectives, and to represent the context-specific perspectives of the research participants are better for researchers constructing thick, contextually rich descriptions, stories, or narratives. The former relies on more atomistic interpretive strategies, whereas the latter adheres to a more holistic approach (Willis, 2007 ). Both approaches to analysis/interpretation are addressed in more detail later in this chapter.

At this point, readers might ask, Why does interpretation matter, anyway? Our response to this question involves the distinctive nature of interpretation and the ability of the interpretive process to put unique fingerprints on an otherwise relatively static set of data. Once interview data are collected and transcribed (and we realize that even the process of transcription is, in part, interpretive), documents are collected, and observations are recorded, qualitative researchers could just, in good faith and with fidelity, represent the data in as straightforward ways as possible, allowing readers to “see for themselves” by sharing as much actual data (e.g., the transcribed words of the research participants) as possible. This approach, however, includes analysis, what we have defined as summarizing and organizing data for presentation, but it falls short of what we reference and define as interpretation—attempting to explain the meaning of others’ words and actions. According to Lichtman ( 2013 ),

While early efforts at qualitative research might have stopped at description, it is now more generally accepted that a qualitative researcher goes beyond pure description.… Many believe that it is the role of the researcher to bring understanding, interpretation, and meaning. (p. 17)

Because we are fond of the arts and arts-based approaches to qualitative research, an example from the late jazz drummer, Buddy Rich, seems fitting. Rich explains the importance of having the flexibility to interpret: “I don’t think any arranger should ever write a drum part for a drummer, because if a drummer can’t create his own interpretation of the chart, and he plays everything that’s written, he becomes mechanical; he has no freedom.” The same is true for qualitative researchers: without the freedom to interpret, the researcher merely regurgitates, attempting to share with readers/reviewers exactly what the research subjects shared with him or her. It is only through interpretation that the researcher, as collaborator with unavoidable subjectivities, is able to construct unique, contextualized meaning. Interpretation, then, in this sense, is knowledge construction.

In closing this section, we will illustrate the analysis-versus-interpretation distinction with the following transcript excerpt. In this study, the authors (Trent & Zorko, 2006 ) were studying student teaching from the perspective of K–12 students. This quote comes from a high school student in a focus group interview. She is describing a student teacher she had:

The right-hand column contains codes or labels applied to parts of the transcript text. Coding will be discussed in more depth later in this chapter, but for now, note that the codes are mostly summarizing the main ideas of the text, sometimes using the exact words of the research participant. This type of coding is a part of what we have called analysis—organizing and summarizing the data. It is a way of beginning to say “what is” there. As noted, though, most qualitative researchers go deeper. They want to know more than what is; they also ask, What does it mean? This is a question of interpretation.

Specific to the transcript excerpt, researchers might next begin to cluster the early codes into like groups. For example, the teacher “felt targeted,” “assumed kids were going to behave inappropriately,” and appeared to be “overwhelmed.” A researcher might cluster this group of codes in a category called “teacher feelings and perceptions” and may then cluster the codes “could not control class” and “students off task” into a category called “classroom management.” The researcher then, in taking a fresh look at these categories and the included codes, may begin to conclude that what is going on in this situation is that the student teacher does not have sufficient training in classroom management models and strategies and may also be lacking the skills she needs to build relationships with her students. These then would be interpretations, persuasive arguments connected to the study’s data. In this specific example, the researchers might proceed to write a memo about these emerging interpretations. In this memo, they might more clearly define their early categories and may also look through other data to see if there are other codes or categories that align with or overlap this initial analysis. They may write further about their emergent interpretations and, in doing so, may inform future data collection in ways that will allow them to either support or refute their early interpretations. These researchers will also likely find that the processes of analysis and interpretation are inextricably intertwined. Good interpretations very often depend on thorough and thoughtful analyses.

How Do Methodology, Data, and the Researcher/Self Impact Interpretation in Qualitative Research?

Methodological conventions guide interpretation and the use of interpretive strategies. For example, in grounded theory and in similar methodological traditions, “formal analysis begins early in the study and is nearly completed by the end of data collection” (Bogdan & Biklen, 2007 , p. 73). Alternatively, for researchers from other traditions, for example, case study researchers, “formal analysis and theory development [interpretation] do not occur until after the data collection is near complete” (p. 73).

Researchers subscribing to methodologies that prescribe early data analysis and interpretation may employ methods like analytic induction or the constant comparison method. In using analytic induction, researchers develop a rough definition of the phenomena under study; collect data to compare to this rough definition; modify the definition as needed, based on cases that both fit and do not fit the definition; and, finally, establish a clear, universal definition (theory) of the phenomena (Robinson, 1951, cited in Bogdan & Biklen, 2007 , p. 73). Generally, those using a constant comparison approach begin data collection immediately; identify key issues, events, and activities related to the study that then become categories of focus; collect data that provide incidents of these categories; write about and describe the categories, accounting for specific incidents and seeking others; discover basic processes and relationships; and, finally, code and write about the categories as theory, “grounded” in the data (Glaser, 1965 ). Although processes like analytic induction and constant comparison can be listed as steps to follow, in actuality, these are more typically recursive processes in which the researcher repeatedly goes back and forth between the data and emerging analyses and interpretations.

In addition to methodological conventions that prescribe data analysis early (e.g., grounded theory) or later (e.g., case study) in the inquiry process, methodological approaches also impact the general approach to analysis and interpretation. Ellingson ( 2011 ) situated qualitative research methodologies on a continuum spanning “science”-like approaches on one end juxtaposed with “art”-like approaches on the other.

Researchers pursuing a more science-oriented approach seek valid, reliable, generalizable knowledge; believe in neutral, objective researchers; and ultimately claim single, authoritative interpretations. Researchers adhering to these science-focused, postpositivistic approaches may count frequencies, emphasize the validity of the employed coding system, and point to intercoder reliability and random sampling as criteria that bolster the research credibility. Researchers at or near the science end of the continuum might employ analysis and interpretation strategies that include “paired comparisons,” “pile sorts,” “word counts,” identifying “key words in context,” and “triad tests” (Bernard, Wutich, & Ryan, 2017 , pp. 112, 381, 113, 170). These researchers may ultimately seek to develop taxonomies or other authoritative final products that organize and explain the collected data.

For example, in a study we conducted about preservice teachers’ experiences learning to teach second-language learners, the researchers collected larger data sets and used a statistical analysis package to analyze survey data, and the resultant findings included descriptive statistics. These survey results were supported with open-ended, qualitative data. For example, one of the study’s findings was that “a strong majority of candidates (96%) agreed that an immersion approach alone will not guarantee academic or linguistic success for second language learners.” In narrative explanations, one preservice teacher, representative of many others, remarked, “There has to be extra instructional efforts to help their students learn English … they won’t learn English by merely sitting in the classrooms” (Cho, Rios, Trent, & Mayfield, 2012 , p. 75).

Methodologies on the art side of Ellingson’s ( 2011 ) continuum, alternatively, “value humanistic, openly subjective knowledge, such as that embodied in stories, poetry, photography, and painting” (p. 599). Analysis and interpretation in these (often more contemporary) methodological approaches do not strive for “social scientific truth,” but instead are formulated to “enable us to learn about ourselves, each other, and the world through encountering the unique lens of a person’s (or a group’s) passionate rendering of a reality into a moving, aesthetic expression of meaning” (p. 599). For these “artistic/interpretivists, truths are multiple, fluctuating and ambiguous” (p. 599). Methodologies taking more subjective approaches to analysis and interpretation include autoethnography, testimonio, performance studies, feminist theorists/researchers, and others from related critical methodological forms of qualitative practice. More specifically arts-based approaches include poetic inquiry, fiction-based research, music as method, and dance and movement as inquiry (Leavy, 2017 ). Interpretation in these approaches is inherent. For example, “ interpretive poetry is understood as a method of merging the participant’s words with the researcher’s perspective” (Leavy, 2017 , p. 82).

As an example, one of us engaged in an artistic inquiry with a group of students in an art class for elementary teachers. We called it “Dreams as Data” and, among the project aims, we wanted to gather participants’ “dreams for education in the future” and display these dreams in an accessible, interactive, artistic display (see Trent, 2002 ). The intent was not to statistically analyze the dreams/data; instead, it was more universal. We wanted, as Ellingson ( 2011 , p. 599) noted, to use participant responses in ways that “enable us to learn about ourselves, each other, and the world.” The decision was made to leave responses intact and to share the whole/raw data set in the artistic display in ways that allowed the viewers to holistically analyze and interpret for themselves. Additionally, the researcher (Trent, 2002 ) collaborated with his students to construct their own contextually situated interpretations of the data. The following text is an excerpt from one participant’s response:

Almost a century ago, John Dewey eloquently wrote about the need to imagine and create the education that ALL children deserve, not just the richest, the Whitest, or the easiest to teach. At the dawn of this new century, on some mornings, I wake up fearful that we are further away from this ideal than ever.… Collective action, in a critical, hopeful, joyful, anti-racist and pro-justice spirit, is foremost in my mind as I reflect on and act in my daily work.… Although I realize the constraints on teachers and schools in the current political arena, I do believe in the power of teachers to stand next to, encourage, and believe in the students they teach—in short, to change lives. (Trent, 2002 , p. 49)

In sum, researchers whom Ellingson ( 2011 ) characterized as being on the science end of the continuum typically use more detailed or atomistic strategies to analyze and interpret qualitative data, whereas those toward the artistic end most often employ more holistic strategies. Both general approaches to qualitative data analysis and interpretation, atomistic and holistic, will be addressed later in this chapter.

As noted, qualitative researchers attend to data in a wide variety of ways depending on paradigmatic and epistemological beliefs, methodological conventions, and the purpose/aims of the research. These factors impact the kinds of data collected and the ways these data are ultimately analyzed and interpreted. For example, life history or testimonio researchers conduct extensive individual interviews, ethnographers record detailed observational notes, critical theorists may examine documents from pop culture, and ethnomethodologists may collect videotapes of interaction for analysis and interpretation.

In addition to the wide range of data types that are collected by qualitative researchers (and most qualitative researchers collect multiple forms of data), qualitative researchers, again influenced by the factors noted earlier, employ a variety of approaches to analyzing and interpreting data. As mentioned earlier in this chapter, some advocate for a detailed/atomistic, fine-grained approach to data (see, e.g., Bernard et al., 2017 ); others prefer a more broad-based, holistic, “eyeballing” of the data. According to Willis ( 2007 ), “Eyeballers reject the more structured approaches to analysis that break down the data into small units and, from the perspective of the eyeballers, destroy the wholeness and some of the meaningfulness of the data” (p. 298).

Regardless, we assert, as illustrated in Figure 31.1 , that as the process evolves, data collection becomes less prominent later in the process, as interpretation and making sense/meaning of the data becomes more prominent. It is through this emphasis on interpretation that qualitative researchers put their individual imprints on the data, allowing for the emergence of multiple, rich perspectives. This space for interpretation allows researchers the freedom Buddy Rich alluded to in his quote about interpreting musical charts. Without this freedom, Rich noted that the process would simply be “mechanical.” Furthermore, allowing space for multiple interpretations nourishes the perspectives of many others in the community. Writer and theorist Meg Wheatley explained, “Everyone in a complex system has a slightly different interpretation. The more interpretations we gather, the easier it becomes to gain a sense of the whole.” In qualitative research, “there is no ‘getting it right’ because there could be many ‘rights’ ” (as cited in Lichtman, 2013 ).

Increasing Role of Interpretation in Data Analysis

In addition to the roles methodology and data play in the interpretive process, perhaps the most important is the role of the self/the researcher in the interpretive process. According to Lichtman ( 2013 ), “Data are collected, information is gathered, settings are viewed, and realities are constructed through his or her eyes and ears … the qualitative researcher interprets and makes sense of the data” (p. 21). Eisner ( 1991 ) supported the notion of the researcher “self as instrument,” noting that expert researchers know not simply what to attend to, but also what to neglect. He describes the researcher’s role in the interpretive process as combining sensibility , the ability to observe and ascertain nuances, with schema , a deep understanding or cognitive framework of the phenomena under study.

J. Barrett ( 2007 ) described self/researcher roles as “transformations” (p. 418) at multiple points throughout the inquiry process: early in the process, researchers create representations through data generation, conducting observations and interviews and collecting documents and artifacts. Then,

transformation occurs when the “raw” data generated in the field are shaped into data records by the researcher. These data records are produced through organizing and reconstructing the researcher’s notes and transcribing audio and video recordings in the form of permanent records that serve as the “evidentiary warrants” of the generated data. The researcher strives to capture aspects of the phenomenal world with fidelity by selecting salient aspects to incorporate into the data record. (J. Barrett, 2007 , p. 418)

Transformation continues when the researcher codes, categorizes, and explores patterns in the data (the process we call analysis).

Transformations also involve interpreting what the data mean and relating these interpretations to other sources of insight about the phenomena, including findings from related research, conceptual literature, and common experience.… Data analysis and interpretation are often intertwined and rely upon the researcher’s logic, artistry, imagination, clarity, and knowledge of the field under study. (J. Barrett, 2007 , p. 418)

We mentioned the often-blended roles of participation and observation earlier in this chapter. The role(s) of the self/researcher are often described as points along a participant–observer continuum (see, e.g., Bogdan & Biklen, 2007 ). On the far observer end of this continuum, the researcher situates as detached, tries to be inconspicuous (so as not to impact/disrupt the phenomena under study), and approaches the studied context as if viewing it from behind a one-way mirror. On the opposite, participant end, the researcher is completely immersed and involved in the context. It would be difficult for an outsider to distinguish between researcher and subjects. For example, “some feminist researchers and postmodernists take a political stance and have an agenda that places the researcher in an activist posture. These researchers often become quite involved with the individuals they study and try to improve their human condition” (Lichtman, 2013 , p. 17).

We assert that most researchers fall somewhere between these poles. We believe that complete detachment is both impossible and misguided. In doing so, we, along with many others, acknowledge (and honor) the role of subjectivity, the researcher’s beliefs, opinions, biases, and predispositions. Positivist researchers seeking objective data and accounts either ignore the impact of subjectivity or attempt to drastically diminish/eliminate its impact. Even qualitative researchers have developed methods to avoid researcher subjectivity affecting research data collection, analysis, and interpretation. For example, foundational phenomenologist Husserl ( 1913/1962 ) developed the concept of bracketing , what Lichtman describes as “trying to identify your views on the topic and then putting them aside” (2013, p. 22). Like Slotnick and Janesick ( 2011 ), we ultimately claim “it is impossible to bracket yourself” (p. 1358). Instead, we take a balanced approach, like Eisner, understanding that subjectivity allows researchers to produce the rich, idiosyncratic, insightful, and yet data-based interpretations and accounts of lived experience that accomplish the primary purposes of qualitative inquiry. Eisner ( 1991 ) wrote, “Rather than regarding uniformity and standardization as the summum bonum, educational criticism [Eisner’s form of qualitative research] views unique insight as the higher good” (p. 35). That said, we also claim that, just because we acknowledge and value the role of researcher subjectivity, researchers are still obligated to ground their findings in reasonable interpretations of the data. Eisner ( 1991 ) explained:

This appreciation for personal insight as a source of meaning does not provide a license for freedom. Educational critics must provide evidence and reasons. But they reject the assumption that unique interpretation is a conceptual liability in understanding, and they see the insights secured from multiple views as more attractive than the comforts provided by a single right one. (p. 35)

Connected to this participant–observer continuum is the way the researcher positions him- or herself in relation to the “subjects” of the study. Traditionally, researchers, including early qualitative researchers, anthropologists, and ethnographers, referenced those studied as subjects . More recently, qualitative researchers better understand that research should be a reciprocal process in which both researcher and the foci of the research should derive meaningful benefit. Researchers aligned with this thinking frequently use the term participants to describe those groups and individuals included in a study. Going a step further, some researchers view research participants as experts on the studied topic and as equal collaborators in the meaning-making process. In these instances, researchers often use the terms co-researchers or co-investigators .

The qualitative researcher, then, plays significant roles throughout the inquiry process. These roles include transforming data, collaborating with research participants or co-researchers, determining appropriate points to situate along the participant–observer continuum, and ascribing personal insights, meanings, and interpretations that are both unique and justified with data exemplars. Performing these roles unavoidably impacts and changes the researcher. Slotnick and Janesick ( 2011 ) noted, “Since, in qualitative research the individual is the research instrument through which all data are passed, interpreted, and reported, the scholar’s role is constantly evolving as self evolves” (p. 1358).

As we note later, key in all this is for researchers to be transparent about the topics discussed in the preceding section: What methodological conventions have been employed and why? How have data been treated throughout the inquiry to arrive at assertions and findings that may or may not be transferable to other idiosyncratic contexts? And, finally, in what ways has the researcher/self been situated in and impacted the inquiry? Unavoidably, we assert, the self lies at the critical intersection of data and theory, and, as such, two legs of this stool, data and researcher, interact to create the third, theory.

How Do Qualitative Researchers Engage in the Process of Interpretation?

Theorists seem to have a propensity to dichotomize concepts, pulling them apart and placing binary opposites on the far ends of conceptual continuums. Qualitative research theorists are no different, and we have already mentioned some of these continua in this chapter. For example, in the previous section, we discussed the participant–observer continuum. Earlier, we referenced both Willis’s ( 2007 ) conceptualization of atomistic versus holistic approaches to qualitative analysis and interpretation and Ellingson’s ( 2011 ) science–art continuum. Each of these latter two conceptualizations inform how qualitative researchers engage in the process of interpretation.

Willis ( 2007 ) shared that the purpose of a qualitative project might be explained as “what we expect to gain from research” (p. 288). The purpose, or what we expect to gain, then guides and informs the approaches researchers might take to interpretation. Some researchers, typically positivist/postpositivist, conduct studies that aim to test theories about how the world works and/or how people behave. These researchers attempt to discover general laws, truths, or relationships that can be generalized. Others, less confident in the ability of research to attain a single, generalizable law or truth, might seek “local theory.” These researchers still seek truths, but “instead of generalizable laws or rules, they search for truths about the local context … to understand what is really happening and then to communicate the essence of this to others” (Willis, 2007 , p. 291). In both these purposes, researchers employ atomistic strategies in an inductive process in which researchers “break the data down into small units and then build broader and broader generalizations as the data analysis proceeds” (p. 317). The earlier mentioned processes of analytic induction, constant comparison, and grounded theory fit within this conceptualization of atomistic approaches to interpretation. For example, a line-by-line coding of a transcript might begin an atomistic approach to data analysis.

Alternatively, other researchers pursue distinctly different aims. Researchers with an objective description purpose focus on accurately describing the people and context under study. These researchers adhere to standards and practices designed to achieve objectivity, and their approach to interpretation falls within the binary atomistic/holistic distinction.

The purpose of hermeneutic approaches to research is to “understand the perspectives of humans. And because understanding is situational, hermeneutic research tends to look at the details of the context in which the study occurred. The result is generally rich data reports that include multiple perspectives” (Willis, 2007 , p. 293).

Still other researchers see their purpose as the creation of stories or narratives that utilize “a social process that constructs meaning through interaction … it is an effort to represent in detail the perspectives of participants … whereas description produces one truth about the topic of study, storytelling may generate multiple perspectives, interpretations, and analyses by the researcher and participants” (Willis, 2007 , p. 295).

In these latter purposes (hermeneutic, storytelling, narrative production), researchers typically employ more holistic strategies. According to Willis ( 2007 ), “Holistic approaches tend to leave the data intact and to emphasize that meaning must be derived for a contextual reading of the data rather than the extraction of data segments for detailed analysis” (p. 297). This was the case with the Dreams as Data project mentioned earlier.

We understand the propensity to dichotomize, situate concepts as binary opposites, and create neat continua between these polar descriptors. These sorts of reduction and deconstruction support our understandings and, hopefully, enable us to eventually reconstruct these ideas in meaningful ways. Still, in reality, we realize most of us will, and should, work in the middle of these conceptualizations in fluid ways that allow us to pursue strategies, processes, and theories most appropriate for the research task at hand. As noted, Ellingson ( 2011 ) set up another conceptual continuum, but, like ours, her advice was to “straddle multiple points across the field of qualitative methods” (p. 595). She explained, “I make the case for qualitative methods to be conceptualized as a continuum anchored by art and science, with vast middle spaces that embody infinite possibilities for blending artistic, expository, and social scientific ways of analysis and representation” (p. 595).

