• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

the first step of the problem solving process is to

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

the first step of the problem solving process is to

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

What Is Problem Solving? How Software Engineers Approach Complex Challenges

HackerRank AI Promotion

Register Now

Abstract, futuristic image generated by AI

From debugging an existing system to designing an entirely new software application, a day in the life of a software engineer is filled with various challenges and complexities. The one skill that glues these disparate tasks together and makes them manageable? Problem solving . 

Throughout this blog post, we’ll explore why problem-solving skills are so critical for software engineers, delve into the techniques they use to address complex challenges, and discuss how hiring managers can identify these skills during the hiring process. 

What Is Problem Solving?

But what exactly is problem solving in the context of software engineering? How does it work, and why is it so important?

Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn’t working as expected, or something as complex as designing the architecture for a new software system. 

In a world where technology is evolving at a blistering pace, the complexity and volume of problems that software engineers face are also growing. As such, the ability to tackle these issues head-on and find innovative solutions is not only a handy skill — it’s a necessity. 

The Importance of Problem-Solving Skills for Software Engineers

Problem-solving isn’t just another ability that software engineers pull out of their toolkits when they encounter a bug or a system failure. It’s a constant, ongoing process that’s intrinsic to every aspect of their work. Let’s break down why this skill is so critical.

Driving Development Forward

Without problem solving, software development would hit a standstill. Every new feature, every optimization, and every bug fix is a problem that needs solving. Whether it’s a performance issue that needs diagnosing or a user interface that needs improving, the capacity to tackle and solve these problems is what keeps the wheels of development turning.

It’s estimated that 60% of software development lifecycle costs are related to maintenance tasks, including debugging and problem solving. This highlights how pivotal this skill is to the everyday functioning and advancement of software systems.

Innovation and Optimization

The importance of problem solving isn’t confined to reactive scenarios; it also plays a major role in proactive, innovative initiatives . Software engineers often need to think outside the box to come up with creative solutions, whether it’s optimizing an algorithm to run faster or designing a new feature to meet customer needs. These are all forms of problem solving.

Consider the development of the modern smartphone. It wasn’t born out of a pre-existing issue but was a solution to a problem people didn’t realize they had — a device that combined communication, entertainment, and productivity into one handheld tool.

Increasing Efficiency and Productivity

Good problem-solving skills can save a lot of time and resources. Effective problem-solvers are adept at dissecting an issue to understand its root cause, thus reducing the time spent on trial and error. This efficiency means projects move faster, releases happen sooner, and businesses stay ahead of their competition.

Improving Software Quality

Problem solving also plays a significant role in enhancing the quality of the end product. By tackling the root causes of bugs and system failures, software engineers can deliver reliable, high-performing software. This is critical because, according to the Consortium for Information and Software Quality, poor quality software in the U.S. in 2022 cost at least $2.41 trillion in operational issues, wasted developer time, and other related problems.

Problem-Solving Techniques in Software Engineering

So how do software engineers go about tackling these complex challenges? Let’s explore some of the key problem-solving techniques, theories, and processes they commonly use.

Decomposition

Breaking down a problem into smaller, manageable parts is one of the first steps in the problem-solving process. It’s like dealing with a complicated puzzle. You don’t try to solve it all at once. Instead, you separate the pieces, group them based on similarities, and then start working on the smaller sets. This method allows software engineers to handle complex issues without being overwhelmed and makes it easier to identify where things might be going wrong.

Abstraction

In the realm of software engineering, abstraction means focusing on the necessary information only and ignoring irrelevant details. It is a way of simplifying complex systems to make them easier to understand and manage. For instance, a software engineer might ignore the details of how a database works to focus on the information it holds and how to retrieve or modify that information.

Algorithmic Thinking

At its core, software engineering is about creating algorithms — step-by-step procedures to solve a problem or accomplish a goal. Algorithmic thinking involves conceiving and expressing these procedures clearly and accurately and viewing every problem through an algorithmic lens. A well-designed algorithm not only solves the problem at hand but also does so efficiently, saving computational resources.

Parallel Thinking

Parallel thinking is a structured process where team members think in the same direction at the same time, allowing for more organized discussion and collaboration. It’s an approach popularized by Edward de Bono with the “ Six Thinking Hats ” technique, where each “hat” represents a different style of thinking.

