QuestionsAnswered.net

What's Your Question?

Resources to Help You Solve Math Equations

Whether you love math or suffer through every single problem, there are plenty of resources to help you solve math equations. Skip the tutor and log on to load these awesome websites for a fantastic free equation solver or simply to find answers for solving equations on the Internet.

Stand By for Automatic Math Solutions at Quick Math

The Quick Math website offers easy answers for solving equations along with a simple format that makes math a breeze. Load the website to browse tutorials, set up a polynomial equation solver, or to factor or expand fractions. From algebra to calculus and graphs, Quick Math provides not just the answers to your tough math problems but a step-by-step problem-solving calculator. Use the input bar to enter your equation, and click on the “simplify” button to explore the problem and its solution. Choose some sample problems to practice your math skills, or move to another tab for a variety of math input options. Quick Math makes it easy to learn how to solve this equation even when you’re completely confused.

Modern Math Answers Come From Mathway

Mathway offers a free equation solver that sifts through your toughest math problems — and makes math easy. Simply enter your math problem into the Mathway calculator, and choose what you’d like the math management program to do with the problem. Pick from math solutions that include graphing, simplifying, finding a slope or solving for a y-intercept by scrolling through the Mathway drop-down menu. Use the answers for solving equations to explore different types of solutions, or set the calculator to offer the best solution for your particular math puzzle. Mathway offers the option to create an account, to sign in or sign up for additional features or to simply stick with the free equation solver.

Wyzant —​ Why Not?

Wyzant offers a variety of answers when it comes to “how to solve this equation” questions. Sign up to find a tutor trained to offer online sessions that increase your math understanding, or jump in with the calculator that helps you simplify math equations. A quick-start guide makes it easy to understand exactly how to use the Wyzant math solutions pages, while additional resources provide algebra worksheets, a polynomial equation solver, math-related blogs to promote better math skills and lesson recording. Truly filled with math solutions, Wyzant provides more than just an equation calculator and actually connects you with people who are trained to teach the math you need. Prices for tutoring vary greatly, but access to the website and its worksheets is free.

Take in Some WebMath

Log onto the WebMath website, and browse through the tabs that include Math for Everyone, Trig and Calculus, General Math and even K-8 Math. A simple drop-down box helps you to determine what type of math help you need, and then you easily add your problem to the free equation solver. WebMath provides plenty of options for homeschoolers with lesson plans, virtual labs and family activities.

Khan Academy Offers More Than Answers

A free equation solver is just the beginning when it comes to awesome math resources at Khan Academy. Free to use and filled with videos that offer an online teaching experience, Khan Academy helps you to simplify math equations, shows you how to solve equations and provides full math lessons from Kindergarten to SAT test preparation. Watch the video for each math problem, explore the sample problems, and increase your math skills right at home with Khan Academy’s easy-to-follow video learning experience. Once you’ve completed your math video, move onto practice problems that help to increase your confidence in your math skills.

MORE FROM QUESTIONSANSWERED.NET

solving inequality equations problems

Solving Inequalities

Sometimes we need to solve Inequalities like these:

Our aim is to have x (or whatever the variable is) on its own on the left of the inequality sign:

We call that "solved".

Example: x + 2 > 12

Subtract 2 from both sides:

x + 2 − 2 > 12 − 2

x > 10

How to Solve

Solving inequalities is very like solving equations ... we do most of the same things ...

... but we must also pay attention to the direction of the inequality .

Some things can change the direction !

< becomes >

> becomes <

≤ becomes ≥

≥ becomes ≤

Safe Things To Do

These things do not affect the direction of the inequality:

Example: 3x < 7+3

We can simplify 7+3 without affecting the inequality:

But these things do change the direction of the inequality ("<" becomes ">" for example):

Example: 2y+7 < 12

When we swap the left and right hand sides, we must also change the direction of the inequality :

12 > 2y+7

Here are the details:

Adding or Subtracting a Value

We can often solve inequalities by adding (or subtracting) a number from both sides (just as in Introduction to Algebra ), like this:

Example: x + 3 < 7

If we subtract 3 from both sides, we get:

x + 3 − 3 < 7 − 3    

And that is our solution: x < 4

In other words, x can be any value less than 4.

What did we do?