We explained at the beginning of this chapter that we view analysis as organizing and summarizing qualitative data and interpretation as constructing meaning. In this sense, analysis allows us to describe the phenomena under study. It enables us to succinctly answer what and how questions and ensures that our descriptions are grounded in the data collected. Descriptions, however, rarely respond to questions of why . Why questions are the domain of interpretation, and, as noted throughout this text, interpretation is complex. Gubrium and Holstein ( 2000 ) noted, “Traditionally, qualitative inquiry has concerned itself with what and how questions … qualitative researchers typically approach why questions cautiously, explanation is tricky business” (p. 502). Eisner ( 1991 ) described this distinctive nature of interpretation: “It means that inquirers try to account for [interpretation] what they have given account of ” (p. 35).

Our focus here is on interpretation, but interpretation requires analysis, because without clear understandings of the data and its characteristics, derived through systematic examination and organization (e.g., coding, memoing, categorizing), “interpretations” resulting from inquiry will likely be incomplete, uninformed, and inconsistent with the constructed perspectives of the study participants. Fortunately for qualitative researchers, we have many sources that lead us through analytic processes. We earlier mentioned the accepted processes of analytic induction and the constant comparison method. These detailed processes (see, e.g., Bogdan & Biklen, 2007 ) combine the inextricably linked activities of analysis and interpretation, with analysis more typically appearing as earlier steps in the process and meaning construction—interpretation—happening later.

A wide variety of resources support researchers engaged in the processes of analysis and interpretation. Saldaña ( 2011 ), for example, provided a detailed description of coding types and processes. He showed researchers how to use process coding (uses gerunds, “-ing” words to capture action), in vivo coding (uses the actual words of the research participants/ subjects), descriptive coding (uses nouns to summarize the data topics), versus coding (uses “vs” to identify conflicts and power issues), and values coding (identifies participants’ values, attitudes, and/or beliefs). To exemplify some of these coding strategies, we include an excerpt from a transcript of a meeting of a school improvement committee. In this study, the collaborators were focused on building “school community.” This excerpt illustrates the application of a variety of codes described by Saldaña to this text:

To connect and elaborate the ideas developed in coding, Saldaña ( 2011 ) suggested researchers categorize the applied codes, write memos to deepen understandings and illuminate additional questions, and identify emergent themes. To begin the categorization process, Saldaña recommended all codes be “classified into similar clusters … once the codes have been classified, a category label is applied to them” (p. 97). So, in continuing with the study of school community example coded here, the researcher might create a cluster/category called “Value of Collaboration” and in this category might include the codes “relationships,” “building community,” and “effective strategies.”

Having coded and categorized a study’s various data forms, a typical next step for researchers is to write memos or analytic memos . Writing analytic memos allows the researcher(s) to

set in words your interpretation of the data … an analytic memo further articulates your … thinking processes on what things may mean … as the study proceeds, however, initial and substantive analytic memos can be revisited and revised for eventual integration into the report itself. (Saldaña, 2011 , p. 98)

In the study of student teaching from K–12 students’ perspectives (Trent & Zorko, 2006 ), we noticed throughout our analysis a series of focus group interview quotes coded “names.” The following quote from a high school student is representative of many others:

I think that, ah, they [student teachers] should like know your face and your name because, uh, I don’t like it if they don’t and they’ll just like … cause they’ll blow you off a lot easier if they don’t know, like our new principal is here … he is, like, he always, like, tries to make sure to say hi even to the, like, not popular people if you can call it that, you know, and I mean, yah, and the people that don’t usually socialize a lot, I mean he makes an effort to know them and know their name like so they will cooperate better with him.

Although we did not ask the focus groups a specific question about whether student teachers knew the K–12 students’ names, the topic came up in every focus group interview. We coded the above excerpt and the others “knowing names,” and these data were grouped with others under the category “relationships.” In an initial analytic memo about this, the researchers wrote,

STUDENT TEACHING STUDY—MEMO #3 “Knowing Names as Relationship Building” Most groups made unsolicited mentions of student teachers knowing, or not knowing, their names. We haven’t asked students about this, but it must be important to them because it always seems to come up. Students expected student teachers to know their names. When they did, students noticed and seemed pleased. When they didn’t, students seemed disappointed, even annoyed. An elementary student told us that early in the semester, “she knew our names … cause when we rose [sic] our hands, she didn’t have to come and look at our name tags … it made me feel very happy.” A high schooler, expressing displeasure that his student teacher didn’t know students’ names, told us, “They should like know your name because it shows they care about you as a person. I mean, we know their names, so they should take the time to learn ours too.” Another high school student said that even after 3 months, she wasn’t sure the student teacher knew her name. Another student echoed, “Same here.” Each of these students asserted that this (knowing students’ names) had impacted their relationship with the student teacher. This high school student focus group stressed that a good relationship, built early, directly impacts classroom interaction and student learning. A student explained it like this: “If you get to know each other, you can have fun with them … they seem to understand you more, you’re more relaxed, and learning seems easier.”

As noted in these brief examples, coding, categorizing, and writing memos about a study’s data are all accepted processes for data analysis and allow researchers to begin constructing new understandings and forming interpretations of the studied phenomena. We find the qualitative research literature to be particularly strong in offering support and guidance for researchers engaged in these analytic practices. In addition to those already noted in this chapter, we have found the following resources provide practical, yet theoretically grounded approaches to qualitative data analysis. For more detailed, procedural, or atomistic approaches to data analysis, we direct researchers to Miles and Huberman’s classic 1994 text, Qualitative Data Analysis , and Bernard et al.’s 2017 book Analyzing Qualitative Data: Systematic Approaches. For analysis and interpretation strategies falling somewhere between the atomistic and holistic poles, we suggest Hesse-Biber and Leavy’s ( 2011 ) chapter, “Analysis and Interpretation of Qualitative Data,” in their book, The Practice of Qualitative Research (second edition); Lichtman’s chapter, “Making Meaning From Your Data,” in her 2013 book Qualitative Research in Education: A User’s Guide (third edition); and “Processing Fieldnotes: Coding and Memoing,” a chapter in Emerson, Fretz, and Shaw’s ( 1995 ) book, Writing Ethnographic Fieldwork . Each of these sources succinctly describes the processes of data preparation, data reduction, coding and categorizing data, and writing memos about emergent ideas and findings. For more holistic approaches, we have found Denzin and Lincoln’s ( 2007 ) Collecting and Interpreting Qualitative Materials and Ellis and Bochner’s ( 2000 ) chapter “Autoethnography, Personal Narrative, Reflexivity” to both be very informative. Finally, Leavy’s 2017 book, Method Meets Art: Arts-Based Research Practice , provides support and guidance to researchers engaged in arts-based research.

Even after reviewing the multiple resources for treating data included here, qualitative researchers might still be wondering, But exactly how do we interpret? In the remainder of this section and in the concluding section of this chapter, we more concretely provide responses to this question and, in closing, we propose a framework for researchers to utilize as they engage in the complex, ambiguous, and yet exciting process of constructing meanings and new understandings from qualitative sources.

These meanings and understandings are often presented as theory, but theories in this sense should be viewed more as “guides to perception” as opposed to “devices that lead to the tight control or precise prediction of events” (Eisner, 1991 , p. 95). Perhaps Erickson’s ( 1986 ) concept of assertions is a more appropriate aim for qualitative researchers. He claimed that assertions are declarative statements; they include a summary of the new understandings, and they are supported by evidence/data. These assertions are open to revision and are revised when disconfirming evidence requires modification. Assertions, theories, or other explanations resulting from interpretation in research are typically presented as “findings” in written research reports. Belgrave and Smith ( 2002 ) emphasized the importance of these interpretations (as opposed to descriptions): “The core of the report is not the events reported by the respondent, but rather the subjective meaning of the reported events for the respondent” (p. 248).

Mills ( 2018 ) viewed interpretation as responding to the question, So what? He provided researchers a series of concrete strategies for both analysis and interpretation. Specific to interpretation, Mills (pp. 204–207) suggested a variety of techniques, including the following:

“ Extend the analysis ”: In doing so, researchers ask additional questions about the research. The data appear to say X , but could it be otherwise? In what ways do the data support emergent finding X ? And, in what ways do they not?

“ Connect findings with personal experience ”: Using this technique, researchers share interpretations based on their intimate knowledge of the context, the observed actions of the individuals in the studied context, and the data points that support emerging interpretations, as well as their awareness of discrepant events or outlier data. In a sense, the researcher is saying, “Based on my experiences in conducting this study, this is what I make of it all.”

“ Seek the advice of ‘critical’ friends ”: In doing so, researchers utilize trusted colleagues, fellow researchers, experts in the field of study, and others to offer insights, alternative interpretations, and the application of their own unique lenses to a researcher’s initial findings. We especially like this strategy because we acknowledge that, too often, qualitative interpretation is a “solo” affair.

“ Contextualize findings in the literature ”: This allows researchers to compare their interpretations to those of others writing about and studying the same/similar phenomena. The results of this contextualization may be that the current study’s findings correspond with the findings of other researchers. The results might, alternatively, differ from the findings of other researchers. In either instance, the researcher can highlight his or her unique contributions to our understanding of the topic under study.

“ Turn to theory ”: Mills defined theory as “an analytical and interpretive framework that helps the researcher make sense of ‘what is going on’ in the social setting being studied.” In turning to theory, researchers search for increasing levels of abstraction and move beyond purely descriptive accounts. Connecting to extant or generating new theory enables researchers to link their work to the broader contemporary issues in the field.

Other theorists offer additional advice for researchers engaged in the act of interpretation. Richardson ( 1995 ) reminded us to account for the power dynamics in the researcher–researched relationship and notes that, in doing so, we can allow for oppressed and marginalized voices to be heard in context. Bogdan and Biklen ( 2007 ) suggested that researchers engaged in interpretation revisit foundational writing about qualitative research, read studies related to the current research, ask evaluative questions (e.g., Is what I’m seeing here good or bad?), ask about implications of particular findings/interpretations, think about the audience for interpretations, look for stories and incidents that illustrate a specific finding/interpretation, and attempt to summarize key interpretations in a succinct paragraph. All these suggestions can be pertinent in certain situations and with particular methodological approaches. In the next and closing section of this chapter, we present a framework for interpretive strategies we believe will support, guide, and be applicable to qualitative researchers across multiple methodologies and paradigms.

In What Ways Can a Framework for Interpretation Strategies Support Qualitative Researchers across Multiple Methodological and Paradigmatic Views?

The process of qualitative research is often compared to a journey, one without a detailed itinerary and ending, but with general direction and aims and yet an open-endedness that adds excitement and thrives on curiosity. Qualitative researchers are travelers. They travel physically to field sites; they travel mentally through various epistemological, theoretical, and methodological grounds; they travel through a series of problem-finding, access, data collection, and data analysis processes; and, finally—the topic of this chapter—they travel through the process of making meaning of all this physical and cognitive travel via interpretation.

Although travel is an appropriate metaphor to describe the journey of qualitative researchers, we will also use “travel” to symbolize a framework for qualitative research interpretation strategies. By design, this framework applies across multiple paradigmatic, epistemological, and methodological traditions. The application of this framework is not formulaic or highly prescriptive; it is also not an anything-goes approach. It falls, and is applicable, between these poles, giving concrete (suggested) direction to qualitative researchers wanting to make the most of the interpretations that result from their research and yet allowing the necessary flexibility for researchers to employ the methods, theories, and approaches they deem most appropriate to the research problem(s) under study.

TRAVEL, a Comprehensive Approach to Qualitative Interpretation

In using the word TRAVEL as a mnemonic device, our aim is to highlight six essential concepts we argue all qualitative researchers should attend to in the interpretive process: transparency, reflexivity, analysis, validity, evidence, and literature. The importance of each is addressed here.

Transparency , as a research concept seems, well, transparent. But, too often, we read qualitative research reports and are left with many questions: How were research participants and the topic of study selected/excluded? How were the data collected, when, and for how long? Who analyzed and interpreted these data? A single researcher? Multiple? What interpretive strategies were employed? Are there data points that substantiate these interpretations/findings? What analytic procedures were used to organize the data prior to making the presented interpretations? In being transparent about data collection, analysis, and interpretation processes, researchers allow reviewers/readers insight into the research endeavor, and this transparency leads to credibility for both researcher and researcher’s claims. Altheide and Johnson ( 2011 ) explained,

There is great diversity of qualitative research.… While these approaches differ, they also share an ethical obligation to make public their claims, to show the reader, audience, or consumer why they should be trusted as faithful accounts of some phenomenon. (p. 584)

This includes, they noted, articulating

what the different sources of data were, how they were interwoven, and … how subsequent interpretations and conclusions are more or less closely tied to the various data … the main concern is that the connection be apparent, and to the extent possible, transparent. (p. 590)

In the Dreams as Data art and research project noted earlier, transparency was addressed in multiple ways. Readers of the project write-up were informed that interpretations resulting from the study, framed as themes , were a result of collaborative analysis that included insights from both students and instructor. Viewers of the art installation/data display had the rare opportunity to see all participant responses. In other words, viewers had access to the entire raw data set (see Trent, 2002 ). More frequently, we encounter only research “findings” already distilled, analyzed, and interpreted in research accounts, often by a single researcher. Allowing research consumers access to the data to interpret for themselves in the Dreams project was an intentional attempt at transparency.

Reflexivity , the second of our concepts for interpretive researcher consideration, has garnered a great deal of attention in qualitative research literature. Some have called this increased attention the reflexive turn (see, e.g., Denzin & Lincoln, 2004 ).

Although you can find many meanings for the term reflexivity, it is usually associated with a critical reflection on the practice and process of research and the role of the researcher. It concerns itself with the impact of the researcher on the system and the system on the researcher. It acknowledges the mutual relationships between the researcher and who and what is studied … by acknowledging the role of the self in qualitative research, the researcher is able to sort through biases and think about how they affect various aspects of the research, especially interpretation of meanings. (Lichtman, 2013 , p. 165)

As with transparency, attending to reflexivity allows researchers to attach credibility to presented findings. Providing a reflexive account of researcher subjectivity and the interactions of this subjectivity within the research process is a way for researchers to communicate openly with their audience. Instead of trying to exhume inherent bias from the process, qualitative researchers share with readers the value of having a specific, idiosyncratic positionality. As a result, situated, contextualized interpretations are viewed as an asset, as opposed to a liability.

LaBanca ( 2011 ), acknowledging the often solitary nature of qualitative research, called for researchers to engage others in the reflexive process. Like many other researchers, LaBanca utilized a researcher journal to chronicle reflexive thoughts, explorations, and understandings, but he took it a step farther. Realizing the value of others’ input, LaBanca posts his reflexive journal entries on a blog (what he calls an online reflexivity blog ) and invites critical friends, other researchers, and interested members of the community to audit his reflexive moves, providing insights, questions, and critique that inform his research and study interpretations.

We agree this is a novel approach worth considering. We, too, understand that multiple interpreters will undoubtedly produce multiple interpretations, a richness of qualitative research. So, we suggest researchers consider bringing others in before the production of the report. This could be fruitful in multiple stages of the inquiry process, but especially in the complex, idiosyncratic processes of reflexivity and interpretation. We are both educators and educational researchers. Historically, each of these roles has tended to be constructed as an isolated endeavor, the solitary teacher, the solo researcher/fieldworker. As noted earlier and in the analysis section that follows, introducing collaborative processes to what has often been a solitary activity offers much promise for generating rich interpretations that benefit from multiple perspectives.

Being consciously reflexive throughout our practice as researchers has benefitted us in many ways. In a study of teacher education curricula designed to prepare preservice teachers to support second-language learners, we realized hard truths that caused us to reflect on and adapt our own practices as teacher educators. Reflexivity can inform a researcher at all parts of the inquiry, even in early stages. For example, one of us was beginning a study of instructional practices in an elementary school. The communicated methods of the study indicated that the researcher would be largely an observer. Early fieldwork revealed that the researcher became much more involved as a participant than anticipated. Deep reflection and writing about the classroom interactions allowed the researcher to realize that the initial purpose of the research was not being accomplished, and the researcher believed he was having a negative impact on the classroom culture. Reflexivity in this instance prompted the researcher to leave the field and abandon the project as it was just beginning. Researchers should plan to openly engage in reflexive activities, including writing about their ongoing reflections and subjectivities. Including excerpts of this writing in research account supports our earlier recommendation of transparency.

Early in this chapter, for the purposes of discussion and examination, we defined analysis as “summarizing and organizing” data in a qualitative study and interpretation as “meaning making.” Although our focus has been on interpretation as the primary topic, the importance of good analysis cannot be underestimated, because without it, resultant interpretations are likely incomplete and potentially uninformed. Comprehensive analysis puts researchers in a position to be deeply familiar with collected data and to organize these data into forms that lead to rich, unique interpretations, and yet interpretations that are clearly connected to data exemplars. Although we find it advantageous to examine analysis and interpretation as different but related practices, in reality, the lines blur as qualitative researchers engage in these recursive processes.

We earlier noted our affinity for a variety of approaches to analysis (see, e.g., Hesse-Biber & Leavy, 2011 ; Lichtman, 2013 ; or Saldaña, 2011 ). Emerson et al. ( 1995 ) presented a grounded approach to qualitative data analysis: In early stages, researchers engage in a close, line-by-line reading of data/collected text and accompany this reading with open coding , a process of categorizing and labeling the inquiry data. Next, researchers write initial memos to describe and organize the data under analysis. These analytic phases allow the researcher(s) to prepare, organize, summarize, and understand the data, in preparation for the more interpretive processes of focused coding and the writing up of interpretations and themes in the form of integrative memos .

Similarly, Mills ( 2018 ) provided guidance on the process of analysis for qualitative action researchers. His suggestions for organizing and summarizing data include coding (labeling data and looking for patterns); identifying themes by considering the big picture while looking for recurrent phrases, descriptions, or topics; asking key questions about the study data (who, what, where, when, why, and how); developing concept maps (graphic organizers that show initial organization and relationships in the data); and stating what’s missing by articulating what data are not present (pp. 179–189).

Many theorists, like Emerson et al. ( 1995 ) and Mills ( 2018 ) noted here, provide guidance for individual researchers engaged in individual data collection, analysis, and interpretation; others, however, invite us to consider the benefits of collaboratively engaging in these processes through the use of collaborative research and analysis teams. Paulus, Woodside, and Ziegler ( 2008 ) wrote about their experiences in collaborative qualitative research: “Collaborative research often refers to collaboration among the researcher and the participants. Few studies investigate the collaborative process among researchers themselves” (p. 226).

Paulus et al. ( 2008 ) claimed that the collaborative process “challenged and transformed our assumptions about qualitative research” (p. 226). Engaging in reflexivity, analysis, and interpretation as a collaborative enabled these researchers to reframe their views about the research process, finding that the process was much more recursive, as opposed to following a linear progression. They also found that cooperatively analyzing and interpreting data yielded “collaboratively constructed meanings” as opposed to “individual discoveries.” And finally, instead of the traditional “individual products” resulting from solo research, collaborative interpretation allowed researchers to participate in an “ongoing conversation” (p. 226).

These researchers explained that engaging in collaborative analysis and interpretation of qualitative data challenged their previously held assumptions. They noted,

through collaboration, procedures are likely to be transparent to the group and can, therefore, be made public. Data analysis benefits from an iterative, dialogic, and collaborative process because thinking is made explicit in a way that is difficult to replicate as a single researcher. (Paulus et al., 2008 , p. 236)

They shared that, during the collaborative process, “we constantly checked our interpretation against the text, the context, prior interpretations, and each other’s interpretations” (p. 234).

We, too, have engaged in analysis similar to these described processes, including working on research teams. We encourage other researchers to find processes that fit with the methodology and data of a particular study, use the techniques and strategies most appropriate, and then cite the utilized authority to justify the selected path. We urge traditionally solo researchers to consider trying a collaborative approach. Generally, we suggest researchers be familiar with a wide repertoire of practices. In doing so, they will be in better positions to select and use strategies most appropriate for their studies and data. Succinctly preparing, organizing, categorizing, and summarizing data sets the researcher(s) up to construct meaningful interpretations in the forms of assertions, findings, themes, and theories.

Researchers want their findings to be sound, backed by evidence, and justifiable and to accurately represent the phenomena under study. In short, researchers seek validity for their work. We assert that qualitative researchers should attend to validity concepts as a part of their interpretive practices. We have previously written and theorized about validity, and, in doing so, we have highlighted and labeled what we consider two distinctly different approaches, transactional and transformational (Cho & Trent, 2006 ). We define transactional validity in qualitative research as an interactive process occurring among the researcher, the researched, and the collected data, one that is aimed at achieving a relatively higher level of accuracy. Techniques, methods, and/or strategies are employed during the conduct of the inquiry. These techniques, such as member checking and triangulation, are seen as a medium with which to ensure an accurate reflection of reality (or, at least, participants’ constructions of reality). Lincoln and Guba’s ( 1985 ) widely known notion of trustworthiness in “naturalistic inquiry” is grounded in this approach. In seeking trustworthiness, researchers attend to research credibility, transferability, dependability, and confirmability. Validity approaches described by Maxwell ( 1992 ) as “descriptive” and “interpretive” also proceed in the usage of transactional processes.