In the context of software engineering, parallel thinking can be highly effective for problem solving. For instance, when dealing with a complex issue, the team can use the “White Hat” to focus solely on the data and facts about the problem, then the “Black Hat” to consider potential problems with a proposed solution, and so on. This structured approach can lead to more comprehensive analysis and more effective solutions, and it ensures that everyone’s perspectives are considered.

This is the process of identifying and fixing errors in code . Debugging involves carefully reviewing the code, reproducing and analyzing the error, and then making necessary modifications to rectify the problem. It’s a key part of maintaining and improving software quality.

Testing and Validation

Testing is an essential part of problem solving in software engineering. Engineers use a variety of tests to verify that their code works as expected and to uncover any potential issues. These range from unit tests that check individual components of the code to integration tests that ensure the pieces work well together. Validation, on the other hand, ensures that the solution not only works but also fulfills the intended requirements and objectives.

Explore verified tech roles & skills.

The definitive directory of tech roles, backed by machine learning and skills intelligence.

Explore all roles

Evaluating Problem-Solving Skills

We’ve examined the importance of problem-solving in the work of a software engineer and explored various techniques software engineers employ to approach complex challenges. Now, let’s delve into how hiring teams can identify and evaluate problem-solving skills during the hiring process.

Recognizing Problem-Solving Skills in Candidates

How can you tell if a candidate is a good problem solver? Look for these indicators:

  • Previous Experience: A history of dealing with complex, challenging projects is often a good sign. Ask the candidate to discuss a difficult problem they faced in a previous role and how they solved it.
  • Problem-Solving Questions: During interviews, pose hypothetical scenarios or present real problems your company has faced. Ask candidates to explain how they would tackle these issues. You’re not just looking for a correct solution but the thought process that led them there.
  • Technical Tests: Coding challenges and other technical tests can provide insight into a candidate’s problem-solving abilities. Consider leveraging a platform for assessing these skills in a realistic, job-related context.

Assessing Problem-Solving Skills

Once you’ve identified potential problem solvers, here are a few ways you can assess their skills:

  • Solution Effectiveness: Did the candidate solve the problem? How efficient and effective is their solution?
  • Approach and Process: Go beyond whether or not they solved the problem and examine how they arrived at their solution. Did they break the problem down into manageable parts? Did they consider different perspectives and possibilities?
  • Communication: A good problem solver can explain their thought process clearly. Can the candidate effectively communicate how they arrived at their solution and why they chose it?
  • Adaptability: Problem-solving often involves a degree of trial and error. How does the candidate handle roadblocks? Do they adapt their approach based on new information or feedback?

Hiring managers play a crucial role in identifying and fostering problem-solving skills within their teams. By focusing on these abilities during the hiring process, companies can build teams that are more capable, innovative, and resilient.

Key Takeaways

As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. 

By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome complex challenges. But mastering these techniques isn’t simple feat. It requires a learning mindset, regular practice, collaboration, reflective thinking, resilience, and a commitment to staying updated with industry trends. 

For hiring managers and team leads, recognizing these skills and fostering a culture that values and nurtures problem solving is key. It’s this emphasis on problem solving that can differentiate an average team from a high-performing one and an ordinary product from an industry-leading one.

At the end of the day, software engineering is fundamentally about solving problems — problems that matter to businesses, to users, and to the wider society. And it’s the proficient problem solvers who stand at the forefront of this dynamic field, turning challenges into opportunities, and ideas into reality.

This article was written with the help of AI. Can you tell which parts?

Get started with HackerRank

Over 3,000 companies and 40% of developers worldwide use HackerRank to hire tech talent and sharpen their skills.

Recommended topics

  • Hire Developers
  • Problem Solving

Abstract, futuristic image generated by AI

What Factors Actually Impact a Developer’s Decision to Accept an Offer?

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

MindManager Blog

The 5 steps of the solving problem process

August 17, 2023 by MindManager Blog

Whether you run a business, manage a team, or work in an industry where change is the norm, it may feel like something is always going wrong. Thankfully, becoming proficient in the problem solving process can alleviate a great deal of the stress that business issues can create.

Understanding the right way to solve problems not only takes the guesswork out of how to deal with difficult, unexpected, or complex situations, it can lead to more effective long-term solutions.

In this article, we’ll walk you through the 5 steps of problem solving, and help you explore a few examples of problem solving scenarios where you can see the problem solving process in action before putting it to work.