And that works well for adding and subtracting , because if we add (or subtract) the same amount from both sides, it does not affect the inequality

Example: Alex has more coins than Billy. If both Alex and Billy get three more coins each, Alex will still have more coins than Billy.

What If I Solve It, But "x" Is On The Right?

No matter, just swap sides, but reverse the sign so it still "points at" the correct value!

Example: 12 < x + 5

If we subtract 5 from both sides, we get:

12 − 5 < x + 5 − 5    

That is a solution!

But it is normal to put "x" on the left hand side ...

... so let us flip sides (and the inequality sign!):

Do you see how the inequality sign still "points at" the smaller value (7) ?

And that is our solution: x > 7

Note: "x" can be on the right, but people usually like to see it on the left hand side.

Multiplying or Dividing by a Value

Another thing we do is multiply or divide both sides by a value (just as in Algebra - Multiplying ).

But we need to be a bit more careful (as you will see).

Positive Values

Everything is fine if we want to multiply or divide by a positive number :

Example: 3y < 15

If we divide both sides by 3 we get:

3y /3 < 15 /3

And that is our solution: y < 5

Negative Values

Well, just look at the number line!

For example, from 3 to 7 is an increase , but from −3 to −7 is a decrease.

See how the inequality sign reverses (from < to >) ?

Let us try an example:

Example: −2y < −8

Let us divide both sides by −2 ... and reverse the inequality !

−2y < −8

−2y /−2 > −8 /−2

And that is the correct solution: y > 4

(Note that I reversed the inequality on the same line I divided by the negative number.)

So, just remember:

When multiplying or dividing by a negative number, reverse the inequality

Multiplying or Dividing by Variables

Here is another (tricky!) example:

Example: bx < 3b

It seems easy just to divide both sides by b , which gives us:

... but wait ... if b is negative we need to reverse the inequality like this:

But we don't know if b is positive or negative, so we can't answer this one !

To help you understand, imagine replacing b with 1 or −1 in the example of bx < 3b :

The answer could be x < 3 or x > 3 and we can't choose because we don't know b .

Do not try dividing by a variable to solve an inequality (unless you know the variable is always positive, or always negative).

A Bigger Example

Example: x−3 2 < −5.

First, let us clear out the "/2" by multiplying both sides by 2.

Because we are multiplying by a positive number, the inequalities will not change.

x−3 2 ×2 < −5  ×2  

x−3 < −10

Now add 3 to both sides:

x−3 + 3 < −10 + 3    

And that is our solution: x < −7

Two Inequalities At Once!

How do we solve something with two inequalities at once?

Example: −2 < 6−2x 3 < 4

First, let us clear out the "/3" by multiplying each part by 3.

Because we are multiplying by a positive number, the inequalities don't change:

−6 < 6−2x < 12

−12 < −2x < 6

Now divide each part by 2 (a positive number, so again the inequalities don't change):

−6 < −x < 3

Now multiply each part by −1. Because we are multiplying by a negative number, the inequalities change direction .

6 > x > −3

And that is the solution!

But to be neat it is better to have the smaller number on the left, larger on the right. So let us swap them over (and make sure the inequalities point correctly):

−3 < x < 6

Solving Inequalities

Related Pages Solving Equations Algebraic Expressions More Algebra Lessons

In these lessons, we will look at the rules, approaches, and techniques for solving inequalities.

The following figure shows how to solve two-step inequalities. Scroll down the page for more examples and solutions.

Solve Two-Step Inequalities

The rules for solving inequalities are similar to those for solving linear equations. However, there is one exception when multiplying or dividing by a negative number.

To solve an inequality, we can:

Inequalities Of The Form “x + a > b” or “x + a < b”

Example: Solve x + 7 < 15

Solution: x + 7 < 15 x + 7 – 7 < 15 – 7 x < 8

Inequalities Of The Form “x – a < b” or “x – a > b”

Example: Solve x – 6 > 14

Solution: x – 6 > 14 x – 6+ 6 > 14 + 6 x > 20

Example: Solve the inequality x – 3 + 2 < 10

Solution: x – 3 + 2 < 10 x – 1 < 10 x – 1 + 1 < 10 + 1 x < 11

Inequalities Of The Form “a – x < b” or “a – x > b”

Example: Solve the inequality 7 – x < 9

Solution: 7 – x < 9 7 – x – 7 < 9 – 7 – x < 2 x > –2 (remember to reverse the symbol when multiplying by –1)

Example: Solve the inequality 12 > 18 – y

Solution: 12 > 18 – y 18 – y < 12 18 – y – 18 < 12 –18 – y < –6 y > 6 (remember to reverse the symbol when multiplying by –1)

Inequalities Of The Form “ < b” or “ > b”

Solving linear inequalities with like terms.