For example, in the write-up of a study on the facilitation of teacher research, one of us (Trent, 2012 ) wrote about the use of transactional processes:

“Member checking is asking the members of the population being studied for their reaction to the findings” (Sagor, 2000 , p. 136). Interpretations and findings of this research, in draft form, were shared with teachers (for member checking) on multiple occasions throughout the study. Additionally, teachers reviewed and provided feedback on the final draft of this article. (p. 44)

This member checking led to changes in some resultant interpretations (called findings in this particular study) and to adaptations of others that shaped these findings in ways that made them both richer and more contextualized.

Alternatively, in transformational approaches, validity is not so much something that can be achieved solely by employing certain techniques. Transformationalists assert that because traditional or positivist inquiry is no longer seen as an absolute means to truth in the realm of human science, alternative notions of validity should be considered to achieve social justice, deeper understandings, broader visions, and other legitimate aims of qualitative research. In this sense, it is the ameliorative aspects of the research that achieve (or do not achieve) its validity. Validity is determined by the resultant actions prompted by the research endeavor.

Lather ( 1993 ), Richardson ( 1997 ), and others (e.g., Lenzo, 1995 ; Scheurich, 1996 ) proposed a transgressive approach to validity that emphasized a higher degree of self-reflexivity. For example, Lather proposed a “catalytic validity” described as “the degree to which the research empowers and emancipates the research subjects” (Scheurich, 1996 , p. 4). Beverley ( 2000 , p. 556) proposed testimonio as a qualitative research strategy. These first-person narratives find their validity in their ability to raise consciousness and thus provoke political action to remedy problems of oppressed peoples (e.g., poverty, marginality, exploitation).

We, too, have pursued research with transformational aims. In the earlier mentioned study of preservice teachers’ experiences learning to teach second-language learners (Cho et al., 2012 ), our aims were to empower faculty members, evolve the curriculum, and, ultimately, better serve preservice teachers so that they might better serve English-language learners in their classrooms. As program curricula and activities have changed as a result, we claim a degree of transformational validity for this research.

Important, then, for qualitative researchers throughout the inquiry, but especially when engaged in the process of interpretation, is to determine the type(s) of validity applicable to the study. What are the aims of the study? Providing an “accurate” account of studied phenomena? Empowering participants to take action for themselves and others? The determination of this purpose will, in turn, inform researchers’ analysis and interpretation of data. Understanding and attending to the appropriate validity criteria will bolster researcher claims to meaningful findings and assertions.

Regardless of purpose or chosen validity considerations, qualitative research depends on evidence . Researchers in different qualitative methodologies rely on different types of evidence to support their claims. Qualitative researchers typically utilize a variety of forms of evidence including texts (written notes, transcripts, images, etc.), audio and video recordings, cultural artifacts, documents related to the inquiry, journal entries, and field notes taken during observations of social contexts and interactions. Schwandt ( 2001 ) wrote,

Evidence is essential to justification, and justification takes the form of an argument about the merit(s) of a given claim. It is generally accepted that no evidence is conclusive or unassailable (and hence, no argument is foolproof). Thus, evidence must often be judged for its credibility, and that typically means examining its source and the procedures by which it was produced [thus the need for transparency discussed earlier]. (p. 82)

Altheide and Johnson ( 2011 ) drew a distinction between evidence and facts:

Qualitative researchers distinguish evidence from facts. Evidence and facts are similar but not identical. We can often agree on facts, e.g., there is a rock, it is harder than cotton candy. Evidence involves an assertion that some facts are relevant to an argument or claim about a relationship. Since a position in an argument is likely tied to an ideological or even epistemological position, evidence is not completely bound by facts, but it is more problematic and subject to disagreement. (p. 586)

Inquirers should make every attempt to link evidence to claims (or findings, interpretations, assertions, conclusions, etc.). There are many strategies for making these connections. Induction involves accumulating multiple data points to infer a general conclusion. Confirmation entails directly linking evidence to resultant interpretations. Testability/falsifiability means illustrating that evidence does not necessarily contradict the claim/interpretation and so increases the credibility of the claim (Schwandt, 2001 ). In the study about learning to teach second-language learners, for example, a study finding (Cho et al., 2012 ) was that “as a moral claim , candidates increasingly [in higher levels of the teacher education program] feel more responsible and committed to … [English language learners]” (p. 77). We supported this finding with a series of data points that included the following preservice teacher response: “It is as much the responsibility of the teacher to help teach second-language learners the English language as it is our responsibility to teach traditional English speakers to read or correctly perform math functions.” Claims supported by evidence allow readers to see for themselves and to both examine researcher assertions in tandem with evidence and form further interpretations of their own.

Some postmodernists reject the notion that qualitative interpretations are arguments based on evidence. Instead, they argue that qualitative accounts are not intended to faithfully represent that experience, but instead are designed to evoke some feelings or reactions in the reader of the account (Schwandt, 2001 ). We argue that, even in these instances where transformational validity concerns take priority over transactional processes, evidence still matters. Did the assertions accomplish the evocative aims? What evidence/arguments were used to evoke these reactions? Does the presented claim correspond with the study’s evidence? Is the account inclusive? In other words, does it attend to all evidence or selectively compartmentalize some data while capitalizing on other evidentiary forms?

Researchers, we argue, should be both transparent and reflexive about these questions and, regardless of research methodology or purpose, should share with readers of the account their evidentiary moves and aims. Altheide and Johnson ( 2011 ) called this an evidentiary narrative and explain:

Ultimately, evidence is bound up with our identity in a situation.… An “evidentiary narrative” emerges from a reconsideration of how knowledge and belief systems in everyday life are tied to epistemic communities that provide perspectives, scenarios, and scripts that reflect symbolic and social moral orders. An “evidentiary narrative” symbolically joins an actor, an audience, a point of view (definition of a situation), assumptions, and a claim about a relationship between two or more phenomena. If any of these factors are not part of the context of meaning for a claim, it will not be honored, and thus, not seen as evidence. (p. 686)

In sum, readers/consumers of a research account deserve to know how evidence was treated and viewed in an inquiry. They want and should be aware of accounts that aim to evoke versus represent, and then they can apply their own criteria (including the potential transferability to their situated context). Renowned ethnographer and qualitative research theorist Harry Wolcott ( 1990 ) urged researchers to “let readers ‘see’ for themselves” by providing more detail rather than less and by sharing primary data/evidence to support interpretations. In the end, readers do not expect perfection. Writer Eric Liu ( 2010 ) explained, “We don’t expect flawless interpretation. We expect good faith. We demand honesty.”

Last, in this journey through concepts we assert are pertinent to researchers engaged in interpretive processes, we include attention to the literature . In discussing literature, qualitative researchers typically mean publications about the prior research conducted on topics aligned with or related to a study. Most often, this research/literature is reviewed and compiled by researchers in a section of the research report titled “Literature Review.” It is here we find others’ studies, methods, and theories related to our topics of study, and it is here we hope the assertions and theories that result from our studies will someday reside.

We acknowledge the value of being familiar with research related to topics of study. This familiarity can inform multiple phases of the inquiry process. Understanding the extant knowledge base can inform research questions and topic selection, data collection and analysis plans, and the interpretive process. In what ways do the interpretations from this study correspond with other research conducted on this topic? Do findings/interpretations corroborate, expand, or contradict other researchers’ interpretations of similar phenomena? In any of these scenarios (correspondence, expansion, contradiction), new findings and interpretations from a study add to and deepen the knowledge base, or literature, on a topic of investigation.

For example, in our literature review for the study of student teaching, we quickly determined that the knowledge base and extant theories related to the student teaching experience were immense, but also quickly realized that few, if any, studies had examined student teaching from the perspective of the K–12 students who had the student teachers. This focus on the literature related to our topic of student teaching prompted us to embark on a study that would fill a gap in this literature: Most of the knowledge base focused on the experiences and learning of the student teachers themselves. Our study, then, by focusing on the K–12 students’ perspectives, added literature/theories/assertions to a previously untapped area. The “literature” in this area (at least we would like to think) is now more robust as a result.

In another example, a research team (Trent et al., 2003 ) focused on institutional diversity efforts, mined the literature, found an appropriate existing (a priori) set of theories/assertions, and then used the existing theoretical framework from the literature as a framework to analyze data, in this case, a variety of institutional activities related to diversity.

Conducting a literature review to explore extant theories on a topic of study can serve a variety of purposes. As evidenced in these examples, consulting the literature/extant theory can reveal gaps in the literature. A literature review might also lead researchers to existing theoretical frameworks that support analysis and interpretation of their data (as in the use of the a priori framework example). Finally, a review of current theories related to a topic of inquiry might confirm that much theory already exists, but that further study may add to, bolster, and/or elaborate on the current knowledge base.

Guidance for researchers conducting literature reviews is plentiful. Lichtman ( 2013 ) suggested researchers conduct a brief literature review, begin research, and then update and modify the literature review as the inquiry unfolds. She suggested reviewing a wide range of related materials (not just scholarly journals) and additionally suggested that researchers attend to literature on methodology, not just the topic of study. She also encouraged researchers to bracket and write down thoughts on the research topic as they review the literature, and, important for this chapter, that researchers “integrate your literature review throughout your writing rather than using a traditional approach of placing it in a separate chapter” (p. 173).

We agree that the power of a literature review to provide context for a study can be maximized when this information is not compartmentalized apart from a study’s findings. Integrating (or at least revisiting) reviewed literature juxtaposed alongside findings can illustrate how new interpretations add to an evolving story. Eisenhart ( 1998 ) expanded the traditional conception of the literature review and discussed the concept of an interpretive review . By taking this interpretive approach, Eisenhart claimed that reviews, alongside related interpretations/findings on a specific topic, have the potential to allow readers to see the studied phenomena in entirely new ways, through new lenses, revealing heretofore unconsidered perspectives. Reviews that offer surprising and enriching perspectives on meanings and circumstances “shake things up, break down boundaries, and cause things (or thinking) to expand” (p. 394). Coupling reviews of this sort with current interpretations will “give us stories that startle us with what we have failed to notice” (p. 395).

In reviews of research studies, it can certainly be important to evaluate the findings in light of established theories and methods [the sorts of things typically included in literature reviews]. However, it also seems important to ask how well the studies disrupt conventional assumptions and help us to reconfigure new, more inclusive, and more promising perspectives on human views and actions. From an interpretivist perspective, it would be most important to review how well methods and findings permit readers to grasp the sense of unfamiliar perspectives and actions. (Eisenhart, 1998 , p. 397)

Though our interpretation-related journey in this chapter nears an end, we are hopeful it is just the beginning of multiple new conversations among ourselves and in concert with other qualitative researchers. Our aims have been to circumscribe interpretation in qualitative research; emphasize the importance of interpretation in achieving the aims of the qualitative project; discuss the interactions of methodology, data, and the researcher/self as these concepts and theories intertwine with interpretive processes; describe some concrete ways that qualitative inquirers engage the process of interpretation; and, finally, provide a framework of interpretive strategies that may serve as a guide for ourselves and other researchers.

In closing, we note that the TRAVEL framework, construed as a journey to be undertaken by researchers engaged in interpretive processes, is not designed to be rigid or prescriptive, but instead is designed to be a flexible set of concepts that will inform researchers across multiple epistemological, methodological, and theoretical paradigms. We chose the concepts of transparency, reflexivity, analysis, validity, evidence, and literature (TRAVEL) because they are applicable to the infinite journeys undertaken by qualitative researchers who have come before and to those who will come after us. As we journeyed through our interpretations of interpretation, we have discovered new things about ourselves and our work. We hope readers also garner insights that enrich their interpretive excursions. Happy travels!

Altheide, D. , & Johnson, J. M. ( 2011 ). Reflections on interpretive adequacy in qualitative research. In N. M. Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research (pp. 595–610). Thousand Oaks, CA: Sage.

Google Scholar

Google Preview

Barrett, J. ( 2007 ). The researcher as instrument: Learning to conduct qualitative research through analyzing and interpreting a choral rehearsal.   Music Education Research, 9, 417–433.

Barrett, T. ( 2011 ). Criticizing art: Understanding the contemporary (3rd ed.). New York, NY: McGraw–Hill.

Belgrave, L. L. , & Smith, K. J. ( 2002 ). Negotiated validity in collaborative ethnography. In N. M. Denzin & Y. S. Lincoln (Eds.), The qualitative inquiry reader (pp. 233–255). Thousand Oaks, CA: Sage.

Bernard, H. R. , Wutich, A. , & Ryan, G. W. ( 2017 ). Analyzing qualitative data: Systematic approaches (2nd ed.). Thousand Oaks, CA: Sage.

Beverly, J. ( 2000 ). Testimonio, subalternity, and narrative authority. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 555–566). Thousand Oaks, CA: Sage.

Bogdan, R. C. , & Biklen, S. K. ( 2007 ). Qualitative research for education: An introduction to theories and methods (5th ed.). Boston, MA: Allyn & Bacon.

Cho, J. , Rios, F. , Trent, A. , & Mayfield, K. ( 2012 ). Integrating language diversity into teacher education curricula in a rural context: Candidates’ developmental perspectives and understandings.   Teacher Education Quarterly, 39(2), 63–85.

Cho, J. , & Trent, A. ( 2006 ). Validity in qualitative research revisited.   QR—Qualitative Research Journal, 6, 319–340.

Denzin, N. M. , & Lincoln, Y. S . (Eds.). ( 2004 ). Handbook of qualitative research . Newbury Park, CA: Sage.

Denzin, N. M. , & Lincoln, Y. S. ( 2007 ). Collecting and interpreting qualitative materials . Thousand Oaks, CA: Sage.

Eisenhart, M. ( 1998 ). On the subject of interpretive reviews.   Review of Educational Research, 68, 391–393.

Eisner, E. ( 1991 ). The enlightened eye: Qualitative inquiry and the enhancement of educational practice . New York, NY: Macmillan.

Ellingson, L. L. ( 2011 ). Analysis and representation across the continuum. In N. M. Denzin & Y. S. Lincoln (Eds.), The Sage handbook of qualitative research (pp. 595–610). Thousand Oaks, CA: Sage.

Ellis, C. , & Bochner, A. P. ( 2000 ). Autoethnography, personal narrative, reflexivity: Researcher as subject. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 733–768). Thousand Oaks, CA: Sage.

Emerson, R. , Fretz, R. , & Shaw, L. ( 1995 ). Writing ethnographic fieldwork . Chicago, IL: University of Chicago Press.

Erickson, F. ( 1986 ). Qualitative methods in research in teaching and learning. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp 119–161). New York, NY: Macmillan.

Glaser, B. ( 1965 ). The constant comparative method of qualitative analysis.   Social Problems, 12, 436–445.

Gubrium, J. F. , & Holstein, J. A. ( 2000 ). Analyzing interpretive practice. In N. M. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 487–508). Thousand Oaks, CA: Sage.

Hammersley, M. ( 2013 ). What is qualitative research? London, England: Bloomsbury Academic.

Hesse-Biber, S. N. ( 2017 ). The practice of qualitative research (3rd ed.). Thousand Oaks, CA: Sage.

Hesse-Biber, S. N. , & Leavy, P. ( 2011 ). The practice of qualitative research (2nd ed.). Thousand Oaks, CA: Sage.

Hubbard, R. S. , & Power, B. M. ( 2003 ). The art of classroom inquiry: A handbook for teacher researchers . Portsmouth, NH: Heinemann.

Husserl, E. ( 1913 /1962). Ideas: general introduction to pure phenomenology (W. R. Boyce Gibson, Trans.). London, England: Collier.

LaBanca, F. ( 2011 ). Online dynamic asynchronous audit strategy for reflexivity in the qualitative paradigm.   Qualitative Report, 16, 1160–1171.

Lather, P. ( 1993 ). Fertile obsession: Validity after poststructuralism.   Sociological Quarterly, 34, 673–693.

Leavy, P. ( 2017 ). Method meets art: Arts-based research practice (2nd ed.). New York, NY: Guilford Press.

Lenzo, K. ( 1995 ). Validity and self reflexivity meet poststructuralism: Scientific ethos and the transgressive self.   Educational Researcher, 24(4), 17–23, 45.

Lichtman, M. ( 2013 ). Qualitative research in education: A user’s guide (3rd ed.). Thousand Oaks, CA: Sage.

Lincoln, Y. S. , & Guba, E. G. ( 1985 ). Naturalistic inquiry . Beverly Hills, CA: Sage.

Liu, E. (2010). The real meaning of balls and strikes . Retrieved from http://www.huffingtonpost.com/eric-liu/the-real-meaning-of-balls_b_660915.html

Maxwell, J. ( 1992 ). Understanding and validity in qualitative research.   Harvard Educational Review, 62, 279–300.

Miles, M. B. , & Huberman, A. M. ( 1994 ). Qualitative data analysis . Thousand Oaks, CA: Sage.

Mills, G. E. ( 2018 ). Action research: A guide for the teacher researcher (6th ed.). New York, NY: Pearson.

Olivier de Sardan, J. P. ( 2015 ). Epistemology, fieldwork, and anthropology. New York, NY: Palgrave Macmillan.

Packer, M. J. ( 2018 ). The science of qualitative research (2nd ed.). Cambridge, England: Cambridge University Press.

Paulus, T. , Woodside, M. , & Ziegler, M. ( 2008 ). Extending the conversation: Qualitative research as dialogic collaborative process.   Qualitative Report, 13, 226–243.

Richardson, L. ( 1995 ). Writing stories: Co-authoring the “sea monster,” a writing story.   Qualitative Inquiry, 1, 189–203.

Richardson, L. ( 1997 ). Fields of play: Constructing an academic life . New Brunswick, NJ: Rutgers University Press.

Sagor, R. ( 2000 ). Guiding school improvement with action research . Alexandria, VA: ASCD.

Saldaña, J. ( 2011 ). Fundamentals of qualitative research . New York, NY: Oxford University Press.

Scheurich, J. ( 1996 ). The masks of validity: A deconstructive investigation.   Qualitative Studies in Education, 9, 49–60.

Schwandt, T. A. ( 2001 ). Dictionary of qualitative inquiry . Thousand Oaks, CA: Sage.

Slotnick, R. C. , & Janesick, V. J. ( 2011 ). Conversations on method: Deconstructing policy through the researcher reflective journal.   Qualitative Report, 16, 1352–1360.

Trent, A. ( 2002 ). Dreams as data: Art installation as heady research,   Teacher Education Quarterly, 29(4), 39–51.

Trent, A. ( 2012 ). Action research on action research: A facilitator’s account.   Action Learning and Action Research Journal, 18, 35–67.

Trent, A. , Rios, F. , Antell, J. , Berube, W. , Bialostok, S. , Cardona, D. , … Rush, T. ( 2003 ). Problems and possibilities in the pursuit of diversity: An institutional analysis.   Equity & Excellence, 36, 213–224.

Trent, A. , & Zorko, L. ( 2006 ). Listening to students: “New” perspectives on student teaching.   Teacher Education & Practice, 19, 55–70.

Willig, C. ( 2017 ). Interpretation in qualitative research. In C. Willig & W. Stainton-Rogers (Eds.), The Sage handbook of qualitative research in psychology (2nd ed., pp. 267–290). London, England: Sage.

Willis, J. W. ( 2007 ). Foundations of qualitative research: Interpretive and critical approaches . Thousand Oaks, CA: Sage.

Wolcott, H. ( 1990 ). On seeking-and rejecting-validity in qualitative research. In E. Eisner & A. Peshkin (Eds.), Qualitative inquiry in education: The continuing debate (pp. 121–152). New York, NY: Teachers College Press.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

qualitative research may use tables and graphs in interpreting data

The Ultimate Guide to Qualitative Research - Part 2: Handling Qualitative Data

qualitative research may use tables and graphs in interpreting data

  • Handling qualitative data
  • Transcripts
  • Field notes
  • Survey data and responses
  • Visual and audio data
  • Data organization
  • Data coding
  • Coding frame
  • Auto and smart coding
  • Organizing codes
  • Qualitative data analysis
  • Content analysis
  • Thematic analysis
  • Thematic analysis vs. content analysis
  • Narrative research
  • Phenomenological research
  • Discourse analysis
  • Grounded theory
  • Deductive reasoning
  • Inductive reasoning
  • Inductive vs. deductive reasoning

The role of data interpretation

Quantitative data interpretation, qualitative data interpretation, using atlas.ti for interpreting data, data visualization.