Understanding the problem solving process

When something isn’t working, it’s important to understand what’s at the root of the problem so you can fix it and prevent it from happening again. That’s why resolving difficult or complex issues works best when you apply proven business problem solving tools and techniques – from soft skills, to software.

The problem solving process typically includes:

  • Pinpointing what’s broken by gathering data and consulting with team members.
  • Figuring out why it’s not working by mapping out and troubleshooting the problem.
  • Deciding on the most effective way to fix it by brainstorming and then implementing a solution.

While skills like active listening, collaboration, and leadership play an important role in problem solving, tools like visual mapping software make it easier to define and share problem solving objectives, play out various solutions, and even put the best fit to work.

Before you can take your first step toward solving a problem, you need to have a clear idea of what the issue is and the outcome you want to achieve by resolving it.

For example, if your company currently manufactures 50 widgets a day, but you’ve started processing orders for 75 widgets a day, you could simply say you have a production deficit.

However, the problem solving process will prove far more valuable if you define the start and end point by clarifying that production is running short by 25 widgets a day, and you need to increase daily production by 50%.

Once you know where you’re at and where you need to end up, these five steps will take you from Point A to Point B:

  • Figure out what’s causing the problem . You may need to gather knowledge and evaluate input from different documents, departments, and personnel to isolate the factors that are contributing to your problem. Knowledge visualization software like MindManager can help.
  • Come up with a few viable solutions . Since hitting on exactly the right solution – right away – can be tough, brainstorming with your team and mapping out various scenarios is the best way to move forward. If your first strategy doesn’t pan out, you’ll have others on tap you can turn to.
  • Choose the best option . Decision-making skills, and software that lets you lay out process relationships, priorities, and criteria, are invaluable for selecting the most promising solution. Whether it’s you or someone higher up making that choice, it should include weighing costs, time commitments, and any implementation hurdles.
  • Put your chosen solution to work . Before implementing your fix of choice, you should make key personnel aware of changes that might affect their daily workflow, and set up benchmarks that will make it easy to see if your solution is working.
  • Evaluate your outcome . Now comes the moment of truth: did the solution you implemented solve your problem? Do your benchmarks show you achieved the outcome you wanted? If so, congratulations! If not, you’ll need to tweak your solution to meet your problem solving goal.

In practice, you might not hit a home-run with every solution you execute. But the beauty of a repeatable process like problem solving is that you can carry out steps 4 and 5 again by drawing from the brainstorm options you documented during step 2.

Examples of problem solving scenarios

The best way to get a sense of how the problem solving process works before you try it for yourself is to work through some simple scenarios.

Here are three examples of how you can apply business problem solving techniques to common workplace challenges.

Scenario #1: Manufacturing

Building on our original manufacturing example, you determine that your company is consistently short producing 25 widgets a day and needs to increase daily production by 50%.

Since you’d like to gather data and input from both your manufacturing and sales order departments, you schedule a brainstorming session to discover the root cause of the shortage.

After examining four key production areas – machines, materials, methods, and management – you determine the cause of the problem: the material used to manufacture your widgets can only be fed into your equipment once the machinery warms up to a specific temperature for the day.

Your team comes up with three possible solutions.

  • Leave your machinery running 24 hours so it’s always at temperature.
  • Invest in equipment that heats up faster.
  • Find an alternate material for your widgets.

After weighing the expense of the first two solutions, and conducting some online research, you decide that switching to a comparable but less expensive material that can be worked at a lower temperature is your best option.

You implement your plan, monitor your widget quality and output over the following week, and declare your solution a success when daily production increases by 100%.

Scenario #2: Service Delivery

Business training is booming and you’ve had to onboard new staff over the past month. Now you learn that several clients have expressed concern about the quality of your recent training sessions.

After speaking with both clients and staff, you discover there are actually two distinct factors contributing to your quality problem:

  • The additional conference room you’ve leased to accommodate your expanding training sessions has terrible acoustics
  • The AV equipment you’ve purchased to accommodate your expanding workforce is on back-order – and your new hires have been making do without

You could look for a new conference room or re-schedule upcoming training sessions until after your new equipment arrives. But your team collaboratively determines that the best way to mitigate both issues at once is by temporarily renting the high-quality sound and visual system they need.

Using benchmarks that include several weeks of feedback from session attendees, and random session spot-checks you conduct personally, you conclude the solution has worked.