If an equation has like terms, we simplify the equation and then solve it. We do the same when solving inequalities with like terms.

Example: Evaluate 3x – 8 + 2x < 12

Solution: 3x – 8 + 2x < 12 3x + 2x < 12 + 8 5x < 20 x < 4

Example: Evaluate 6x – 8 > x + 7

Solution: 6x – 8 > x + 7 6x – x > 7 + 8 5x > 15 x > 3

Example: Evaluate 2(8 – p) ≤ 3(p + 7)

Solution: 2(8 – p) ≤ 3(p + 7) 16 – 2p ≤ 3p + 21 16 – 21 ≤ 3p + 2p –5 ≤ 5p –1 ≤ p p ≥ –1 (a < b is equivalent to b > a)

An Introduction To Solving Inequalities

Solving One-Step Linear Inequalities In One Variable

The solutions to linear inequalities can be expressed several ways: using inequalities, using a graph, or using interval notation.

The steps to solve linear inequalities are the same as linear equations, except if you multiply or divide by a negative when solving for the variable, you must reverse the inequality symbol.

Example: Solve. Express the solution as an inequality, graph and interval notation. x + 4 > 7 -2x > 8 x/-2 > -1 x - 9 ≥ -12 7x > -7 x - 9 ≤ -12

Solving Two-Step Linear Inequalities In One Variable

Example: Solve. Express the solution as an inequality, graph and interval notation. 3x + 4 ≥ 10 -2x - 1 > 9 10 ≥ -3x - 2 -8 > 5x + 12

Solving Linear Inequalities

Main rule to remember: If you multiply or divide by a negative number, the inequality flips direction.

Examples of how to solve linear inequalities are shown:

Example: Solve: 3x - 6 > 8x - 7

Students learn that when solving an inequality, such as -3x is less than 12, the goal is the same as when solving an equation: to get the variable by itself on one side.

Note that when multiplying or dividing both sides of an inequality by a negative number, the direction of the inequality sign must be switched.

For example, to solve -3x is less than 12, divide both sides by -3, to get x is greater than -4.

And when graphing an inequality on a number line, less than or greater than is shown with an open dot, and less than or equal to or greater than or equal to is shown with a closed dot.

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Unit: Solving equations & inequalities

Linear equations with variables on both sides.

Linear equations with parentheses

Analyzing the number of solutions to linear equations

Linear equations with unknown coefficients

Multi-step inequalities

Compound inequalities

About this unit

Download on App Store

Download on App Store

Equations and Inequalities Involving Signed Numbers

In chapter 2 we established rules for solving equations using the numbers of arithmetic. Now that we have learned the operations on signed numbers, we will use those same rules to solve equations that involve negative numbers. We will also study techniques for solving and graphing inequalities having one unknown.

SOLVING EQUATIONS INVOLVING SIGNED NUMBERS

Upon completing this section you should be able to solve equations involving signed numbers.

Example 1 Solve for x and check: x + 5 = 3

Using the same procedures learned in chapter 2, we subtract 5 from each side of the equation obtaining

solving inequality equations problems

Example 2 Solve for x and check: - 3x = 12

Dividing each side by -3, we obtain

solving inequality equations problems

LITERAL EQUATIONS

An equation having more than one letter is sometimes called a literal equation . It is occasionally necessary to solve such an equation for one of the letters in terms of the others. The step-by-step procedure discussed and used in chapter 2 is still valid after any grouping symbols are removed.