  • Qualitative analysis software

What is data interpretation? Tricks & techniques

Raw data by itself isn't helpful to research without data interpretation. The need to organize and analyze data so that research can produce actionable insights and develop new knowledge affirms the importance of the data interpretation process.

qualitative research may use tables and graphs in interpreting data

Let's look at why data interpretation is important to the research process, how you can interpret data, and how the tools in ATLAS.ti can help you look at your data in meaningful ways.

The data collection process is just one part of research, and one that can often provide a lot of data without any easy answers that instantly stick out to researchers or their audiences. An example of data that requires an interpretation process is a corpus, or a large body of text, meant to represent some language use (e.g., literature, conversation). A corpus of text can collect millions of words from written texts and spoken interactions.

Challenge of data interpretation

While this is an impressive body of data, sifting through this corpus can be difficult. If you are trying to make assertions about language based on the corpus data, what data is useful to you? How do you separate irrelevant data from valuable insights? How can you persuade your audience to understand your research?

Data interpretation is a process that involves assigning meaning to the data. A researcher's responsibility is to explain and persuade their research audience on how they see the data and what insights can be drawn from their interpretation.

Interpreting raw data to produce insights

Unstructured data is any sort of data that is not organized by some predetermined structure or that is in its raw, naturally-occurring form. Without data analysis , the data is difficult to interpret to generate useful insights.

This unstructured data is not always mindless noise, however. The importance of data interpretation can be seen in examples like a blog with a series of articles on a particular subject or a cookbook with a collection of recipes. These pieces of writing are useful and perhaps interesting to readers of various backgrounds or knowledge bases.

Data interpretation starting with research inquiry

People can read a set of information, such as a blog article or a recipe, in different ways (some may read the ingredients first while others skip to the directions). Data interpretation grounds the understanding and reporting of the research in clearly defined terms such that, even if different scholars disagree on the findings of the research, they at least share a foundational understanding of how the research is interpreted.

Moreover, suppose someone is reading a set of recipes to understand the food culture of a particular place or group of people. A straightforward recipe may not explicitly or neatly convey this information. Still, a thorough reader can analyze bits and pieces of each recipe in that cookbook to understand the ingredients, tools, and methods used in that particular food culture.

As a result, your research inquiry may require you to reorganize the data in a way that allows for easier data interpretation. Analyzing data as a part of the interpretation process, especially in qualitative research , means looking for the relevant data, summarizing data for the insights they hold, and discarding any irrelevant data that is not useful to the given research inquiry.

qualitative research may use tables and graphs in interpreting data

Let's look at a fairly straightforward process that can be used to turn data into valuable insights through data interpretation.

Sorting the data

Think about our previous example with a collection of recipes. You can break down a recipe into various "data points," which you might consider categories or points of measurement. A recipe can be broken down into ingredients, directions, or even preparation time, things that are often written into a recipe. Or you might look at recipes from a different angle using less observed categories, such as the cost to make the recipe or skills required to make the recipe. Whatever categories you choose, however, will determine how you interpret the data.

As a result, think about what you are trying to examine and identify what categories or measures should be used to analyze and understand the data. These data points will form your "buckets" to sort your collected data into more meaningful information for data interpretation.

Identifying trends and patterns

Once you've sorted enough of the data into your categorical buckets, you might begin to notice some telling patterns. Suppose you are analyzing a cookbook of barbecue recipes for nutritional value. In that case, you might find an abundance of recipes with high fat and sugar, while a collection of salad recipes might yield patterns of dishes with low carbohydrates. These patterns will form the basis for answering your research inquiry.

Drawing connections

The meaning of these trends and patterns is not always self-evident. When people wear the same trendy clothes or listen to the same popular music, they may do so because the clothing or music is genuinely good or because they are following the crowd. They may even be trying to impress someone they know.

As you look at the patterns in your data, you can start to look at whether the patterns coincide (or co-occur) to determine a starting point for discussion about whether they are related to each other. Whether these co-occurrences share a meaningful relationship or are only loosely correlated with each other, all data interpretation of patterns starts by looking within and across patterns and co-occurrences among them.

qualitative research may use tables and graphs in interpreting data

Use ATLAS.ti to interpret data for your research

An intuitive interface combined with powerful data interpretation tools, available starting with a free trial.

Quantitative analysis through statistical methods benefits researchers who are looking to measure a particular phenomenon. Numerical data can measure the different degrees of a concept, such as temperature, speed, wealth, or even academic achievement.

Quantitative data analysis is a matter of rearranging the data to make it easier to measure. Imagine sorting a child's piggy bank full of coins into different types of coins (e.g., pennies, nickels, dimes, and quarters). Without sorting these coins for measurement, it becomes difficult to efficiently measure the value of the coins in that piggy bank.

Quantitative data interpretation method

A good data interpretation question regarding that child's piggy bank might be, "Has the child saved up enough money?" Then it's a matter of deciding what "enough money" might be, whether it's $20, $50, or even $100. Once that determination has been made, you can then answer your question after your quantitative analysis (i.e., counting the coins).

Although counting the money in a child’s piggy bank is a simple example, it illustrates the fact that a lot of quantitative data interpretation depends on having a particular value or set of values in mind against which your analysis will be compared. The number of calories or the amount of sodium you might consider healthy will allow you to determine whether a particular food is healthy. At the same time, your monthly income will inform whether you see a certain product as cheap or expensive. In any case, interpreting quantitative data often starts with having a set theory or prediction that you apply to the data.

qualitative research may use tables and graphs in interpreting data

Data interpretation refers to the process of examining and reviewing data for the purpose of describing the aspects of a phenomenon or concept. Qualitative research seldom has numerical data arising from data collection; instead, qualities of a phenomenon are often generated from this research. With this in mind, the role of data interpretation is to persuade research audiences as to what qualities in a particular concept or phenomenon are significant.

While there are many different ways to analyze complex data that is qualitative in nature, here is a simple process for data interpretation that might be persuasive to your research audience:

  • Describe data in explicit detail - what is happening in the data?
  • Describe the meaning of the data - why is it important?
  • Describe the significance - what can this meaning be used for?

Qualitative data interpretation method

Coding remains one of the most important data interpretation methods in qualitative research. Coding provides a structure to the data that facilitates empirical analysis. Without this coding, a researcher can give their impression of what the data means but may not be able to persuade their audience with the sufficient evidence that structured data can provide.

Ultimately, coding reduces the breadth of the collected data to make it more manageable. Instead of thousands of lines of raw data, effective coding can produce a couple of dozen codes that can be analyzed for frequency or used to organize categorical data along the lines of themes or patterns. Analyzing qualitative data through coding involves closely looking at the data and summarizing data segments into short but descriptive phrases. These phrases or codes, when applied throughout entire data sets, can help to restructure the data in a manner that allows for easier analysis or greater clarity as to the meaning of the data relevant to the research inquiry.

Code-Document Analysis

A comparison of data sets can be useful to interpret patterns in the data. Code-Document Analysis in ATLAS.ti looks for code frequencies in particular documents or document groups. This is useful for many tasks, such as interpreting perspectives across multiple interviews or survey records. Where each document represents the opinions of a distinct person, how do perspectives differ from person to person? Understanding these differences, in this case, starts with determining where the interpretive codes in your project are applied.

Software is great at accomplishing mechanical tasks that would otherwise take time and effort better spent on analysis. Such tasks include searching for words or phrases across documents, completing complicated queries to organize the relevant information in one place, and employing statistical methods to allow the researcher to reach relevant conclusions about their data. What technology cannot do is interpret data for you; it can reorganize the data in a way that allows you to more easily reach a conclusion as to the insights you can draw from the research, but ultimately it is up to you to make the final determination as to the meaning of the patterns in the data.

This is true whether you are engaged in qualitative or quantitative research. Whether you are trying to define "happiness" or "hot" (because a "hot day" will mean different things to different people, regardless of the number representing the temperature), it is inevitably your decision to interpret the data you're given, regardless of the help a computer may provide to you.

Think of qualitative data analysis software like ATLAS.ti as an assistant to support you through the research process so you can identify key insights from your data, as opposed to identifying those insights for you. This is especially preferable in the social sciences, where human interaction and cultural practices are subjectively and socially constructed in a way that only humans can adequately understand. Human interpretation of qualitative data is not merely unavoidable; in the social sciences, it is an outright necessity.

qualitative research may use tables and graphs in interpreting data

With this in mind, ATLAS.ti has several tools that can help make interpreting data easier and more insightful. These tools can facilitate the reporting and visualization of the data analysis for your benefit and the benefit of your research audience.

Code Co-Occurrence Analysis

The overlapping of codes in qualitative data is a useful starting point to determine relationships between phenomena. ATLAS.ti's Code Co-Occurrence Analysis tool helps researchers identify relationships between codes so that data interpretation regarding any possible connections can contribute to a greater understanding of the data.

qualitative research may use tables and graphs in interpreting data

Memos are an important part of any research, which is why ATLAS.ti provides a space separate from your data and codes for research notes and reflection memos. Especially in the social sciences or any field that explores socially constructed concepts, a reflective memo can provide essential documentation of how researchers are involved in data gathering and data interpretation.

qualitative research may use tables and graphs in interpreting data

With memos, the steps of analysis can be traced, and the entire process is open to view. Detailed documentation of the data analysis and data interpretation process can also facilitate the reporting and visualization of research when it comes time to share the research with audiences.

qualitative research may use tables and graphs in interpreting data

In research, the main objective in explicitly conducting and detailing your data interpretation process is to report your research in a manner that is meaningful and persuasive to your audience. Where possible, researchers benefit from visualizing their data interpretation to provide research audiences with the necessary clarity to understand the findings of the research.

Ultimately, the various data analysis processes you employ should lead to some form of reporting where the research audience can easily understand the data interpretation. Otherwise, data interpretation holds no value if it is not understood, let alone accepted, by the research audience.

Data visualization tools in ATLAS.ti

ATLAS.ti has a number of tools that can assist with creating illustrations that contribute to explaining your data interpretation to your research audience.

qualitative research may use tables and graphs in interpreting data

A TreeMap of your codes can be a useful visualization if you are conducting a thematic analysis of your data. Codes in ATLAS.ti can be marked by different colors, which is illustrative if you use colors to distinguish between different themes in your research. As codes are applied to your data, the more frequently occurring codes take up more space in the TreeMap, allowing you to examine which codes and, by use of colors, which themes are more and less apparent and help you generate theory.

qualitative research may use tables and graphs in interpreting data

Sankey diagrams

The Code Co-Occurrence and Code-Document Analyses in ATLAS.ti can produce tables, graphs, and also Sankey diagrams, which are useful for visualizing the relative relationships between different codes or between codes and documents. While numerical data generated for tables can tell one story of your data interpretation, the visual information in a Sankey diagram, where higher frequencies are represented by thicker lines, can be particularly persuasive to your research audience.

qualitative research may use tables and graphs in interpreting data

When it comes time to report actionable insights contributing to a theory or conceptualization, you can benefit from a visualization of the theory you have generated from your data interpretation. Networks are made up of elements of your project, usually codes, but also other elements such as documents, code groups, document groups, quotations, and memos. Researchers can then define links between these elements to illustrate connections that arise from your data interpretation.

qualitative research may use tables and graphs in interpreting data

Turn data into insights with ATLAS.ti

Powerful tools to help you interpret data at your fingertips. Click here for a free trial.

Study Site Homepage

  • Request new password
  • Create a new account

Interpreting Qualitative Data

Student resources, on this website students will find:, video textbook, whether you want to build confidence around key terms or develop more practical skills around working with qualitative data, david’s collection of videos is here to help..

Video Glossary: Get to grips with definitions of key terms and see an example or application of that term in practice.

Confused?: Troubleshoot common points of confusion and get guidance from David about what to do when something doesn’t go as planned.

Curious?: Go beyond the text and explore more detailed examples and more advanced applications of qualitative techniques, tools and methods.

Need a Quick Solution?: Make the most of your research process even when you’re short on time and keep track of the most important elements of each step.

Methods in Practice: Get a window into each of the methods discussed in the book and see examples of research in the real world.

Additional Online Resources

Want more support on your exam, assessment or research project explore the rest of the online resources..

Multiple Choice Questions to test yourself on important concepts and identify your strengths and weakness for each chapter.

Assessment Toolkit to get started on your assessment, keep momentum and get the mark you want with weblinks, templates, checklists, and examples which help you complete a literature review, case study, group report, or oral exam.

Exercise Workbook to revise, reflect, and take notes in your exercise workbook, and helps you apply your newfound knowledge to real-world research examples and begin to work with qualitative data.

Explore Online provides insider guidance from trusted experts on interpreting and doing qualitative research through this treasure chest of online resources collated from the explore online links in the book.

Just click on the links to the left.

For advice to support your studies visit the SAGE Study Skills website for videos, quizzes and tips to help with your essay and dissertation writing, presentations, literature reviews and more.

To learn more about the book, visit the SAGE Website . 

Disclaimer:

This website may contain links to both internal and external websites. All links included were active at the time the website was launched. SAGE does not operate these external websites and does not necessarily endorse the views expressed within them. SAGE cannot take responsibility for the changing content or nature of linked sites, as these sites are outside of our control and subject to change without our knowledge. If you do find an inactive link to an external website, please try to locate that website by using a search engine. SAGE will endeavour to update inactive or broken links when possible.

Logo for OPEN OCO

4.2 Frequency Distributions for Qualitative Data

4.2: frequency distributions for qualitative data, 4.2.1: describing qualitative data.

Qualitative data is a categorical measurement expressed not in terms of numbers, but rather by means of a natural language description.

Learning Objectives

Summarize the processes available to researchers that allow qualitative data to be analyzed similarly to quantitative data.

Key Takeaways

  • Observer impression is when expert or bystander observers examine the data, interpret it via forming an impression and report their impression in a structured and sometimes quantitative form.
  • To discover patterns in qualitative data, one must try to find frequencies, magnitudes, structures, processes, causes, and consequences.
  • The Ground Theory Method (GTM) is an inductive approach to research in which theories are generated solely from an examination of data rather than being derived deductively.
  • Coding is an interpretive technique that both organizes the data and provides a means to introduce the interpretations of it into certain quantitative methods.
  • Most coding requires the analyst to read the data and demarcate segments within it.

Qualitative data is a categorical measurement expressed not in terms of numbers, but rather by means of a natural language description. In statistics, it is often used interchangeably with “categorical” data. When there is not a natural ordering of the categories, we call these nominal categories. Examples might be gender, race, religion, or sport.

When the categories may be ordered, these are called ordinal variables. Categorical variables that judge size (small, medium, large, etc.) are ordinal variables. Attitudes (strongly disagree, disagree, neutral, agree, strongly agree) are also ordinal variables; however, we may not know which value is the best or worst of these issues. Note that the distance between these categories is not something we can measure.

Qualitative Analysis

Qualitative Analysis is the numerical examination and interpretation of observations for the purpose of discovering underlying meanings and patterns of relationships. The most common form of qualitative qualitative analysis is observer impression—when an expert or bystander observers examine the data, interpret it via forming an impression and report their impression in a structured and sometimes quantitative form.

An important first step in qualitative analysis and observer impression is to discover patterns. One must try to find frequencies, magnitudes, structures, processes, causes, and consequences. One method of this is through cross-case analysis, which is analysis that involves an examination of more than one case. Cross-case analysis can be further broken down into variable-oriented analysis and case-oriented analysis . Variable-oriented analysis is that which describes and/or explains a particular variable, while case-oriented analysis aims to understand a particular case or several cases by looking closely at the details of each.

The Ground Theory Method (GTM) is an inductive approach to research, introduced by Barney Glaser and Anselm Strauss, in which theories are generated solely from an examination of data rather than being derived deductively. A component of the Grounded Theory Method is the constant comparative method , in which observations are compared with one another and with the evolving inductive theory.

Four Stages of the Constant Comparative Method

  • comparing incident application to each category
  • integrating categories and their properties
  • delimiting the theory
  • writing theory

Other methods of discovering patterns include semiotics and conversation analysis. Semiotics is the study of signs and the meanings associated with them. It is commonly associated with content analysis. Conversation analysis is a meticulous analysis of the details of conversation, based on a complete transcript that includes pauses and other non-verbal communication.

Conceptualization and Coding

In quantitative analysis, it is usually obvious what the variables to be analyzed are, for example, race, gender, income, education, etc. Deciding what is a variable, and how to code each subject on each variable, is more difficult in qualitative data analysis.

Concept formation is the creation of variables (usually called themes ) out of raw qualitative data. It is more sophisticated in qualitative data analysis. Casing is an important part of concept formation. It is the process of determining what represents a case. Coding is the actual transformation of qualitative data into themes.

More specifically, coding is an interpretive technique that both organizes the data and provides a means to introduce the interpretations of it into certain quantitative methods. Most coding requires the analyst to read the data and demarcate segments within it, which may be done at different times throughout the process. Each segment is labeled with a “code” – usually a word or short phrase that suggests how the associated data segments inform the research objectives. When coding is complete, the analyst prepares reports via a mix of: summarizing the prevalence of codes, discussing similarities and differences in related codes across distinct original sources/contexts, or comparing the relationship between one or more codes.

Some qualitative data that is highly structured (e.g., close-end responses from surveys or tightly defined interview questions) is typically coded without additional segmenting of the content. In these cases, codes are often applied as a layer on top of the data. Quantitative analysis of these codes is typically the capstone analytical step for this type of qualitative data.

A frequent criticism of coding method is that it seeks to transform qualitative data into empirically valid data that contain actual value range, structural proportion, contrast ratios, and scientific objective properties. This can tend to drain the data of its variety, richness, and individual character. Analysts respond to this criticism by thoroughly expositing their definitions of codes and linking those codes soundly to the underlying data, therein bringing back some of the richness that might be absent from a mere list of codes.

Alternatives to Coding

Alternatives to coding include recursive abstraction and mechanical techniques. Recursive abstraction involves the summarizing of datasets. Those summaries are then further summarized and so on. The end result is a more compact summary that would have been difficult to accurately discern without the preceding steps of distillation.

Mechanical techniques rely on leveraging computers to scan and reduce large sets of qualitative data. At their most basic level, mechanical techniques rely on counting words, phrases, or coincidences of tokens within the data. Often referred to as content analysis, the output from these techniques is amenable to many advanced statistical analyses.

4.2.2: Interpreting Distributions Constructed by Others

Graphs of distributions created by others can be misleading, either intentionally or unintentionally.

Learning Objective

Demonstrate how distributions constructed by others may be misleading, either intentionally or unintentionally

  • Misleading graphs will misrepresent data, constituting a misuse of statistics that may result in an incorrect conclusion being derived from them.
  • Graphs can be misleading if they’re used excessively, if they use the third dimensions where it is unnecessary, if they are improperly scaled, or if they’re truncated.

The use of biased or loaded words in the graph’s title, axis labels, or caption may inappropriately prime the reader.

Distributions Constructed by Others

Unless you are constructing a graph of a distribution on your own, you need to be very careful about how you read and interpret graphs. Graphs are made in order to display data; however, some people may intentionally try to mislead the reader in order to convey certain information.

In statistics, these types of graphs are called misleading graphs (or distorted graphs). They misrepresent data, constituting a misuse of statistics that may result in an incorrect conclusion being derived from them. Graphs may be misleading through being excessively complex or poorly constructed. Even when well-constructed to accurately display the characteristics of their data, graphs can be subject to different interpretation.

Misleading graphs may be created intentionally to hinder the proper interpretation of data, but can also be created accidentally by users for a variety of reasons including unfamiliarity with the graphing software, the misinterpretation of the data, or because the data cannot be accurately conveyed. Misleading graphs are often used in false advertising.

Types of Misleading Graphs

The use of graphs where they are not needed can lead to unnecessary confusion/interpretation. Generally, the more explanation a graph needs, the less the graph itself is needed. Graphs do not always convey information better than tables. This is often called excessive usage.

Pie charts can be especially misleading. Comparing pie charts of different sizes could be misleading as people cannot accurately read the comparative area of circles. The usage of thin slices which are hard to discern may be difficult to interpret. The usage of percentages as labels on a pie chart can be misleading when the sample size is small. A perspective (3D) pie chart is used to give the chart a 3D look. Often used for aesthetic reasons, the third dimension does not improve the reading of the data; on the contrary, these plots are difficult to interpret because of the distorted effect of perspective associated with the third dimension. In a 3D pie chart, the slices that are closer to the reader appear to be larger than those in the back due to the angle at which they’re presented .

3-D Pie Chart appears to be misleading when compared to a 2-D pie chart

3-D Pie Chart

In the misleading pie chart, Item C appears to be at least as large as Item A, whereas in actuality, it is less than half as large.