Scenario #3: Marketing

You’ve invested heavily in product marketing, but still can’t meet your sales goals. Specifically, you missed your revenue target by 30% last year and would like to meet that same target this year.

After collecting and examining reams of information from your sales and accounting departments, you sit down with your marketing team to figure out what’s hindering your success in the marketplace.

Determining that your product isn’t competitively priced, you map out two viable solutions.

  • Hire a third-party specialist to conduct a detailed market analysis.
  • Drop the price of your product to undercut competitors.

Since you’re in a hurry for results, you decide to immediately reduce the price of your product and market it accordingly.

When revenue figures for the following quarter show sales have declined even further – and marketing surveys show potential customers are doubting the quality of your product – you revert back to your original pricing, revisit your problem solving process, and implement the market analysis solution instead.

With the valuable information you gain, you finally arrive at just the right product price for your target market and sales begin to pick up. Although you miss your revenue target again this year, you meet it by the second quarter of the following year.

Kickstart your collaborative brainstorming sessions and  try MindManager for free today !

Ready to take the next step?

MindManager helps boost collaboration and productivity among remote and hybrid teams to achieve better results, faster.

the first step of the problem solving process is to

Why choose MindManager?

MindManager® helps individuals, teams, and enterprises bring greater clarity and structure to plans, projects, and processes. It provides visual productivity tools and mind mapping software to help take you and your organization to where you want to be.

Explore MindManager

the first step of the problem solving process is to

The Five-Step Problem-Solving Process

Sometimes when you’re faced with a complex problem, it’s best to pause and take a step back. A break from…

The Five Step Problem Solving Process

Sometimes when you’re faced with a complex problem, it’s best to pause and take a step back. A break from routine will help you think creatively and objectively. Doing too much at the same time increases the chances of burnout.

Solving problems is easier when you align your thoughts with your actions. If you’re in multiple places at once mentally, you’re more likely to get overwhelmed under pressure. So, a problem-solving process follows specific steps to make it approachable and straightforward. This includes breaking down complex problems, understanding what you want to achieve, and allocating responsibilities to different people to ease some of the pressure.

The problem-solving process will help you measure your progress against factors like budget, timelines and deliverables. The point is to get the key stakeholders on the same page about the ‘what’, ‘why’ and ‘how’ of the process. ( Xanax ) Let’s discuss the five-step problem-solving process that you can adopt.

Problems at a workplace need not necessarily be situations that have a negative impact, such as a product failure or a change in government policy. Making a decision to alter the way your team works may also be a problem. Launching new products, technological upgrades, customer feedback collection exercises—all of these are also “problems” that need to be “solved”.

Here are the steps of a problem-solving process:

1. Defining the Problem

The first step in the process is often overlooked. To define the problem is to understand what it is that you’re solving for. This is also where you outline and write down your purpose—what you want to achieve and why. Making sure you know what the problem is can make it easier to follow up with the remaining steps. This will also help you identify which part of the problem needs more attention than others.

2. Analyzing the Problem

Analyze why the problem occurred and go deeper to understand the existing situation.  If it’s a product that has malfunctioned, assess factors like raw material, assembly line, and people involved to identify the problem areas. This will help you figure out if the problem will persist or recur. You can measure the solution against existing factors to assess its future viability.

3. Weighing the Options

Once you’ve figured out what the problem is and why it occurred, you can move on to generating multiple options as solutions. You can combine your existing knowledge with research and data to come up with viable and effective solutions. Thinking objectively and getting inputs from those involved in the process will broaden your perspective of the problem. You’ll be able to come up with better options if you’re open to ideas other than your own.

4. Implementing The Best Solution

Implementation will depend on the type of data at hand and other variables. Consider the big picture when you’re selecting the best option. Look at factors like how the solution will impact your budget, how soon you can implement it, and whether it can withstand setbacks or failures. If you need to make any tweaks or upgrades, make them happen in this stage.

5. Monitoring Progress

The problem-solving process doesn’t end at implementation. It requires constant monitoring to watch out for recurrences and relapses. It’s possible that something doesn’t work out as expected on implementation. To ensure the process functions smoothly, you can make changes as soon as you catch a miscalculation. Always stay on top of things by monitoring how far you’ve come and how much farther you have to go.

You can learn to solve any problem—big or small—with experience and patience. Adopt an impartial and analytical approach that has room for multiple perspectives. In the workplace, you’re often faced with situations like an unexpected system failure or a key employee quitting in the middle of a crucial project.