Example 1 Solve for c: 3(x + c) - 4y = 2x - 5c

First remove parentheses.

solving inequality equations problems

At this point we note that since we are solving for c, we want to obtain c on one side and all other terms on the other side of the equation. Thus we obtain

solving inequality equations problems

Sometimes the form of an answer can be changed. In this example we could multiply both numerator and denominator of the answer by (- l) (this does not change the value of the answer) and obtain

solving inequality equations problems

The advantage of this last expression over the first is that there are not so many negative signs in the answer.

solving inequality equations problems

The most commonly used literal expressions are formulas from geometry, physics, business, electronics, and so forth.

solving inequality equations problems

Notice in this example that r was left on the right side and thus the computation was simpler. We can rewrite the answer another way if we wish.

solving inequality equations problems

GRAPHING INEQUALITIES

solving inequality equations problems

The symbols are inequality symbols or order relations and are used to show the relative sizes of the values of two numbers. We usually read the symbol as "greater than." For instance, a > b is read as "a is greater than b." Notice that we have stated that we usually read a < b as a is less than b. But this is only because we read from left to right. In other words, "a is less than b" is the same as saying "b is greater than a." Actually then, we have one symbol that is written two ways only for convenience of reading. One way to remember the meaning of the symbol is that the pointed end is toward the lesser of the two numbers.

solving inequality equations problems

In simpler words this definition states that a is less than b if we must add something to a to get b. Of course, the "something" must be positive.

If you think of the number line, you know that adding a positive number is equivalent to moving to the right on the number line. This gives rise to the following alternative definition, which may be easier to visualize.

Example 1 3 < 6, because 3 is to the left of 6 on the number line.

solving inequality equations problems

Example 2 - 4 < 0, because -4 is to the left of 0 on the number line.

solving inequality equations problems

Example 3 4 > - 2, because 4 is to the right of -2 on the number line.

solving inequality equations problems

Example 4 - 6 < - 2, because -6 is to the left of -2 on the number line.

solving inequality equations problems

The mathematical statement x < 3, read as "x is less than 3," indicates that the variable x can be any number less than (or to the left of) 3. Remember, we are considering the real numbers and not just integers, so do not think of the values of x for x < 3 as only 2, 1,0, - 1, and so on.

As a matter of fact, to name the number x that is the largest number less than 3 is an impossible task. It can be indicated on the number line, however. To do this we need a symbol to represent the meaning of a statement such as x < 3.

The symbols ( and ) used on the number line indicate that the endpoint is not included in the set.

Example 5 Graph x < 3 on the number line.

solving inequality equations problems

Note that the graph has an arrow indicating that the line continues without end to the left.

Example 6 Graph x > 4 on the number line.

solving inequality equations problems

Example 7 Graph x > -5 on the number line.

solving inequality equations problems

Example 8 Make a number line graph showing that x > - 1 and x < 5. (The word "and" means that both conditions must apply.)

solving inequality equations problems

Example 9 Graph - 3 < x < 3.

solving inequality equations problems

Example 10 x >; 4 indicates the number 4 and all real numbers to the right of 4 on the number line.

The symbols [ and ] used on the number line indicate that the endpoint is included in the set.

solving inequality equations problems

Example 13 Write an algebraic statement represented by the following graph.

solving inequality equations problems

Example 14 Write an algebraic statement for the following graph.

solving inequality equations problems

Example 15 Write an algebraic statement for the following graph.

solving inequality equations problems

SOLVING INEQUALITIES

Upon completing this section you should be able to solve inequalities involving one unknown.

The solutions for inequalities generally involve the same basic rules as equations. There is one exception, which we will soon discover. The first rule, however, is similar to that used in solving equations.

If the same quantity is added to each side of an inequality , the results are unequal in the same order.

Example 1 If 5 < 8, then 5 + 2 < 8 + 2.

Example 2 If 7 < 10, then 7 - 3 < 10 - 3.

We can use this rule to solve certain inequalities.

Example 3 Solve for x: x + 6 < 10

If we add -6 to each side, we obtain

solving inequality equations problems

Graphing this solution on the number line, we have

solving inequality equations problems

We will now use the addition rule to illustrate an important concept concerning multiplication or division of inequalities.

Suppose x > a.

Now add - x to both sides by the addition rule.

solving inequality equations problems

Now add -a to both sides.

solving inequality equations problems

The last statement, - a > -x, can be rewritten as - x < -a. Therefore we can say, "If x > a, then - x < -a. This translates into the following rule:

If an inequality is multiplied or divided by a negative number, the results will be unequal in the opposite order.