When using pictogram in bar graphs, they should not be scaled uniformly as this creates a perceptually misleading comparison. The area of the pictogram is interpreted instead of only its height or width. This causes the scaling to make the difference appear to be squared .

image

Improper Scaling

Note how in the improperly scaled pictogram bar graph, the image for B is actually 9 times larger than A.

A truncated graph has a y-axis that does not start at 0. These graphs can create the impression of important change where there is relatively little change .

image

Truncated Bar Graph

Note that both of these graphs display identical data; however, in the truncated bar graph on the left, the data appear to show significant differences, whereas in the regular bar graph on the right, these differences are hardly visible.

Usage in the Real World

Graphs are useful in the summary and interpretation of financial data. Graphs allow for trends in large data sets to be seen while also allowing the data to be interpreted by non-specialists. Graphs are often used in corporate annual reports as a form of impression management. In the United States, graphs do not have to be audited as they fall under AU Section 550 Other Information in Documents Containing Audited Financial Statements. Several published studies have looked at the usage of graphs in corporate reports for different corporations in different countries and have found frequent usage of improper design, selectivity, and measurement distortion within these reports. The presence of misleading graphs in annual reports have led to requests for standards to be set. Research has found that while readers with poor levels of financial understanding have a greater chance of being misinformed by misleading graphs, even those with financial understanding, such as loan officers, may be misled.

4.2.3: Graphs of Qualitative Data

Qualitative data can be graphed in various ways, including using pie charts and bar charts.

Create a pie chart and bar chart representing qualitative data.

  • Since qualitative data represent individual categories, calculating descriptive statistics is limited. Mean, median, and measures of spread cannot be calculated; however, the mode can be calculated.
  • One way in which we can graphically represent qualitative data is in a pie chart. Categories are represented by slices of the pie, whose areas are proportional to the percentage of items in that category.
  • The key point about the qualitative data is that they do not come with a pre-established ordering (the way numbers are ordered).
  • Bar charts can also be used to graph qualitative data. The Y axis displays the frequencies and the X axis displays the categories.

Qualitative Data

Recall the difference between quantitative and qualitative data. Quantitative data are data about numeric values. Qualitative data are measures of types and may be represented as a name or symbol. Statistics that describe or summarize can be produced for quantitative data and to a lesser extent for qualitative data. As quantitative data are always numeric they can be ordered, added together, and the frequency of an observation can be counted. Therefore, all descriptive statistics can be calculated using quantitative data. As qualitative data represent individual (mutually exclusive) categories, the descriptive statistics that can be calculated are limited, as many of these techniques require numeric values which can be logically ordered from lowest to highest and which express a count. Mode can be calculated, as it it the most frequency observed value. Median, measures of shape, measures of spread such as the range and interquartile range, require an ordered data set with a logical low-end value and high-end value. Variance and standard deviation require the mean to be calculated, which is not appropriate for categorical variables as they have no numerical value.

Graphing Qualitative Data

There are a number of ways in which qualitative data can be displayed. A good way to demonstrate the different types of graphs is by looking at the following example:

When Apple Computer introduced the iMac computer in August 1998, the company wanted to learn whether the iMac was expanding Apple’s market share. Was the iMac just attracting previous Macintosh owners? Or was it purchased by newcomers to the computer market, and by previous Windows users who were switching over? To find out, 500 iMac customers were interviewed. Each customer was categorized as a previous Macintosh owners, a previous Windows owner, or a new computer purchaser. The qualitative data results were displayed in a frequency table.

Frequency Table for Mac Data

The frequency table shows how many people in the study were previous Mac owners, previous Windows owners, or neither.

The key point about the qualitative data is that they do not come with a pre-established ordering (the way numbers are ordered). For example, there is no natural sense in which the category of previous Windows users comes before or after the category of previous iMac users. This situation may be contrasted with quantitative data, such as a person’s weight. People of one weight are naturally ordered with respect to people of a different weight.

One way in which we can graphically represent this qualitative data is in a pie chart. In a pie chart, each category is represented by a slice of the pie. The area of the slice is proportional to the percentage of responses in the category. This is simply the relative frequency multiplied by 100. Although most iMac purchasers were Macintosh owners, Apple was encouraged by the 12% of purchasers who were former Windows users, and by the 17% of purchasers who were buying a computer for the first time .

Pie Chart for Mac Data

Pie Chart for Mac Data

The pie chart shows how many people in the study were previous Mac owners, previous Windows owners, or neither.

Pie charts are effective for displaying the relative frequencies of a small number of categories. They are not recommended, however, when you have a large number of categories. Pie charts can also be confusing when they are used to compare the outcomes of two different surveys or experiments.

Here is another important point about pie charts. If they are based on a small number of observations, it can be misleading to label the pie slices with percentages. For example, if just 5 people had been interviewed by Apple Computers, and 3 were former Windows users, it would be misleading to display a pie chart with the Windows slice showing 60%. With so few people interviewed, such a large percentage of Windows users might easily have accord since chance can cause large errors with small samples. In this case, it is better to alert the user of the pie chart to the actual numbers involved. The slices should therefore be labeled with the actual frequencies observed (e.g., 3) instead of with percentages.

Bar Chart for Mac Data

Bar Chart for Mac Data

The bar chart shows how many people in the study were previous Mac owners, previous Windows owners, or neither.

Bar charts can also be used to represent frequencies of different categories . Frequencies are shown on the Y axis and the type of computer previously owned is shown on the X axis. Typically the Y-axis shows the number of observations rather than the percentage of observations in each category as is typical in pie charts.

4.2.4: Misleading Graphs

A misleading graph misrepresents data and may result in incorrectly derived conclusions.

  • Misleading graphs may be created intentionally to hinder the proper interpretation of data, but can be also created accidentally by users for a variety of reasons.
  • The use of graphs where they are not needed can lead to unnecessary confusion/interpretation. This is referred to as excessive usage.
  • The use of biased or loaded words in the graph’s title, axis labels, or caption may inappropriately sway the reader. This is called biased labeling.
  • Graphs can also be misleading if they are improperly labeled, if they are truncated, if there is an axis change, if they lack a scale, or if they are unnecessarily displayed in the third dimension.

What is a Misleading Graph?

In statistics, a misleading graph, also known as a distorted graph, is a graph which misrepresents data, constituting a misuse of statistics and with the result that an incorrect conclusion may be derived from it. Graphs may be misleading through being excessively complex or poorly constructed. Even when well-constructed to accurately display the characteristics of their data, graphs can be subject to different interpretation.

Misleading graphs may be created intentionally to hinder the proper interpretation of data, but can be also created accidentally by users for a variety of reasons including unfamiliarity with the graphing software, the misinterpretation of the data, or because the data cannot be accurately conveyed. Misleading graphs are often used in false advertising. One of the first authors to write about misleading graphs was Darrell Huff, who published the best-selling book How to Lie With Statistics in 1954. It is still in print.

Excessive Usage

There are numerous ways in which a misleading graph may be constructed. The use of graphs where they are not needed can lead to unnecessary confusion/interpretation. Generally, the more explanation a graph needs, the less the graph itself is needed. Graphs do not always convey information better than tables.

Biased Labeling

The use of biased or loaded words in the graph’s title, axis labels, or caption may inappropriately sway the reader.

When using pictogram in bar graphs, they should not be scaled uniformly as this creates a perceptually misleading comparison. The area of the pictogram is interpreted instead of only its height or width. This causes the scaling to make the difference appear to be squared.

Improper Scaling

In the improperly scaled pictogram bar graph, the image for B is actually 9 times larger than A.

Truncated Graphs

A truncated graph has a y-axis that does not start at zero. These graphs can create the impression of important change where there is relatively little change.Truncated graphs are useful in illustrating small differences. Graphs may also be truncated to save space. Commercial software such as MS Excel will tend to truncate graphs by default if the values are all within a narrow range.

Truncated Bar Graph allows a viewer to better contrast data

Both of these graphs display identical data; however, in the truncated bar graph on the left, the data appear to show significant differences, whereas in the regular bar graph on the right, these differences are hardly visible.

Misleading 3D Pie Charts

A perspective (3D) pie chart is used to give the chart a 3D look. Often used for aesthetic reasons, the third dimension does not improve the reading of the data; on the contrary, these plots are difficult to interpret because of the distorted effect of perspective associated with the third dimension. The use of superfluous dimensions not used to display the data of interest is discouraged for charts in general, not only for pie charts. In a 3D pie chart, the slices that are closer to the reader appear to be larger than those in the back due to the angle at which they’re presented .

3D graphics can be misleading when compared to a 2D version

Misleading 3D Pie Chart

Other Misleading Graphs

Graphs can also be misleading for a variety of other reasons. An axis change affects how the graph appears in terms of its growth and volatility. A graph with no scale can be easily manipulated to make the difference between bars look larger or smaller than they actually are. Improper intervals can affect the appearance of a graph, as well as omitting data. Finally, graphs can also be misleading if they are overly complex or poorly constructed.

Graphs in Finance and Corporate Reports

Graphs are useful in the summary and interpretation of financial data. Graphs allow for trends in large data sets to be seen while also allowing the data to be interpreted by non-specialists. Graphs are often used in corporate annual reports as a form of impression management. In the United States, graphs do not have to be audited. Several published studies have looked at the usage of graphs in corporate reports for different corporations in different countries and have found frequent usage of improper design, selectivity, and measurement distortion within these reports. The presence of misleading graphs in annual reports have led to requests for standards to be set. Research has found that while readers with poor levels of financial understanding have a greater chance of being misinformed by misleading graphs, even those with financial understanding, such as loan officers, may be misled.

4.2.5: Do It Yourself: Plotting Qualitative Frequency Distributions

Qualitative frequency distributions can be displayed in bar charts, Pareto charts, and pie charts.

  • The first step to plotting a qualitative frequency distributions is to create a frequency table.
  • If drawing a bar graph or Pareto chart, first draw two axes. The y-axis is labeled with the frequency (or relative frequency) and the x-axis is labeled with the category.
  • In bar graphs and Pareto graphs, draw rectangles of equal width and heights that correspond to their frequencies/relative frequencies.
  • A pie chart shows the distribution in a different way, where each percentage is a slice of the pie.

Ways to Organize Data

When data is collected from a survey or an experiment, they must be organized into a manageable form. Data that is not organized is referred to as raw data. A few different ways to organize data include tables, graphs, and numerical summaries.

One common way to organize qualitative, or categorical, data is in a frequency distribution. A frequency distribution lists the number of occurrences for each category of data.

Step-by-Step Guide to Plotting Qualitative Frequency Distributions

The first step towards plotting a qualitative frequency distribution is to create a table of the given or collected data. For example, let’s say you want to determine the distribution of colors in a bag of Skittles. You open up a bag, and you find that there are 15 red, 7 orange, 7 yellow, 13 green, and 8 purple. Create a two column chart, with the titles of Color and Frequency, and fill in the corresponding data.

To construct a frequency distribution in the form of a bar graph, you must first draw two axes. The y-axis (vertical axis) should be labeled with the frequencies and the x-axis (horizontal axis) should be labeled with each category (in this case, Skittle color). The graph is completed by drawing rectangles of equal width for each color, each as tall as their frequency .

Bar Graph

This graph shows the frequency distribution of a bag of Skittles.

Sometimes a relative frequency distribution is desired. If this is the case, simply add a third column in the table called Relative Frequency. This is found by dividing the frequency of each color by the total number of Skittles (50, in this case). This number can be written as a decimal, a percentage, or as a fraction. If we decided to use decimals, the relative frequencies for the red, orange, yellow, green, and purple Skittles are respectively 0.3, 0.14, 0.14, 0.26, and 0.16. The decimals should add up to 1 (or very close to it due to rounding). Bar graphs for relative frequency distributions are very similar to bar graphs for regular frequency distributions, except this time, the y-axis will be labeled with the relative frequency rather than just simply the frequency. A special type of bar graph where the bars are drawn in decreasing order of relative frequency is called a Pareto chart .

Pareto Chart

Pareto Chart

This graph shows the relative frequency distribution of a bag of Skittles.

The distribution can also be displayed in a pie chart, where the percentages of the colors are broken down into slices of the pie. This may be done by hand, or by using a computer program such as Microsoft Excel . If done by hand, you must find out how many degrees each piece of the pie corresponds to. Since a circle has 360 degrees, this is found out by multiplying the relative frequencies by 360. The respective degrees for red, orange, yellow, green, and purple in this case are 108, 50.4, 50.4, 93.6, and 57.6. Then, use a protractor to properly draw in each slice of the pie.

Pie Chart

This pie chart shows the frequency distribution of a bag of Skittles.

4.2.6: Summation Notation

In statistical formulas that involve summing numbers, the Greek letter sigma is used as the summation notation.

  • There is no special notation for the summation of explicit sequences (such as 1+2+4+2), as the corresponding repeated addition expression will do.
  • If the terms of the sequence are given by a regular pattern, possibly of variable length, then the summation notation may be useful or even essential.

\sum_ {i=m}^{n} a_{i}

Many statistical formulas involve summing numbers. Fortunately there is a convenient notation for expressing summation. This section covers the basics of this summation notation.

Summation is the operation of adding a sequence of numbers, the result being their sum or total. If numbers are added sequentially from left to right, any intermediate result is a partial sum, prefix sum, or running total of the summation. The numbers to be summed (called addends, or sometimes summands) may be integers, rational numbers, real numbers, or complex numbers. Besides numbers, other types of values can be added as well: vectors, matrices, polynomials and, in general, elements of any additive group. For finite sequences of such elements, summation always produces a well-defined sum.

The summation of the sequence [1, 2, 4, 2] is an expression whose value is the sum of each of the members of the sequence. In the example, 1+2+4+2=9. Since addition is associative, the value does not depend on how the additions are grouped. For instance (1+2) + (4+2) and 1 + ((2+4) + 2) both have the value 9; therefore, parentheses are usually omitted in repeated additions. Addition is also commutative, so changing the order of the terms of a finite sequence does not change its sum.

There is no special notation for the summation of such explicit sequences as the example above, as the corresponding repeated addition expression will do. If, however, the terms of the sequence are given by a regular pattern, possibly of variable length, then a summation operator may be useful or even essential.

For the summation of the sequence of consecutive integers from 1 to 100 one could use an addition expression involving an ellipsis to indicate the missing terms: 1 + 2 + 3 + 4 + ⋯ + 99 + 100 . In this case the reader easily guesses the pattern; however, for more complicated patterns, one needs to be precise about the rule used to find successive terms. This can be achieved by using the summation notation “ Σ ” Using this sigma notation, the above summation is written as:

\sum_{i=1}^{100}i

In this notation, i represents the index of summation, a i is an indexed variable representing each successive term in the series, m is the lower bound of summation, and n is the upper bound of summation. The “ i = m ” under the summation symbol means that the index i starts out equal to m . The index, i , is incremented by 1 for each successive term, stopping when i = n .

Here is an example showing the summation of exponential terms (terms to the power of 2):

\sum_{i=3}^{6}1^2=3^2+4^2+5^2+6^2=86

Informal writing sometimes omits the definition of the index and bounds of summation when these are clear from context, as in:

\sum a_{i}^{2}=\sum_{i=1}^{n}a_{i}^{2}

4.2.7: Graphing Bivariate Relationships

We can learn much more by displaying bivariate data in a graphical form that maintains the pairing of variables.

Compare the strengths and weaknesses of the various methods used to graph bivariate data.

  • When one variable increases with the second variable, we say that x and y have a positive association.
  • Conversely, when y decreases as x increases, we say that they have a negative association.
  • The presence of qualitative data leads to challenges in graphing bivariate relationships.
  • If both variables are qualitative, we would be able to graph them in a contingency table.

Introduction to Bivariate Data

Measures of central tendency, variability, and spread summarize a single variable by providing important information about its distribution. Often, more than one variable is collected on each individual. For example, in large health studies of populations it is common to obtain variables such as age, sex, height, weight, blood pressure, and total cholesterol on each individual. Economic studies may be interested in, among other things, personal income and years of education. As a third example, most university admissions committees ask for an applicant’s high school grade point average and standardized admission test scores (e.g., SAT). In the following text, we consider bivariate data, which for now consists of two quantitative variables for each individual. Our first interest is in summarizing such data in a way that is analogous to summarizing univariate (single variable) data.

By way of illustration, let’s consider something with which we are all familiar: age. More specifically, let’s consider if people tend to marry other people of about the same age. One way to address the question is to look at pairs of ages for a sample of married couples. Bivariate Sample 1 shows the ages of 10 married couples. Going across the columns we see that husbands and wives tend to be of about the same age, with men having a tendency to be slightly older than their wives.

Bivariate Sample 1

Sample of spousal ages of 10 white American couples.

These pairs are from a dataset consisting of 282 pairs of spousal ages (too many to make sense of from a table). What we need is a way to graphically summarize the 282 pairs of ages, such as a histogram. as in .

Bivariate Histogram

Histogram of spousal ages.

Each distribution is fairly skewed with a long right tail. From the first figure we see that not all husbands are older than their wives. It is important to see that this fact is lost when we separate the variables. That is, even though we provide summary statistics on each variable, the pairing within couples is lost by separating the variables. Only by maintaining the pairing can meaningful answers be found about couples, per se.

Therefore, we can learn much more by displaying the bivariate data in a graphical form that maintains the pairing. shows a scatter plot of the paired ages. The x-axis represents the age of the husband and the y-axis the age of the wife.

Bivariate Scatterplot

Scatterplot showing wife age as a function of husband age.

There are two important characteristics of the data revealed by this figure. First, it is clear that there is a strong relationship between the husband’s age and the wife’s age: the older the husband, the older the wife. When one variable increases with the second variable, we say that x and y have a positive association. Conversely, when y decreases as x increases, we say that they have a negative association. Second, the points cluster along a straight line. When this occurs, the relationship is called a linear relationship.

Bivariate Relationships in Qualitative Data

The presence of qualitative data leads to challenges in graphing bivariate relationships. We could have one qualitative variable and one quantitative variable, such as SAT subject and score. However, making a scatter plot would not be possible as only one variable is numerical. A bar graph would be possible.

If both variables are qualitative, we would be able to graph them in a contingency table. We can then use this to find whatever information we may want. In , this could include what percentage of the group are female and right-handed or what percentage of the males are left-handed.

Contingency Table

Contingency tables are useful for graphically representing qualitative bivariate relationships.

Attributions

  • “Boundless.” http://www.boundless.com/ . Boundless Learning CC BY-SA 3.0 .
  • “qualitative analysis.” http://en.wikipedia.org/wiki/qualitative%20analysis . Wikipedia CC BY-SA 3.0 .
  • “Qualitative research.” http://en.wikipedia.org/wiki/Qualitative_research . Wikipedia CC BY-SA 3.0 .
  • “ordinal.” http://en.wiktionary.org/wiki/ordinal . Wiktionary CC BY-SA 3.0 .
  • “nominal.” http://en.wiktionary.org/wiki/nominal . Wiktionary CC BY-SA 3.0 .
  • “Statistics/Different Types of Data/Quantitative and Qualitative Data.” http://en.wikibooks.org/wiki/Statistics/Different_Types_of_Data/Quantitative_and_Qualitative_Data%23Qualitative_data . Wikibooks CC BY-SA 3.0 .
  • “Social Research Methods/Qualitative Research.” http://en.wikibooks.org/wiki/Social_Research_Methods/Qualitative_Research . Wikibooks CC BY-SA 3.0 .
  • “Misleading graph.” http://en.wikipedia.org/wiki/Misleading_graph . Wikipedia CC BY-SA 3.0 .
  • “distribution.” http://en.wiktionary.org/wiki/distribution . Wiktionary CC BY-SA 3.0 .
  • “truncate.” http://en.wiktionary.org/wiki/truncate . Wiktionary CC BY-SA 3.0 .
  • “bias.” http://en.wiktionary.org/wiki/bias . Wiktionary CC BY-SA 3.0 .
  • “Misleading graph.” http://en.wikipedia.org/wiki/Misleading_graph . Wikipedia GNU FDL .
  • “descriptive statistics.” http://en.wiktionary.org/wiki/descriptive_statistics . Wiktionary CC BY-SA 3.0 .
  • “David Lane, Graphing Qualitative Variables. September 17, 2013.” http://cnx.org/content/m10927/latest/ . OpenStax CNX CC BY 3.0 .
  • “Error 404.” http://www.abs.gov.au/websitedbs/a3121120.nsf/89a5f3d8684682b6ca256de4002c809b/e200e8e572a2ae52ca25794900127f4f!OpenDocument . Austrailian Bureau of Statistics CC BY .
  • “David Lane, Graphing Qualitative Variables. April 22, 2013.” http://cnx.org/content/m10927/latest/ . OpenStax CNX CC BY 3.0 .
  • “volatility.” http://en.wiktionary.org/wiki/volatility . Wiktionary CC BY-SA 3.0 .
  • “pictogram.” http://en.wiktionary.org/wiki/pictogram . Wiktionary CC BY-SA 3.0 .
  • “Misleading Graph.” http://en.wikipedia.org/wiki/Misleading_graph . Wikipedia GNU FDL .
  • “Frequency distribution.” http://en.wikipedia.org/wiki/Frequency_distribution . Wikipedia CC BY-SA 3.0 .
  • “Microsoft Excel &#8211; spreadsheet software – Office.com.” http://office.microsoft.com/en-us/excel/ . Microsoft License: Other .
  • “summation notation.” http://en.wikipedia.org/wiki/summation%20notation . Wikipedia CC BY-SA 3.0 .
  • “Summation.” http://en.wikipedia.org/wiki/Summation%23Capital-sigma_notation . Wikipedia CC BY-SA 3.0 .
  • “ellipsis.” http://en.wiktionary.org/wiki/ellipsis . Wiktionary CC BY-SA 3.0 .
  • “Bivariate Data Tutorial | Sophia Learning.” http://www.sophia.org/bivariate-data-tutorial . Sophia Learning Online CC BY .
  • “bivariate.” http://en.wiktionary.org/wiki/bivariate . Wiktionary CC BY-SA 3.0 .
  • “contingency table.” http://en.wiktionary.org/wiki/contingency_table . Wiktionary CC BY-SA 3.0 .
  • “skewed.” http://en.wiktionary.org/wiki/skewed . Wiktionary CC BY-SA 3.0 .
  • “David Lane, Introduction to Bivariate Data. September 17, 2013.” http://cnx.org/content/m10949/latest/ . OpenStax CNX CC BY 3.0 .
  • “David Lane, Introduction to Bivariate Data. May 6, 2013.” http://cnx.org/content/m10949/latest/ . OpenStax CNX CC BY 3.0 .
  • “Contingency table.” http://en.wikipedia.org/wiki/Contingency_table . Wikipedia GNU FDL .