Problem-solving skills will help you face these situations head-on. Harappa Education’s Structuring Problems course will show you how to classify and categorize problems to discover effective solutions. Equipping yourself with the right knowledge will help you navigate work-related problems in a calm and competent manner.

Explore topics such as  Problem Solving , the  PICK Chart ,  How to Solve Problems  & the  Barriers to Problem Solving  from our Harappa Diaries blog section and develop your skills.

Thriversitybannersidenav

Module 5: Thinking and Analysis

Problem-solving with critical thinking, learning outcomes.

  • Describe how critical thinking skills can be used in problem-solving

Most of us face problems that we must solve every day. While some problems are more complex than others, we can apply critical thinking skills to every problem by asking questions like, what information am I missing? Why and how is it important? What are the contributing factors that lead to the problem? What resources are available to solve the problem? These questions are just the start of being able to think of innovative and effective solutions. Read through the following critical thinking, problem-solving process to identify steps you are already familiar with as well as opportunities to build a more critical approach to solving problems.

Problem-Solving Process

Step 1: define the problem.

Albert Einstein once said, “If I had an hour to solve a problem, I’d spend 55 minutes thinking about the problem and five minutes thinking about solutions.”

Often, when we first hear of or learn about a problem, we do not have all the information. If we immediately try to find a solution without having a thorough understanding of the problem, then we may only be solving a part of the problem.  This is called a “band-aid fix,” or when a symptom is addressed, but not the actual problem. While these band-aid fixes may provide temporary relief, if the actual problem is not addressed soon, then the problem will continue and likely get worse. Therefore, the first step when using critical thinking to solve problems is to identify the problem. The goal during this step is to gather enough research to determine how widespread the problem is, its nature, and its importance.

Step 2: Analyze the Causes

This step is used to uncover assumptions and underlying problems that are at the root of the problem. This step is important since you will need to ensure that whatever solution is chosen addresses the actual cause, or causes, of the problem.

Asking “why” questions to uncover root causes

A common way to uncover root causes is by asking why questions. When we are given an answer to a why question, we will often need to question that answer itself. Thus the process of asking “why” is an  iterative process —meaning that it is a process that we can repeatedly apply. When we stop asking why questions depends on what information we need and that can differ depending on what the goals are. For a better understanding, see the example below:

Problem: The lamp does not turn on.

  • Why doesn’t the lamp turn on? The fuse is blown.
  • Why is the fuse blown? There was overloaded circuit.
  • Why was the circuit overloaded? The hair dryer was on.

If one is simply a homeowner or tenant, then it might be enough to simply know that if the hair dryer is on, the circuit will overload and turn off.  However, one can always ask further why questions, depending on what the goal is. For example, suppose someone wants to know if all hair dryers overload circuits or just this one. We might continue thus:

  • Why did this hair dryer overload the circuit? Because hair dryers in general require a lot of electricity.

But now suppose we are an electrical engineer and are interested in designing a more environmentally friendly hair dryer. In that case, we might ask further:

  • Why do hair dryers require so much energy?

As you can see from this example, what counts as a root cause depends on context and interests. The homeowner will not necessarily be interested in asking the further why questions whereas others might be.

Step 3: Generate Solutions

The goal of this step is to generate as many solutions as possible. In order to do so, brainstorm as many ideas as possible, no matter how outrageous or ineffective the idea might seem at the time. During your brainstorming session, it is important to generate solutions freely without editing or evaluating any of the ideas. The more solutions that you can generate, the more innovative and effective your ultimate solution might become upon later review.

You might find that setting a timer for fifteen to thirty minutes will help you to creatively push past the point when you think you are done. Another method might be to set a target for how many ideas you will generate. You might also consider using categories to trigger ideas. If you are brainstorming with a group, consider brainstorming individually for a while and then also brainstorming together as ideas can build from one idea to the next.

Step 4: Select a Solution

Once the brainstorming session is complete, then it is time to evaluate the solutions and select the more effective one.  Here you will consider how each solution will address the causes determined in step 2. It is also helpful to develop the criteria you will use when evaluating each solution, for instance, cost, time, difficulty level, resources needed, etc. Once your criteria for evaluation is established, then consider ranking each criterion by importance since some solutions might meet all criteria, but not to equally effective degrees.

In addition to evaluating by criteria, ensure that you consider possibilities and consequences of all serious contenders to address any drawbacks to a solution. Lastly, ensure that the solutions are actually feasible.