Example 5 Solve for x and graph the solution: -2x>6

To obtain x on the left side we must divide each term by - 2. Notice that since we are dividing by a negative number, we must change the direction of the inequality.

solving inequality equations problems

Take special note of this fact. Each time you divide or multiply by a negative number, you must change the direction of the inequality symbol. This is the only difference between solving equations and solving inequalities.

Once we have removed parentheses and have only individual terms in an expression, the procedure for finding a solution is almost like that in chapter 2.

Let us now review the step-by-step method from chapter 2 and note the difference when solving inequalities.

First Eliminate fractions by multiplying all terms by the least common denominator of all fractions. (No change when we are multiplying by a positive number.) Second Simplify by combining like terms on each side of the inequality. (No change) Third Add or subtract quantities to obtain the unknown on one side and the numbers on the other. (No change) Fourth Divide each term of the inequality by the coefficient of the unknown. If the coefficient is positive, the inequality will remain the same. If the coefficient is negative, the inequality will be reversed. (This is the important difference between equations and inequalities.)

solving inequality equations problems

Math Topics

More solvers.

Section 2.11 : Linear Inequalities

For problems 1 – 6 solve each of the following inequalities. Give the solution in both inequality and interval notations.

IMAGES

  1. Solving Inequalities (video lessons, examples, solutions)

    solving inequality equations problems

  2. January

    solving inequality equations problems

  3. Solving Equations and Inequalities

    solving inequality equations problems

  4. Solving Linear Inequalities w/ one Variable-Textbook Tactics

    solving inequality equations problems

  5. Equations And Inequalities Quiz Answers

    solving inequality equations problems

  6. #29a Word Problems with Two-Step Inequalities

    solving inequality equations problems

VIDEO

  1. Solutions of Linear Inequalities in 2 Variables 1.8

  2. Inequalities Part One

  3. How To Solve For Inequalities

  4. Solving Inequalities

  5. Solving Linear Inequalities#mathantics

  6. MHF4U

COMMENTS

  1. What Are the Four Steps for Solving an Equation?

    The four steps for solving an equation include the combination of like terms, the isolation of terms containing variables, the isolation of the variable and the substitution of the answer into the original equation to check the answer.

  2. What Are the Six Steps of Problem Solving?

    The six steps of problem solving involve problem definition, problem analysis, developing possible solutions, selecting a solution, implementing the solution and evaluating the outcome. Problem solving models are used to address issues that...

  3. Resources to Help You Solve Math Equations

    Whether you love math or suffer through every single problem, there are plenty of resources to help you solve math equations. Skip the tutor and log on to load these awesome websites for a fantastic free equation solver or simply to find an...

  4. Solving Inequalities

    Many simple inequalities can be solved by adding, subtracting, multiplying or dividing both sides until you are left with the variable on its own. · But these

  5. Solving Inequalities (video lessons, examples, solutions)

    Solving Inequalities · Add the same number to both sides. · Subtract the same number from both sides. · Multiply both sides by the same positive number. · Divide

  6. Multi-step linear inequalities (practice)

    Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a

  7. Multi-step inequalities (video)

    It's like and equation, but with the inequality symbols, which are < and >. An equation uses an = (equal sign). For example: 3x + 8 = 2x - 4 is an equation.

  8. Solving equations & inequalities

    There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities.

  9. Solve inequalities with Step-by-Step Math Problem Solver

    To solve an inequality use the following steps: Step 1 Eliminate fractions by multiplying all terms by the least common denominator of all fractions. Step 2

  10. Solving Inequalities Practice

    Practice Page. Directions: Solve the following inequalities for the designated variable. The students' hints may be helpful.

  11. Linear Inequalities (Practice Problems)

    Here is a set of practice problems to accompany the Linear Inequalities section of the Solving Equations and Inequalities chapter of the

  12. How To Solve Linear Inequalities, Basic Introduction, Algebra

    This algebra video tutorial provides a basic introduction into how to solve linear inequalities. It explains how to graph the solution using

  13. Solving inequalities

    The expression 5x − 4 > 2x + 3 looks like an equation but with the equals sign replaced by an arrowhead. It is an example of an inequality. This denotes that

  14. Algebra: Solving Inequalities

    Key moments. View all · draw that on the number line · draw that on the number line · draw that on the number line · let me draw the number line.