Boundless Statistics for Organizations Copyright © 2021 by Brad Griffith and Lisa Friesen is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

2.1: Organizing and Graphing Qualitative Data

  • Last updated
  • Save as PDF
  • Page ID 28335

Learning Objectives

By the end of this chapter, the student should be able to:

  • Display data graphically and interpret graphs: stemplots, histograms, and box plots.
  • Recognize, describe, and calculate the measures of location of data: quartiles and percentiles.
  • Recognize, describe, and calculate the measures of the center of data: mean, median, and mode.
  • Recognize, describe, and calculate the measures of the spread of data: variance, standard deviation, and range.

Once you have collected data, what will you do with it? Data can be described and presented in many different formats. For example, suppose you are interested in buying a house in a particular area. You may have no clue about the house prices, so you might ask your real estate agent to give you a sample data set of prices. Looking at all the prices in the sample often is overwhelming. A better way might be to look at the median price and the variation of prices. The median and variation are just two ways that you will learn to describe data. Your agent might also provide you with a graph of the data.

alt

In this chapter, you will study numerical and graphical ways to describe and display your data. This area of statistics is called "Descriptive Statistics." You will learn how to calculate, and even more importantly, how to interpret these measurements and graphs.

A statistical graph is a tool that helps you learn about the shape or distribution of a sample or a population. A graph can be a more effective way of presenting data than a mass of numbers because we can see where data clusters and where there are only a few data values. Newspapers and the Internet use graphs to show trends and to enable readers to compare facts and figures quickly. Statisticians often graph data first to get a picture of the data. Then, more formal tools may be applied.

Some of the types of graphs that are used to summarize and organize data are the dot plot, the bar graph, the histogram, the stem-and-leaf plot, the frequency polygon (a type of broken line graph), the pie chart, and the box plot. In this chapter, we will briefly look at stem-and-leaf plots, line graphs, and bar graphs, as well as frequency polygons, and time series graphs. Our emphasis will be on histograms and box plots.

Qualitative Data Discussion

Below are tables comparing the number of part-time and full-time students at De Anza College and Foothill College enrolled for the spring 2010 quarter. The tables display counts (frequencies) and percentages or proportions (relative frequencies). The percent columns make comparing the same categories in the colleges easier. Displaying percentages along with the numbers is often helpful, but it is particularly important when comparing sets of data that do not have the same totals, such as the total enrollments for both colleges in this example. Notice how much larger the percentage for part-time students at Foothill College is compared to De Anza College.

Tables are a good way of organizing and displaying data. But graphs can be even more helpful in understanding the data. There are no strict rules concerning which graphs to use. Two graphs that are used to display qualitative data are pie charts and bar graphs.

  • In a pie chart , categories of data are represented by wedges in a circle and are proportional in size to the percent of individuals in each category.
  • In a bar graph , the length of the bar for each category is proportional to the number or percent of individuals in each category. Bars may be vertical or horizontal.
  • A Pareto chart consists of bars that are sorted into order by category size (largest to smallest).

Look at Figures \(\PageIndex{3}\) and \(\PageIndex{4}\) and determine which graph (pie or bar) you think displays the comparisons better.

alt

It is a good idea to look at a variety of graphs to see which is the most helpful in displaying the data. We might make different choices of what we think is the “best” graph depending on the data and the context. Our choice also depends on what we are using the data for.

alt

Percentages That Add to More (or Less) Than 100%

Sometimes percentages add up to be more than 100% (or less than 100%). In the graph, the percentages add to more than 100% because students can be in more than one category. A bar graph is appropriate to compare the relative size of the categories. A pie chart cannot be used. It also could not be used if the percentages added to less than 100%.

alt

Omitting Categories/Missing Data

The table displays Ethnicity of Students but is missing the "Other/Unknown" category. This category contains people who did not feel they fit into any of the ethnicity categories or declined to respond. Notice that the frequencies do not add up to the total number of students. In this situation, create a bar graph and not a pie chart.

alt

The following graph is the same as the previous graph but the “Other/Unknown” percent (9.6%) has been included. The “Other/Unknown” category is large compared to some of the other categories (Native American, 0.6%, Pacific Islander 1.0%). This is important to know when we think about what the data are telling us.

This particular bar graph in Figure \(\PageIndex{4}\) can be difficult to understand visually. The graph in Figure \(\PageIndex{5}\) is a Pareto chart . The Pareto chart has the bars sorted from largest to smallest and is easier to read and interpret.

alt

Pie Charts: No Missing Data

The following pie charts have the “Other/Unknown” category included (since the percentages must add to 100%). The chart in Figure \(\PageIndex{6}\) is organized by the size of each wedge, which makes it a more visually informative graph than the unsorted, alphabetical graph in Figure \(\PageIndex{6}\).

alt

Contributors and Attributions

Barbara Illowsky and Susan Dean (De Anza College) with many other contributing authors. Content produced by OpenStax College is licensed under a Creative Commons Attribution License 4.0 license. Download for free at http://cnx.org/contents/[email protected] .

ScienceSphere.blog

Mastering The Art Of Crafting A Qualitative Data Table

qualitative research may use tables and graphs in interpreting data

Table of Contents

Importance of Qualitative Data Tables in Research

Qualitative data tables play a crucial role in research studies as they provide a structured and organized way to present and analyze qualitative data. These tables allow researchers to condense large amounts of information into a concise format, making it easier to identify patterns, trends, and relationships within the data. By presenting qualitative data in a tabular format, researchers can effectively communicate their findings to a wider audience, including fellow researchers, stakeholders, and policymakers.

Purpose of the Blog Post

The purpose of this blog post is to provide a comprehensive guide on qualitative data tables. We will explore the definition of qualitative data, discuss the different types of qualitative data, and examine the advantages and limitations of using qualitative data in research. Additionally, we will delve into the components of a qualitative data table, offering insights on how to design and present data effectively. By the end of this blog post, you will have a clear understanding of the importance of qualitative data tables and the skills needed to create them.

Now, let’s dive into the world of qualitative data and explore its various aspects.

Understanding Qualitative Data

Qualitative data is a type of data that is collected through methods such as interviews, observations, and open-ended surveys. It provides a deeper understanding of people’s experiences, opinions, and behaviors. In this section, we will explore the definition of qualitative data, the different types of qualitative data, and the advantages and limitations of using qualitative data in research.

Definition of Qualitative Data

Qualitative data refers to non-numerical data that is collected through qualitative research methods. It focuses on capturing the richness and complexity of human experiences and perspectives. Unlike quantitative data, which can be measured and analyzed statistically, qualitative data provides a more in-depth understanding of the social and cultural context in which it is collected.

Qualitative data can take various forms, including textual data (such as interview transcripts, field notes, and written responses), visual data (such as photographs and videos), and audio data (such as recorded interviews or focus group discussions).

Types of Qualitative Data

There are several types of qualitative data that researchers can collect, depending on their research objectives and the nature of the study. Some common types of qualitative data include:

Interview data : This involves conducting one-on-one or group interviews to gather information and insights from participants. Interviews can be structured, semi-structured, or unstructured, allowing for flexibility in exploring different topics and probing deeper into participants’ responses.

Observational data : This involves observing and documenting people’s behaviors, interactions, and activities in natural settings. Observational data can provide valuable insights into social dynamics, cultural practices, and contextual factors that influence people’s behaviors.

Documentary data : This involves analyzing existing documents, such as diaries, letters, official records, or social media posts, to gain insights into people’s experiences, attitudes, or historical events. Documentary data can provide a historical or longitudinal perspective on a particular phenomenon.

Visual data : This involves analyzing visual materials, such as photographs, videos, or artwork, to understand people’s perspectives, emotions, or visual representations of their experiences. Visual data can add a visual dimension to qualitative research and provide a more holistic understanding of the research topic.

Advantages and Limitations of Qualitative Data

Qualitative data offers several advantages over quantitative data in research:

Richness and depth : Qualitative data allows researchers to explore complex phenomena in detail, capturing the richness and depth of human experiences. It provides a more nuanced understanding of people’s thoughts, feelings, and motivations.

Flexibility : Qualitative research methods offer flexibility in data collection and analysis. Researchers can adapt their approach based on emerging insights, allowing for a more iterative and exploratory research process.

Contextual understanding : Qualitative data provides a deeper understanding of the social, cultural, and contextual factors that shape people’s behaviors and experiences. It helps researchers uncover the underlying meanings and interpretations behind the data.

However, qualitative data also has some limitations:

Subjectivity : Qualitative data is subjective in nature, as it relies on researchers’ interpretations and judgments. Different researchers may analyze the same data differently, leading to potential bias or inconsistency.

Limited generalizability : Qualitative data is often collected from a small sample size, making it difficult to generalize the findings to a larger population. The focus is on understanding specific cases or contexts rather than making statistical inferences.

Time-consuming : Collecting and analyzing qualitative data can be time-consuming, as it involves transcribing interviews, coding data, and identifying patterns. Researchers need to allocate sufficient time and resources to ensure a rigorous analysis.

In conclusion, understanding qualitative data is crucial for conducting meaningful research. It provides a deeper understanding of people’s experiences, perspectives, and behaviors. By recognizing the different types of qualitative data and considering its advantages and limitations, researchers can make informed decisions about the appropriate methods to use and the insights they can gain from their data.

Components of a Qualitative Data Table

In the realm of research, qualitative data tables play a crucial role in organizing and presenting data in a clear and concise manner. These tables provide a structured framework for researchers to analyze and interpret qualitative data effectively. In this section, we will explore the key components that make up a qualitative data table.

Title and Caption

Every qualitative data table should have a title that accurately reflects the content it represents. The title should be concise yet descriptive, providing readers with a clear understanding of what the table entails. Additionally, including a caption beneath the title can further enhance the table’s clarity by providing additional context or explanation.

Rows and Columns

The rows of a qualitative data table represent the individual units of analysis or participants in the study. Each row should be labeled appropriately to identify the specific data being presented. On the other hand, columns represent the different variables or categories that are being examined. These columns should be clearly labeled to ensure that readers can easily understand the information being presented.

Variables and Categories

Within each column, researchers need to identify the variables or categories that are being analyzed. Variables refer to the different aspects or characteristics being studied, while categories represent the different options or responses within each variable. It is essential to define and label these variables and categories accurately to avoid confusion and misinterpretation.

Codes and Themes

In qualitative research, researchers often use codes to categorize and organize data based on common themes or patterns. These codes help to identify and group similar information together, making it easier to analyze and interpret the data. Including codes within a qualitative data table can provide readers with a deeper understanding of the underlying themes and patterns that emerge from the data.

By incorporating codes and themes into a qualitative data table, researchers can present a more comprehensive and nuanced representation of their findings.

Creating a well-designed qualitative data table involves careful consideration of various factors. Let’s explore some key aspects to keep in mind when designing a qualitative data table.

Choosing the Appropriate Table Format

There are several different table formats to choose from when presenting qualitative data. The choice of format depends on the nature of the data and the research objectives. Common formats include narrative tables, matrix tables, and thematic tables. Researchers should select a format that best suits their data and effectively communicates the information they want to convey.

Organizing Data in a Logical Manner

To ensure clarity and ease of understanding, it is crucial to organize the data in a logical manner within the table. This can be achieved by arranging the rows and columns in a way that follows a logical sequence or progression. By organizing the data in a logical manner, researchers can facilitate easier analysis and interpretation for themselves and their readers.

Using Clear and Concise Headings

Clear and concise headings are essential for guiding readers through the qualitative data table. Each column should have a heading that accurately describes the variable or category being presented. Similarly, each row should have a heading that identifies the specific unit of analysis or participant. Using clear and concise headings helps readers navigate the table and understand the information being presented more easily.

Formatting and Styling Tips

Formatting and styling play a significant role in enhancing the readability and visual appeal of a qualitative data table. Researchers should consider using consistent font styles, font sizes, and colors throughout the table. Additionally, using appropriate spacing and alignment can help improve the overall aesthetics of the table. It is important to strike a balance between making the table visually appealing and ensuring that the data remains the primary focus.

In conclusion, understanding the components of a qualitative data table is crucial for researchers aiming to present their findings effectively. By incorporating the key elements discussed above, researchers can create well-structured and informative tables that facilitate analysis, interpretation, and communication of qualitative data.

Designing a Qualitative Data Table

Designing a qualitative data table is a crucial step in effectively presenting and organizing your research findings. A well-designed table can enhance the clarity and readability of your data, making it easier for readers to understand and interpret. In this section, we will explore some key considerations and tips for designing a qualitative data table.

When designing a qualitative data table, it is important to choose the appropriate format that best suits your research objectives and the nature of your data. There are various table formats to choose from, such as simple text-based tables, matrix tables, or thematic tables. Consider the complexity of your data and the level of detail you want to present when selecting the format.

To ensure clarity and ease of understanding, it is essential to organize your data in a logical manner within the table. Start by identifying the key variables and categories that you want to present. Arrange the data in a way that allows for easy comparison and analysis. Group related information together and consider using subheadings or different sections within the table to enhance organization.

Clear and concise headings are essential for guiding readers through the table and helping them understand the information presented. Use descriptive headings that accurately represent the content of each column or row. Avoid using jargon or technical terms that may confuse readers. Additionally, consider using bold or italic formatting to highlight important headings or key points within the table.

Formatting and styling play a significant role in the overall presentation of your qualitative data table. Here are some tips to consider:

Consistency : Maintain consistency in font style, size, and formatting throughout the table. This helps create a professional and cohesive look.

Whitespace : Use ample whitespace to separate different sections and make the table less cluttered. This improves readability and makes it easier for readers to navigate through the information.

Colors : Use colors sparingly and purposefully. Colors can be used to highlight specific data points or categories, but avoid using too many colors as it can distract readers.

Borders and Gridlines : Consider using borders or gridlines to visually separate rows and columns. This helps readers distinguish between different data points and improves overall clarity.

Font Size : Ensure that the font size is legible and appropriate for the table. Avoid using excessively small or large font sizes that may strain the reader’s eyes.

Remember, the goal of designing a qualitative data table is to present your findings in a clear and organized manner. By carefully considering the format, organization, headings, and formatting, you can create a table that effectively communicates your research findings to your audience.

In the next section, we will explore tips for effectively presenting your qualitative data, including using appropriate labels and units, providing context and explanations, utilizing visual aids and graphics, and ensuring consistency and accuracy.

Tips for Effective Data Presentation

When it comes to presenting qualitative data, it is essential to ensure that the information is clear, concise, and easily understandable. Here are some tips to help you effectively present your data in a qualitative data table:

Using Appropriate Labels and Units

To avoid confusion and misinterpretation, it is crucial to use clear and descriptive labels for your data. Make sure that the labels accurately represent the information being presented. Additionally, if your data includes units of measurement, be sure to include them to provide context and aid in understanding.

Providing Context and Explanations

To enhance the understanding of your qualitative data, it is important to provide context and explanations . This can be done by including a brief introduction or summary that outlines the purpose and background of the data. Additionally, consider providing explanations or definitions for any terms or concepts that may be unfamiliar to the reader.

Utilizing Visual Aids and Graphics

Visual aids and graphics can greatly enhance the presentation of qualitative data. Consider incorporating charts, graphs, or diagrams to visually represent your data. These visual elements can help to highlight patterns, trends, and relationships within the data, making it easier for the reader to interpret and understand.

Ensuring Consistency and Accuracy

Consistency and accuracy are key when presenting qualitative data. Ensure that your data is consistent in terms of formatting, style, and layout throughout the table. This will make it easier for the reader to navigate and understand the information. Additionally, double-check your data for any errors or inaccuracies to maintain the integrity of your findings.

By following these tips, you can effectively present your qualitative data in a way that is clear, concise, and easily understandable. Remember, the goal is to provide the reader with a comprehensive and accurate representation of your findings.

Analyzing and Interpreting Qualitative Data Tables

Analyzing and interpreting qualitative data tables is a crucial step in the research process. It allows researchers to make sense of the data they have collected and draw meaningful conclusions. In this section, we will explore some key strategies for effectively analyzing and interpreting qualitative data tables.

Identifying patterns and trends

When analyzing qualitative data tables, it is important to look for patterns and trends within the data. This involves examining the different variables and categories and identifying any recurring themes or codes. By doing so, researchers can gain insights into the underlying patterns and relationships present in the data.

To identify patterns and trends, researchers can look for similarities or differences across different rows or columns in the table. They can also examine the frequency or distribution of certain variables or categories. By analyzing these patterns, researchers can begin to understand the key findings and themes that emerge from the data.

Making comparisons and connections

Another important aspect of analyzing qualitative data tables is making comparisons and connections between different variables or categories. This involves looking for relationships or associations between different elements of the data.

Researchers can compare the frequencies or distributions of different variables to see if there are any significant differences. They can also examine how certain variables or categories relate to each other. By making these comparisons and connections, researchers can gain a deeper understanding of the data and uncover important insights.

The ultimate goal of analyzing and interpreting qualitative data tables is to draw conclusions and implications from the data. This involves synthesizing the findings and identifying the key insights that emerge.

Researchers should look for overarching themes or patterns that are supported by the data. They should also consider the limitations and potential biases of the data and take these into account when drawing conclusions. By doing so, researchers can provide meaningful interpretations and implications that contribute to the broader research field.

It is important to note that analyzing and interpreting qualitative data tables is not a linear process. It requires researchers to engage in iterative analysis, constantly revisiting the data and refining their interpretations. This allows for a more nuanced understanding of the data and ensures that the conclusions drawn are robust and reliable.

In conclusion, analyzing and interpreting qualitative data tables is a critical step in the research process. By identifying patterns and trends, making comparisons and connections, and drawing conclusions and implications, researchers can gain valuable insights from their data. It is important to approach this process with rigor and attention to detail, ensuring that the interpretations are grounded in the data. With practice and refinement, researchers can master the art of crafting qualitative data tables and contribute to the advancement of knowledge in their respective fields.

Common Mistakes to Avoid

When it comes to creating qualitative data tables, there are several common mistakes that researchers often make. These mistakes can undermine the effectiveness and accuracy of the tables, leading to misinterpretation or misrepresentation of the data. To ensure that your qualitative data tables are clear, concise, and informative, it is important to avoid the following mistakes:

Overcomplicating the table design

One of the most common mistakes researchers make is overcomplicating the design of their qualitative data tables. It is important to remember that the purpose of a data table is to present information in a clear and organized manner. If the table is cluttered with unnecessary details or complex formatting, it can make it difficult for readers to understand the data.

To avoid this mistake, keep your table design simple and straightforward. Use clear and concise headings, and only include the necessary information. Avoid using excessive colors, fonts, or formatting styles that can distract from the data itself. Remember, simplicity is key when it comes to creating effective qualitative data tables.