Step 6: Put Solution into Action

While many problem-solving models stop at simply selecting a solution, in order to actually solve a problem, the solution must be put into action. Here, you take responsibility to create, communicate, and execute the plan with detailed organizational logistics by addressing who will be responsible for what, when, and how.

Step 7: Evaluate progress

The final step when employing critical thinking to problem-solving is to evaluate the progress of the solution. Since critical thinking demands open-mindedness, analysis, and a willingness to change one’s mind, it is important to monitor how well the solution has actually solved the problem in order to determine if any course correction is needed.

While we solve problems every day, following the process to apply more critical thinking approaches in each step by considering what information might be missing; analyzing the problem and causes; remaining open-minded while brainstorming solutions; and providing criteria for, evaluating, and monitoring solutions can help you to become a better problem-solver and strengthen your critical thinking skills.

iterative process: one that can be repeatedly applied

Contribute!

Improve this page Learn More

  • Problem solving. Authored by : Anne Fleischer. Provided by : Lumen Learning. License : CC BY: Attribution
  • College Success. Authored by : Matthew Van Cleave. Provided by : Lumen Learning. License : CC BY: Attribution
  • wocintech stock - 178. Authored by : WOCinTech Chat. Located at : https://flic.kr/p/FiGVWt . License : CC BY-SA: Attribution-ShareAlike
  • Five whys. Provided by : Wikipedia. Located at : https://en.wikipedia.org/wiki/Five_whys . License : CC BY-SA: Attribution-ShareAlike

Footer Logo Lumen Waymaker

Table of Contents

The problem-solving process, how to solve problems: 5 steps, train to solve problems with lean today, what is problem solving steps, techniques, & best practices explained.

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

Problem solving is the art of identifying problems and implementing the best possible solutions. Revisiting your problem-solving skills may be the missing piece to leveraging the performance of your business, achieving Lean success, or unlocking your professional potential. 

Ask any colleague if they’re an effective problem-solver and their likely answer will be, “Of course! I solve problems every day.” 

Problem solving is part of most job descriptions, sure. But not everyone can do it consistently. 

Problem solving is the process of defining a problem, identifying its root cause, prioritizing and selecting potential solutions, and implementing the chosen solution.

There’s no one-size-fits-all problem-solving process. Often, it’s a unique methodology that aligns your short- and long-term objectives with the resources at your disposal. Nonetheless, many paradigms center problem solving as a pathway for achieving one’s goals faster and smarter. 

One example is the Six Sigma framework , which emphasizes eliminating errors and refining the customer experience, thereby improving business outcomes. Developed originally by Motorola, the Six Sigma process identifies problems from the perspective of customer satisfaction and improving product delivery. 

Lean management, a similar method, is about streamlining company processes over time so they become “leaner” while producing better outcomes. 

Trendy business management lingo aside, both of these frameworks teach us that investing in your problem solving process for personal and professional arenas will bring better productivity.

1. Precisely Identify Problems

As obvious as it seems, identifying the problem is the first step in the problem-solving process. Pinpointing a problem at the beginning of the process will guide your research, collaboration, and solutions in the right direction. 

At this stage, your task is to identify the scope and substance of the problem. Ask yourself a series of questions: 

  • What’s the problem? 
  • How many subsets of issues are underneath this problem? 
  • What subject areas, departments of work, or functions of business can best define this problem? 

Although some problems are naturally large in scope, precision is key. Write out the problems as statements in planning sheets . Should information or feedback during a later step alter the scope of your problem, revise the statements. 

Framing the problem at this stage will help you stay focused if distractions come up in later stages. Furthermore, how you frame a problem will aid your search for a solution. A strategy of building Lean success, for instance, will emphasize identifying and improving upon inefficient systems. 

2. Collect Information and Plan 

The second step is to collect information and plan the brainstorming process. This is another foundational step to road mapping your problem-solving process. Data, after all, is useful in identifying the scope and substance of your problems. 

Collecting information on the exact details of the problem, however, is done to narrow the brainstorming portion to help you evaluate the outcomes later. Don’t overwhelm yourself with unnecessary information — use the problem statements that you identified in step one as a north star in your research process. 

This stage should also include some planning. Ask yourself:

  • What parties will ultimately decide a solution? 
  • Whose voices and ideas should be heard in the brainstorming process? 
  • What resources are at your disposal for implementing a solution? 