Including unnecessary information

Another common mistake is including unnecessary information in the data table. This can include irrelevant variables, redundant categories, or excessive details that do not contribute to the overall understanding of the data. Including unnecessary information can make the table cluttered and confusing, making it harder for readers to extract meaningful insights.

To avoid this mistake, carefully review your data and determine what information is essential for understanding the research findings. Only include variables, categories, and details that are directly relevant to the research question or objective. By eliminating unnecessary information, you can create a more focused and informative qualitative data table.

Misinterpreting or misrepresenting data

Misinterpreting or misrepresenting data is a serious mistake that can have significant consequences. It can lead to inaccurate conclusions, flawed interpretations, and ultimately, a loss of credibility. It is crucial to ensure that the data presented in the qualitative data table is accurate, reliable, and correctly analyzed.

To avoid this mistake, double-check your data for accuracy and consistency. Verify that the data has been properly coded and categorized, and that any themes or patterns identified are supported by the data. Additionally, provide clear explanations and context for the data to avoid any misinterpretations. If you are unsure about any aspect of the data, seek feedback or guidance from colleagues or experts in the field.

By avoiding these common mistakes, you can create qualitative data tables that effectively communicate your research findings. Remember to keep the design simple, include only relevant information, and ensure the accuracy and integrity of the data. With practice and attention to detail, you can master the art of crafting qualitative data tables that enhance the understanding and impact of your research.

Tools and Resources for Creating Qualitative Data Tables

When it comes to creating qualitative data tables, having the right tools and resources can make the process much easier and more efficient. In this section, we will explore some of the top options available for creating these tables, as well as online tutorials, guides, and examples to help you master the art of crafting qualitative data tables.

Software options for table creation

Microsoft Excel : Excel is a widely used spreadsheet software that offers a range of features for creating and formatting data tables. It provides a user-friendly interface and allows you to easily organize and analyze your qualitative data.

Google Sheets : Similar to Excel, Google Sheets is a cloud-based spreadsheet software that allows for collaborative work. It offers many of the same features as Excel and can be accessed from any device with an internet connection.

NVivo : NVivo is a powerful qualitative data analysis software that provides advanced tools for organizing, coding, and analyzing qualitative data. It allows you to create tables that integrate with your coding and analysis process, making it a popular choice among researchers.

Tableau : Tableau is a data visualization software that enables you to create interactive and visually appealing data tables. It offers a range of customization options and allows for easy data exploration and analysis.

Online tutorials and guides

Qualitative Data Analysis with NVivo : NVivo provides a comprehensive set of tutorials and guides on their website to help users navigate the software and create effective qualitative data tables. These resources cover everything from basic table creation to advanced analysis techniques.

Excel for Beginners : If you are new to Excel, there are numerous online tutorials and guides available that can help you get started. Websites like Microsoft Office Support and YouTube offer step-by-step instructions and video tutorials to help you learn the basics of creating data tables in Excel.

Tableau Training and Tutorials : Tableau offers a variety of training resources on their website, including video tutorials, webinars, and user forums. These resources can help you learn how to create visually appealing and interactive data tables using Tableau.

Examples of well-designed qualitative data tables

Academic Research Papers : Many academic research papers include qualitative data tables as part of their findings. Reading and analyzing these tables can provide valuable insights into how to effectively present qualitative data. Look for papers in your field of interest and examine how they structure and format their tables.

Data Visualization Websites : Websites like Datawrapper and Information is Beautiful showcase a wide range of data visualizations, including qualitative data tables. Exploring these examples can give you inspiration and ideas for creating visually appealing and informative tables.

Remember, creating qualitative data tables is both an art and a science. It requires careful consideration of the data, as well as the tools and resources available to you. By utilizing the software options, online tutorials, and examples mentioned above, you can enhance your table creation skills and effectively present your qualitative data. So, take the time to practice and refine your skills, and soon you’ll be creating well-designed and informative qualitative data tables with ease.

Unveiling The Shelf Life: How Long Does Citric Acid Last?

Unveiling The True Value: How Much Is Jcoin Worth In Today’s Market?

Rebooting Your Booze: How To Reset Alcohol Content

Quick And Easy: Mastering The Art Of Thawing Tuna

Unveiling The Dynamic Interplay: How Physical And Human Systems Shape A Place

Unlocking The Power: How Long Does It Take For Royal Honey To Activate?

Mastering Residency: A Guide On How To Study Effectively

Mastering The Art Of Die Cast Mold Making: A Step-By-Step Guide

Unveiling The Energy Consumption Of Water Coolers: How Much Electricity Do They Really Use?

Mastering Virtual Reality: Unlocking The Secrets To Altering Your Height

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Enago Academy

Effective Use of Tables and Figures in Research Papers

' src=

Research papers are often based on copious amounts of data that can be summarized and easily read through tables and graphs. When writing a research paper , it is important for data to be presented to the reader in a visually appealing way. The data in figures and tables, however, should not be a repetition of the data found in the text. There are many ways of presenting data in tables and figures, governed by a few simple rules. An APA research paper and MLA research paper both require tables and figures, but the rules around them are different. When writing a research paper, the importance of tables and figures cannot be underestimated. How do you know if you need a table or figure? The rule of thumb is that if you cannot present your data in one or two sentences, then you need a table .

Using Tables

Tables are easily created using programs such as Excel. Tables and figures in scientific papers are wonderful ways of presenting data. Effective data presentation in research papers requires understanding your reader and the elements that comprise a table. Tables have several elements, including the legend, column titles, and body. As with academic writing, it is also just as important to structure tables so that readers can easily understand them. Tables that are disorganized or otherwise confusing will make the reader lose interest in your work.

  • Title: Tables should have a clear, descriptive title, which functions as the “topic sentence” of the table. The titles can be lengthy or short, depending on the discipline.
  • Column Titles: The goal of these title headings is to simplify the table. The reader’s attention moves from the title to the column title sequentially. A good set of column titles will allow the reader to quickly grasp what the table is about.
  • Table Body: This is the main area of the table where numerical or textual data is located. Construct your table so that elements read from up to down, and not across.
Related: Done organizing your research data effectively in tables? Check out this post on tips for citing tables in your manuscript now!

The placement of figures and tables should be at the center of the page. It should be properly referenced and ordered in the number that it appears in the text. In addition, tables should be set apart from the text. Text wrapping should not be used. Sometimes, tables and figures are presented after the references in selected journals.

Using Figures

Figures can take many forms, such as bar graphs, frequency histograms, scatterplots, drawings, maps, etc. When using figures in a research paper, always think of your reader. What is the easiest figure for your reader to understand? How can you present the data in the simplest and most effective way? For instance, a photograph may be the best choice if you want your reader to understand spatial relationships.

  • Figure Captions: Figures should be numbered and have descriptive titles or captions. The captions should be succinct enough to understand at the first glance. Captions are placed under the figure and are left justified.
  • Image: Choose an image that is simple and easily understandable. Consider the size, resolution, and the image’s overall visual attractiveness.
  • Additional Information: Illustrations in manuscripts are numbered separately from tables. Include any information that the reader needs to understand your figure, such as legends.

Common Errors in Research Papers

Effective data presentation in research papers requires understanding the common errors that make data presentation ineffective. These common mistakes include using the wrong type of figure for the data. For instance, using a scatterplot instead of a bar graph for showing levels of hydration is a mistake. Another common mistake is that some authors tend to italicize the table number. Remember, only the table title should be italicized .  Another common mistake is failing to attribute the table. If the table/figure is from another source, simply put “ Note. Adapted from…” underneath the table. This should help avoid any issues with plagiarism.

Using tables and figures in research papers is essential for the paper’s readability. The reader is given a chance to understand data through visual content. When writing a research paper, these elements should be considered as part of good research writing. APA research papers, MLA research papers, and other manuscripts require visual content if the data is too complex or voluminous. The importance of tables and graphs is underscored by the main purpose of writing, and that is to be understood.

Frequently Asked Questions

"Consider the following points when creating figures for research papers: Determine purpose: Clarify the message or information to be conveyed. Choose figure type: Select the appropriate type for data representation. Prepare and organize data: Collect and arrange accurate and relevant data. Select software: Use suitable software for figure creation and editing. Design figure: Focus on clarity, labeling, and visual elements. Create the figure: Plot data or generate the figure using the chosen software. Label and annotate: Clearly identify and explain all elements in the figure. Review and revise: Verify accuracy, coherence, and alignment with the paper. Format and export: Adjust format to meet publication guidelines and export as suitable file."

"To create tables for a research paper, follow these steps: 1) Determine the purpose and information to be conveyed. 2) Plan the layout, including rows, columns, and headings. 3) Use spreadsheet software like Excel to design and format the table. 4) Input accurate data into cells, aligning it logically. 5) Include column and row headers for context. 6) Format the table for readability using consistent styles. 7) Add a descriptive title and caption to summarize and provide context. 8) Number and reference the table in the paper. 9) Review and revise for accuracy and clarity before finalizing."

"Including figures in a research paper enhances clarity and visual appeal. Follow these steps: Determine the need for figures based on data trends or to explain complex processes. Choose the right type of figure, such as graphs, charts, or images, to convey your message effectively. Create or obtain the figure, properly citing the source if needed. Number and caption each figure, providing concise and informative descriptions. Place figures logically in the paper and reference them in the text. Format and label figures clearly for better understanding. Provide detailed figure captions to aid comprehension. Cite the source for non-original figures or images. Review and revise figures for accuracy and consistency."

"Research papers use various types of tables to present data: Descriptive tables: Summarize main data characteristics, often presenting demographic information. Frequency tables: Display distribution of categorical variables, showing counts or percentages in different categories. Cross-tabulation tables: Explore relationships between categorical variables by presenting joint frequencies or percentages. Summary statistics tables: Present key statistics (mean, standard deviation, etc.) for numerical variables. Comparative tables: Compare different groups or conditions, displaying key statistics side by side. Correlation or regression tables: Display results of statistical analyses, such as coefficients and p-values. Longitudinal or time-series tables: Show data collected over multiple time points with columns for periods and rows for variables/subjects. Data matrix tables: Present raw data or matrices, common in experimental psychology or biology. Label tables clearly, include titles, and use footnotes or captions for explanations."

' src=

Enago is a very useful site. It covers nearly all topics of research writing and publishing in a simple, clear, attractive way. Though I’m a journal editor having much knowledge and training in these issues, I always find something new in this site. Thank you

“Thank You, your contents really help me :)”

Rate this article Cancel Reply

Your email address will not be published.

qualitative research may use tables and graphs in interpreting data

Enago Academy's Most Popular Articles

explanatory variables

  • Reporting Research

Explanatory & Response Variable in Statistics — A quick guide for early career researchers!

Often researchers have a difficult time choosing the parameters and variables (like explanatory and response…

data visualization techniques

  • Manuscript Preparation
  • Publishing Research

How to Use Creative Data Visualization Techniques for Easy Comprehension of Qualitative Research

“A picture is worth a thousand words!”—an adage used so often stands true even whilst…

statistics in research

  • Figures & Tables

Effective Use of Statistics in Research – Methods and Tools for Data Analysis

Remember that impending feeling you get when you are asked to analyze your data! Now…

  • Old Webinars
  • Webinar Mobile App

SCI中稿技巧: 提升研究数据的说服力

如何寻找原创研究课题 快速定位目标文献的有效搜索策略 如何根据期刊指南准备手稿的对应部分 论文手稿语言润色实用技巧分享,快速提高论文质量

Distill

Distill: A Journal With Interactive Images for Machine Learning Research

Research is a wide and extensive field of study. This field has welcomed a plethora…

Explanatory & Response Variable in Statistics — A quick guide for early career…

How to Create and Use Gantt Charts

qualitative research may use tables and graphs in interpreting data

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

qualitative research may use tables and graphs in interpreting data

What should universities' stance be on AI tools in research and academic writing?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Qualitative vs. Quantitative Research | Differences, Examples & Methods

Qualitative vs. Quantitative Research | Differences, Examples & Methods

Published on April 12, 2019 by Raimo Streefkerk . Revised on June 22, 2023.

When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge.

Common quantitative methods include experiments, observations recorded as numbers, and surveys with closed-ended questions.

Quantitative research is at risk for research biases including information bias , omitted variable bias , sampling bias , or selection bias . Qualitative research Qualitative research is expressed in words . It is used to understand concepts, thoughts or experiences. This type of research enables you to gather in-depth insights on topics that are not well understood.

Common qualitative methods include interviews with open-ended questions, observations described in words, and literature reviews that explore concepts and theories.

Table of contents

The differences between quantitative and qualitative research, data collection methods, when to use qualitative vs. quantitative research, how to analyze qualitative and quantitative data, other interesting articles, frequently asked questions about qualitative and quantitative research.

Quantitative and qualitative research use different research methods to collect and analyze data, and they allow you to answer different kinds of research questions.

Qualitative vs. quantitative research

Quantitative and qualitative data can be collected using various methods. It is important to use a data collection method that will help answer your research question(s).

Many data collection methods can be either qualitative or quantitative. For example, in surveys, observational studies or case studies , your data can be represented as numbers (e.g., using rating scales or counting frequencies) or as words (e.g., with open-ended questions or descriptions of what you observe).

However, some methods are more commonly used in one type or the other.

Quantitative data collection methods

  • Surveys :  List of closed or multiple choice questions that is distributed to a sample (online, in person, or over the phone).
  • Experiments : Situation in which different types of variables are controlled and manipulated to establish cause-and-effect relationships.
  • Observations : Observing subjects in a natural environment where variables can’t be controlled.

Qualitative data collection methods

  • Interviews : Asking open-ended questions verbally to respondents.
  • Focus groups : Discussion among a group of people about a topic to gather opinions that can be used for further research.
  • Ethnography : Participating in a community or organization for an extended period of time to closely observe culture and behavior.
  • Literature review : Survey of published works by other authors.

A rule of thumb for deciding whether to use qualitative or quantitative data is:

  • Use quantitative research if you want to confirm or test something (a theory or hypothesis )
  • Use qualitative research if you want to understand something (concepts, thoughts, experiences)

For most research topics you can choose a qualitative, quantitative or mixed methods approach . Which type you choose depends on, among other things, whether you’re taking an inductive vs. deductive research approach ; your research question(s) ; whether you’re doing experimental , correlational , or descriptive research ; and practical considerations such as time, money, availability of data, and access to respondents.

Quantitative research approach

You survey 300 students at your university and ask them questions such as: “on a scale from 1-5, how satisfied are your with your professors?”

You can perform statistical analysis on the data and draw conclusions such as: “on average students rated their professors 4.4”.

Qualitative research approach

You conduct in-depth interviews with 15 students and ask them open-ended questions such as: “How satisfied are you with your studies?”, “What is the most positive aspect of your study program?” and “What can be done to improve the study program?”

Based on the answers you get you can ask follow-up questions to clarify things. You transcribe all interviews using transcription software and try to find commonalities and patterns.

Mixed methods approach

You conduct interviews to find out how satisfied students are with their studies. Through open-ended questions you learn things you never thought about before and gain new insights. Later, you use a survey to test these insights on a larger scale.

It’s also possible to start with a survey to find out the overall trends, followed by interviews to better understand the reasons behind the trends.

Qualitative or quantitative data by itself can’t prove or demonstrate anything, but has to be analyzed to show its meaning in relation to the research questions. The method of analysis differs for each type of data.

Analyzing quantitative data

Quantitative data is based on numbers. Simple math or more advanced statistical analysis is used to discover commonalities or patterns in the data. The results are often reported in graphs and tables.

Applications such as Excel, SPSS, or R can be used to calculate things like:

  • Average scores ( means )
  • The number of times a particular answer was given
  • The correlation or causation between two or more variables
  • The reliability and validity of the results

Analyzing qualitative data

Qualitative data is more difficult to analyze than quantitative data. It consists of text, images or videos instead of numbers.

Some common approaches to analyzing qualitative data include:

  • Qualitative content analysis : Tracking the occurrence, position and meaning of words or phrases
  • Thematic analysis : Closely examining the data to identify the main themes and patterns
  • Discourse analysis : Studying how communication works in social contexts

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Streefkerk, R. (2023, June 22). Qualitative vs. Quantitative Research | Differences, Examples & Methods. Scribbr. Retrieved March 18, 2024, from https://www.scribbr.com/methodology/qualitative-quantitative-research/

Is this article helpful?

Raimo Streefkerk

Raimo Streefkerk

Other students also liked, what is quantitative research | definition, uses & methods, what is qualitative research | methods & examples, mixed methods research | definition, guide & examples, what is your plagiarism score.

Descriptive Statistics

Now, we are moving into descriptive statistics.

Why are descriptive statistics important? Simply put, unorganized data are not useful; organizing data helps reveal patterns or trends, when they exist. There are many ways to organize raw data depending on what we would like the end products to be. Different ways to organize raw data bring out different characteristics of the raw data. 

When selecting a method for organizing data, it is  important to identify the type of data  (categorical or quantitative) as the  type of data affects the choice of method . As a reminder, the following link contains information on data types:  Types of Data and Scales of Measurement.

As we go through each technique, let’s think about it in terms of the problem-solving process introduced in Week 1:  Problem-Solving Process.

Tables Using One Qualitative Variable

This week, we will be focusing on tables and graphs for one qualitative variable. These are methods that can  only  be used with  one qualitative variable.  Now let's start looking at ways to organize data.

One of the most obvious ways to organize raw data is to make tables. When raw data is properly organized, it can provide a lot of insight on the group characteristics.  A frequency table is one way to organize it. Frequency tables can be made with either one categorical or (as we will discuss next week) one quantitative variable.

1. Frequency Table

The frequency table is used to answer the question: How often does something occur?  It shows the frequency of occurrences for categories of a variable.

Step 4: Interpret the Results and Apply to Real Life

From this table, we can determine the number of students in each grade. For instance, there are 144 4th grade students.

2. Relative Frequency Table

Often, we want to know more than just the number of occurrences of each category; rather, it is more useful to know the relative frequency of occurrence for each category. Frequency distributions can be expanded to include relative frequency information. Let’s see how that would look using the elementary grade school level data from the above problem.

Since relative frequency is the decimal format of a percentage, we can determine the percentage of students in each grade. For instance, 18% (.18*100%) of the students at County Elementary School are in the 4th grade.

Information from these tables can then be used to produce graphs! Visual representations of data often make it easier to understand the relationships among the data points.

Graphs Using One Qualitative Variable

We will cover two of the most common charts used with one qualitative variable (bar chart and pie chart) including information on how to create in Excel and free applets.

1. Pie Chart

A pie chart uses "pie slices" to illustrate relative sizes of data. It can be also be used to answer percentage questions. Let’s see how that would look using the elementary grade school level data from the above problem.

Pie chart created using Pie Chart Applet  (Detailed instructions are available at the following link:  Pie Chart Applet )

pie graph showing students in county elementary school by grade. There is a graph key. First grade is red and has 122. Second grade is beige and has 135. Third grade is green and has 126. Fourth grade Fourth grade is teal and has 144. Fifth grade is blue and has 138. Sixth grade is magenta and has 155.

Based on the pie chart, we can see that that the grade levels are relatively similar in size, with the 6th grade being the largest.

2. Bar Chart

Bar charts (also known as bar graphs) are a visual representation of the frequency table and use bars of different lengths. Because such a chart is used with a qualitative variable (thus, the categories of data are uniquely different), the bars do not touch. It is used to answer questions, where quantities in different categories are compared.

Created Using Bar Chart Applet  (Detailed instructions are available at the following link:  Bar Chart Applet )

Bar graph showing students in county elementary school by grade. X axis is grade level, ranging from first to sixth. Y axis is number of students, ranging from 0 to 200 with tick marks every 50 students. First grade has 122. Second grade has 135. Third grade has 126. Fourth grade has 144. Fifth grade has 138. Sixth grade has 155.

From the bar chart, we can see that the 6th grade has the most students. In addition, we can also see how the grade level enrollments relate to each other.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • An Bras Dermatol
  • v.89(2); Mar-Apr 2014

Presenting data in tables and charts *

Rodrigo pereira duquia.

1 Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) - Porto Alegre (RS), Brazil.

João Luiz Bastos

2 Universidade Federal de Santa Catarina (UFSC) - Florianópolis (SC) Brazil.

Renan Rangel Bonamigo

David alejandro gonzález-chica, jeovany martínez-mesa.

3 Latin American Cooperative Oncology Group (LACOG) - Porto Alegre (RS) Brazil.

The present paper aims to provide basic guidelines to present epidemiological data using tables and graphs in Dermatology. Although simple, the preparation of tables and graphs should follow basic recommendations, which make it much easier to understand the data under analysis and to promote accurate communication in science. Additionally, this paper deals with other basic concepts in epidemiology, such as variable, observation, and data, which are useful both in the exchange of information between researchers and in the planning and conception of a research project.

INTRODUCTION

Among the essential stages of epidemiological research, one of the most important is the identification of data with which the researcher is working, as well as a clear and synthetic description of these data using graphs and tables. The identification of the type of data has an impact on the different stages of the research process, encompassing the research planning and the production/publication of its results. For example, the use of a certain type of data impacts the amount of time it will take to collect the desired information (throughout the field work) and the selection of the most appropriate statistical tests for data analysis.

On the other hand, the preparation of tables and graphs is a crucial tool in the analysis and production/publication of results, given that it organizes the collected information in a clear and summarized fashion. The correct preparation of tables allows researchers to present information about tens or hundreds of individuals efficiently and with significant visual appeal, making the results more easily understandable and thus more attractive to the users of the produced information. Therefore, it is very important for the authors of scientific articles to master the preparation of tables and graphs, which requires previous knowledge of data characteristics and the ability of identifying which type of table or graph is the most appropriate for the situation of interest.

BASIC CONCEPTS

Before evaluating the different types of data that permeate an epidemiological study, it is worth discussing about some key concepts (herein named data, variables and observations):

Data - during field work, researchers collect information by means of questions, systematic observations, and imaging or laboratory tests. All this gathered information represents the data of the research. For example, it is possible to determine the color of an individual's skin according to Fitzpatrick classification or quantify the number of times a person uses sunscreen during summer. 1 , 2 All the information collected during research is generically named "data." A set of individual data makes it possible to perform statistical analysis. If the quality of data is good, i.e., if the way information was gathered was appropriate, the next stages of database preparation, which will set the ground for analysis and presentation of results, will be properly conducted.

Observations - are measurements carried out in one or more individuals, based on one or more variables. For instance, if one is working with the variable "sex" in a sample of 20 individuals and knows the exact amount of men and women in this sample (10 for each group), it can be said that this variable has 20 observations.

Variables - are constituted by data. For instance, an individual may be male or female. In this case, there are 10 observations for each sex, but "sex" is the variable that is referred to as a whole. Another example of variable is "age" in complete years, in which observations are the values 1 year, 2 years, 3 years, and so forth. In other words, variables are characteristics or attributes that can be measured, assuming different values, such as sex, skin type, eye color, age of the individuals under study, laboratory results, or the presence of a given lesion/disease. Variables are specifically divided into two large groups: (a) the group of categorical or qualitative variables, which is subdivided into dichotomous, nominal and ordinal variables; and (b) the group of numerical or quantitative variables, which is subdivided into continuous and discrete variables.

Categorical variables

  • Dichotomous variables, also known as binary variables: are those that have only two categories, i.e., only two response options. Typical examples of this type of variable are sex (male and female) and presence of skin cancer (yes or no).
  • Ordinal variables: are those that have three or more categories with an obvious ordering of the categories (whether in an ascending or descending order). For example, Fitzpatrick skin classification into types I, II, III, IV and V. 1
  • Nominal variables: are those that have three or more categories with no apparent ordering of the categories. Example: blood types A, B, AB, and O, or brown, blue or green eye colors.

Numerical variables

  • Discrete variables: are observations that can only take certain numerical values. An example of this type of variable is subjects' age, when assessed in complete years of life (1 year, 2 years, 3 years, 4 years, etc.) and the number of times a set of patients visited the dermatologist in a year.
  • Continuous variables: are those measured on a continuous scale, i.e., which have as many decimal places as the measuring instrument can record. For instance: blood pressure, birth weight, height, or even age, when measured on a continuous scale.

It is important to point out that, depending on the objectives of the study, data may be collected as discrete or continuous variables and be subsequently transformed into categorical variables to suit the purpose of the research and/or make interpretation easier. However, it is important to emphasize that variables measured on a numerical scale (whether discrete or continuous) are richer in information and should be preferred for statistical analyses. Figure 1 shows a diagram that makes it easier to understand, identify and classify the abovementioned variables.

An external file that holds a picture, illustration, etc.
Object name is abd-89-02-0280-g01.jpg

Types of variables

DATA PRESENTATION IN TABLES AND GRAPHS

Firstly, it is worth emphasizing that every table or graph should be self-explanatory, i.e., should be understandable without the need to read the text that refers to it refers.

Presentation of categorical variables

In order to analyze the distribution of a variable, data should be organized according to the occurrence of different results in each category. As for categorical variables, frequency distributions may be presented in a table or a graph, including bar charts and pie or sector charts. The term frequency distribution has a specific meaning, referring to the the way observations of a given variable behave in terms of its absolute, relative or cumulative frequencies.

In order to synthesize information contained in a categorical variable using a table, it is important to count the number of observations in each category of the variable, thus obtaining its absolute frequencies. However, in addition to absolute frequencies, it is worth presenting its percentage values, also known as relative frequencies. For example, table 1 expresses, in absolute and relative terms, the frequency of acne scars in 18-year-old youngsters from a population-based study conducted in the city of Pelotas, Southern Brazil, in 2010. 3

Absolute and relative frequencies of acne scar in 18- year-old adolescents (n = 2.414). Pelotas, Brazil, 2010

The same information from table 1 may be presented as a bar or a pie chart, which can be prepared considering the absolute or relative frequency of the categories. Figures 2 and ​ and3 3 illustrate the same information shown in table 1 , but present it as a bar chart and a pie chart, respectively. It can be observed that, regardless of the form of presentation, the total number of observations must be mentioned, whether in the title or as part of the table or figure. Additionally, appropriate legends should always be included, allowing for the proper identification of each of the categories of the variable and including the type of information provided (absolute and/or relative frequency).

An external file that holds a picture, illustration, etc.
Object name is abd-89-02-0280-g02.jpg

Absolute frequencies of acne scar in 18-year-old adolescents (n = 2.414). Pelotas, Brazil, 2010

An external file that holds a picture, illustration, etc.
Object name is abd-89-02-0280-g03.jpg

Relative frequencies of acne scar in 18-year-old adolescents (n = 2.414). Pelotas, Brazil, 2010

Presentation of numerical variables

Frequency distributions of numerical variables can be displayed in a table, a histogram chart, or a frequency polygon chart. With regard to discrete variables, it is possible to present the number of observations according to the different values found in the study, as illustrated in table 2 . This type of table may provide a wide range of information on the collected data.

Educational level of 18-year-old adolescents (n = 2,199). Pelotas, Brazil, 2010

Table 2 shows the distribution of educational levels among 18-year-old youngsters from Pelotas, Southern Brazil, with absolute, relative, and cumulative relative frequencies. In this case, absolute and relative frequencies correspond to the absolute number and the percentage of individuals according to their distribution for this variable, respectively, based on complete years of education. It should be noticed that there are 450 adolescents with 8 years of education, which corresponds to 20.5% of the subjects. Tables may also present the cumulative relative frequency of the variable. In this case, it was found that 50.6% of study subjects have up to 8 years of education. It is important to point that, although the same data were used, each form of presentation (absolute, relative or cumulative frequency) provides different information and may be used to understand frequency distribution from different perspectives.

When one wants to evaluate the frequency distribution of continuous variables using tables or graphs, it is necessary to transform the variable into categories, preferably creating categories with the same size (or the same amplitude). However, in addition to this general recommendation, other basic guidelines should be followed, such as: (1) subtracting the highest from the lowest value for the variable of interest; (2) dividing the result of this subtraction by the number of categories to be created (usually from three to ten); and (3) defining category intervals based on this last result.

For example, in order to categorize height (in meters) of a set of individuals, the first step is to identify the tallest and the shortest individual of the sample. Let us assume that the tallest individual is 1.85m tall and the shortest, 1.55m tall, with a difference of 0.3m between these values. The next step is to divide this difference by the number of categories to be created, e.g., five. Thus, 0.3m divided by five equals 0.06m, which means that categories will have exactly this range and will be numerically represented by the following range of values: 1st category - 1.55m to 1.60m; 2nd category - 1.61m to 1.66m; 3rd category - 1.67m to 1.72m; 4th category - 1.73m to 1.78m; 5th category - 1.79m to 1.85m.

Table 3 illustrates weight values at 18 years of age in kg (continuous numerical variable) obtained in a study with youngsters from Pelotas, Southern Brazil. 4 , 5 Figure 4 shows a histogram with the variable weight categorized into 20-kg intervals. Therefore, it is possible to observe that data from continuous numerical variables may be presented in tables or graphs.

Weight distribution among 18-year-old young male sex (n = 2.194). Pelotas, Brazil, 2010

An external file that holds a picture, illustration, etc.
Object name is abd-89-02-0280-g04.jpg

Weight distribution at 18 years of age among youngsters from the city of Pelotas. Pelotas (n = 2.194), Brazil, 2010

Assessing the relationship between two variables

The forms of data presentation that have been described up to this point illustrated the distribution of a given variable, whether categorical or numerical. In addition, it is possible to present the relationship between two variables of interest, either categorical or numerical.

The relationship between categorical variables may be investigated using a contingency table, which has the purpose of analyzing the association between two or more variables. The lines of this type of table usually display the exposure variable (independent variable), and the columns, the outcome variable (dependent variable). For example, in order to study the effect of sun exposure (exposure variable) on the development of skin cancer (outcome variable), it is possible to place the variable sun exposure on the lines and the variable skin cancer on the columns of a contingency table. Tables may be easier to understand by including total values in lines and columns. These values should agree with the sum of the lines and/or columns, as appropriate, whereas relative values should be in accordance with the exposure variable, i.e., the sum of the values mentioned in the lines should total 100%.

It is such a display of percentage values that will make it possible for risk or exposure groups to be compared with each other, in order to investigate whether individuals exposed to a given risk factor show higher frequency of the disease of interest. Thus, table 4 shows that 75.0%, 9.0%, and 0.3% of individuals in the study sample who had been working exposed to the sun for 20 years or more, for less than 20 years, and had never been working exposed to the sun, respectively, developed non-melanoma skin cancer. Another way of interpreting this table is observing that 25.0%, 91%,.0%, and 99.7% of individuals who had been working exposed to the sun for 20 years of more, for less than 20 years, and had never been working exposed to the sun did not develop non-melanoma skin cancer. This form of presentation is one of the most used in the literature and makes the table easier to read.

Sun exposure during work and non-melanoma skin cancer (hypothetical data).

The relationship between two numerical variables or between one numerical variable and one categorical variable may be assessed using a scatter diagram, also known as dispersion diagram. In this diagram, each pair of values is represented by a symbol or a dot, whose horizontal and vertical positions are determined by the value of the first and second variables, respectively. By convention, vertical and horizontal axes should correspond to outcome and exposure variables, respectively. Figure 5 shows the relationship between weight and height among 18-year-old youngsters from Pelotas, Southern Brazil, in 2010. 3 , 4 The diagram presented in figure 5 should be interpreted as follows: the increase in subjects' height is accompanied by an increase in their weight.

An external file that holds a picture, illustration, etc.
Object name is abd-89-02-0280-g05.jpg

Point diagram for the relationship between weight (kg) and height (cm) among 18-year-old youngsters from the city of Pelotas (n = 2.194). Pelotas, Brazil, 2010.

BASIC RULES FOR THE PREPARATION OF TABLES AND GRAPHS

Ideally, every table should:

  • Be self-explanatory;
  • Present values with the same number of decimal places in all its cells (standardization);
  • Include a title informing what is being described and where, as well as the number of observations (N) and when data were collected;
  • Have a structure formed by three horizontal lines, defining table heading and the end of the table at its lower border;
  • Not have vertical lines at its lateral borders;
  • Provide additional information in table footer, when needed;
  • Be inserted into a document only after being mentioned in the text; and
  • Be numbered by Arabic numerals.

Similarly to tables, graphs should:

  • Include, below the figure, a title providing all relevant information;
  • Be referred to as figures in the text;
  • Identify figure axes by the variables under analysis;
  • Quote the source which provided the data, if required;
  • Demonstrate the scale being used; and
  • Be self-explanatory.

The graph's vertical axis should always start with zero. A usual type of distortion is starting this axis with values higher than zero. Whenever it happens, differences between variables are overestimated, as can been seen in figure 6 .

An external file that holds a picture, illustration, etc.
Object name is abd-89-02-0280-g06.jpg

Figure showing how graphs in which the Y-axis does not start with zero tend to overestimate the differences under analysis. On the left there is a graph whose Y axis does not start with zero and on the right a graph reproducing the same data but with the Y axis starting with zero.

Understanding how to classify the different types of variables and how to present them in tables or graphs is an essential stage for epidemiological research in all areas of knowledge, including Dermatology. Mastering this topic collaborates to synthesize research results and prevents the misuse or overuse of tables and figures in scientific papers.

Conflict of Interest: None

Financial Support: None

How to cite this article: Duquia RP, Bastos JL, Bonamigo RR, González-Chica DA, Martínez-Mesa J. Presenting data in tables and charts. An Bras Dermatol. 2014;89(2):280-5.

* Work performed at the Dermatology service, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Saúde Pública e Departamento de Nutrição da UFSC.

IMAGES

  1. How to Use Tables & Graphs in a Research Paper

    qualitative research may use tables and graphs in interpreting data

  2. Interpreting Data from Tables and Graphs

    qualitative research may use tables and graphs in interpreting data

  3. Qualitative Chart Chooser

    qualitative research may use tables and graphs in interpreting data

  4. Qualitative Research

    qualitative research may use tables and graphs in interpreting data

  5. The process of Qualitative Data Analysis includes analysing information

    qualitative research may use tables and graphs in interpreting data

  6. Interpreting Graphs, Free PDF Download

    qualitative research may use tables and graphs in interpreting data

COMMENTS

  1. Using tables to enhance trustworthiness in qualitative research

    A well maintained data inventory, properly referenced and cross-indexed (Mason, 2002: 148) also simplifies the eventual construction of a data sources table (a table that itemizes all the data used in a specific study by type or source) or a data sources and use table (which, in addition to sources, specifies how each type of data was actually ...

  2. Data Display in Qualitative Research

    It is relevant to explore whether there is a link between data display and the use of data analysis software. We examined the diagrams used in the articles that were published between 2007 and 2009 in the journals Qualitative Health Research (QHR), Qualitative Inquiry (QI), and Qualitative Research (QR). In this study, the terms visual displays ...

  3. Learning to Do Qualitative Data Analysis: A Starting Point

    In this article, we take up this open question as a point of departure and offer thematic analysis, an analytic method commonly used to identify patterns across language-based data (Braun & Clarke, 2006), as a useful starting point for learning about the qualitative analysis process.In doing so, we do not advocate for only learning the nuances of thematic analysis, but rather see it as a ...

  4. Utilizing tables, figures, charts and graphs to enhance the readability

    The closest one can get to raw statistics is through data presented in tables, figures, graphs, and supplementary material. Tables, figures, and graphs also help to classify and interpret data, highlight key findings, and present maximum data in a concise space. The author should make a deliberate decision on the presentation of his data early ...

  5. Interpretation and display of research results

    It important to properly collect, code, clean and edit the data before interpreting and displaying the research results. Computers play a major role in different phases of research starting from conceptual, design and planning, data collection, data analysis and research publication phases. The main objective of data display is to summarize the ...

  6. PDF 12 Qualitative Data, Analysis, and Design

    Outline. Chapter 12: Qualitative Data, Analysis, and Design343 focus on common qualitative research. The orientation of qualitative researchers contrasts sharply with that of quantitative researchers on many dimensions. Their thinking generates questions that are answered with an emergent methodology, and their approach to rich sources of data ...

  7. 31 Interpretation In Qualitative Research: What, Why, How

    Like Willig , we believe "interpretation is at the heart of qualitative research because qualitative research is concerned with meaning and the process of meaning-making … qualitative data … needs to be given meaning by the researcher" (p. 276). As we discuss throughout this chapter, researchers take a variety of approaches to ...

  8. (PDF) Qualitative Data Analysis and Interpretation: Systematic Search

    An understanding of qualitative data analysis is fundamental to their "systematic search for meaning" (Hatch, 2002:148) in their data. Qualitative data analysis in one of the most important ...

  9. What is data interpretation? All tricks & techniques

    Data interpretation refers to the process of examining and reviewing data for the purpose of describing the aspects of a phenomenon or concept. Qualitative research seldom has numerical data arising from data collection; instead, qualities of a phenomenon are often generated from this research. With this in mind, the role of data interpretation ...

  10. PDF Interpreting Qualitative Data for Actionable Insights in Eight Steps

    David Orta, PhD and Vanessa Gutiérrez, UChicago Consortium on School Research Interpreting Qualitative Data for Actionable Insights in Eight Steps This guide is meant to provide general tips for educators interested in using qualitative data to guide their practice. It is based on the process of two qualitative researchers at the UChicago ...

  11. Qualitative Study

    Qualitative research is a type of research that explores and provides deeper insights into real-world problems.[1] Instead of collecting numerical data points or intervene or introduce treatments just like in quantitative research, qualitative research helps generate hypotheses as well as further investigate and understand quantitative data. Qualitative research gathers participants ...

  12. Using tables to enhance trustworthiness in qualitative research

    overuse of tables and the travesties that they may cause, including the force-fitting of data into ... Miles and Huberman (1994), who advocated an ample use of tables in qualitative research, main- ... activities which are essential for interpreting qualitative data. In our experience, many of the tables ...

  13. Interpreting Qualitative Data

    Exercise Workbook to revise, reflect, and take notes in your exercise workbook, and helps you apply your newfound knowledge to real-world research examples and begin to work with qualitative data. Explore Online provides insider guidance from trusted experts on interpreting and doing qualitative research through this treasure chest of online ...

  14. 4.2 Frequency Distributions for Qualitative Data

    The first step towards plotting a qualitative frequency distribution is to create a table of the given or collected data. For example, let's say you want to determine the distribution of colors in a bag of Skittles. You open up a bag, and you find that there are 15 red, 7 orange, 7 yellow, 13 green, and 8 purple.

  15. 2.1: Organizing and Graphing Qualitative Data

    Two graphs that are used to display qualitative data are pie charts and bar graphs. In a pie chart, categories of data are represented by wedges in a circle and are proportional in size to the percent of individuals in each category. In a bar graph, the length of the bar for each category is proportional to the number or percent of individuals ...

  16. Mastering The Art Of Crafting A Qualitative Data Table

    Analyzing and interpreting qualitative data tables is a crucial step in the research process. It allows researchers to make sense of the data they have collected and draw meaningful conclusions. In this section, we will explore some key strategies for effectively analyzing and interpreting qualitative data tables. Identifying patterns and trends

  17. Qualitative Research: Data Collection, Analysis, and Management

    Doing qualitative research is not easy and may require a complete rethink of how research is conducted, particularly for researchers who are more familiar with quantitative approaches. There are many ways of conducting qualitative research, and this paper has covered some of the practical issues regarding data collection, analysis, and management.

  18. Effective Use of Tables and Figures in Research Papers

    Tables and figures in scientific papers are wonderful ways of presenting data. Effective data presentation in research papers requires understanding your reader and the elements that comprise a table. Tables have several elements, including the legend, column titles, and body. As with academic writing, it is also just as important to structure ...

  19. Qualitative vs. Quantitative Research

    Use quantitative research if you want to confirm or test something (a theory or hypothesis) Use qualitative research if you want to understand something (concepts, thoughts, experiences) For most research topics you can choose a qualitative, quantitative or mixed methods approach. Which type you choose depends on, among other things, whether ...

  20. Data Display in Qualitative Research

    Abstract. Visual displays help in the presentation of inferences and conclusions and represent ways of organizing, summarizing, simplifying, or transforming data. Data displays such as matrices and networks are often utilized to enhance data analysis and are more commonly seen in quantitative than in qualitative studies.

  21. How to present research findings: The case of tables

    From the very first paragraph of the results section to the tables, the graphs and the accompanying text, all these parts should describe a composite story together. One should not repeat in the text what has been already described in a table or a graph and, vice versa, tables and graphs should carry information that cannot be condensed into a ...

  22. Graphs and Tables Using One Qualitative Variable

    Bar charts (also known as bar graphs) are a visual representation of the frequency table and use bars of different lengths. Because such a chart is used with a qualitative variable (thus, the categories of data are uniquely different), the bars do not touch. It is used to answer questions, where quantities in different categories are compared.

  23. Presenting data in tables and charts

    Abstract. The present paper aims to provide basic guidelines to present epidemiological data using tables and graphs in Dermatology. Although simple, the preparation of tables and graphs should follow basic recommendations, which make it much easier to understand the data under analysis and to promote accurate communication in science.