Establish a plan and timeline for steps 3-5. 

3. Brainstorm Solutions

Brainstorming solutions is the bread and butter of the problem-solving process. At this stage, focus on generating creative ideas. As long as the solution directly addresses the problem statements and achieves your goals, don’t immediately rule it out. 

Moreover, solutions are rarely a one-step answer and are more like a roadmap with a set of actions. As you brainstorm ideas, map out these solutions visually and include any relevant factors such as costs involved, action steps, and involved parties. 

With Lean success in mind, stay focused on solutions that minimize waste and improve the flow of business ecosystems. 

Become a Quality Management Professional

  • 10% Growth In Jobs Of Quality Managers Profiles By 2025
  • 11% Revenue Growth For Organisations Improving Quality

Certified Lean Six Sigma Green Belt

  • 4 hands-on projects to perfect the skills learnt
  • 4 simulation test papers for self-assessment

Lean Six Sigma Expert

  • IASSC® Lean Six Sigma Green Belt and Black Belt certification
  • 13 Projects, 12 Simulation exams, 18 Case Studies & 114 PDUs

Here's what learners are saying regarding our programs:

Xueting Liu

Xueting Liu

Mechanical engineer student at sargents pty. ltd. ,.

A great training and proper exercise with step-by-step guide! I'll give a rating of 10 out of 10 for this training.

Abdus Salam

Abdus Salam

I have completed the Lean Six Sigma Expert Master’s Program from Simplilearn. And after the course, I could take up new projects and perform better. My average pay rate for a research position increased by 21%.

4. Decide and Implement

The most critical stage is selecting a solution. Easier said than done. Consider the criteria that has arisen in previous steps as you decide on a solution that meets your needs. 

Once you select a course of action, implement it. 

Practicing due diligence in earlier stages of the process will ensure that your chosen course of action has been evaluated from all angles. Often, efficient implementation requires us to act correctly and successfully the first time, rather than being hurried and sloppy. Further compilations will create more problems, bringing you back to step 1. 

5. Evaluate

Exercise humility and evaluate your solution honestly. Did you achieve the results you hoped for? What would you do differently next time? 

As some experts note, formulating feedback channels into your evaluation helps solidify future success. A framework like Lean success, for example, will use certain key performance indicators (KPIs) like quality, delivery success, reducing errors, and more. Establish metrics aligned with company goals to assess your solutions.

Master skills like measurement system analysis, lean principles, hypothesis testing, process analysis and DFSS tools with our Lean Six Sigma Green Belt Training Course . Sign-up today!

Become a quality expert with Simplilearn’s Lean Six Sigma Green Belt . This Lean Six Sigma certification program will help you gain key skills to excel in digital transformation projects while improving quality and ultimate business results.

In this course, you will learn about two critical operations management methodologies – Lean practices and Six Sigma to accelerate business improvement.

Our Quality Management Courses Duration And Fees

Explore our top Quality Management Courses and take the first step towards career success

Get Free Certifications with free video courses

Lean Management

Quality Management

Lean Management

PMP Basics

Project Management

Learn from industry experts with free masterclasses, digital marketing.

Digital Marketing Job Search in 2024: Top Things to Do Before You Begin

Unlock Digital Marketing Career Success Secrets for 2024 with Purdue University

Your Gateway to Game-changing Digital Marketing Careers in 2024 with Purdue University

Recommended Reads

Introduction to Machine Learning: A Beginner's Guide

Webinar Wrap-up: Mastering Problem Solving: Career Tips for Digital Transformation Jobs

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Free eBook: 21 Resources to Find the Data You Need

ITIL Problem Workaround – A Leader’s Guide to Manage Problems

Your One-Stop Solution to Understand Coin Change Problem

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)
  • Soft skills
  • What is a credential?
  • Why do a credential?
  • How do credentials work?
  • Selecting your level
  • How will I be assessed?
  • Benefits for professionals
  • Benefits for organisations
  • Benefits for postgraduates

Problem solving techniques: Steps and methods

the first step of the problem solving process is to

Posted on May 29, 2019

Constant disruption has become a hallmark of the modern workforce and organisations want problem solving skills to combat this. Employers need people who can respond to change – be that evolving technology, new competitors, different models for doing business, or any of the other transformations that have taken place in recent years.

In addition, problem solving techniques encompass many of the other top skills employers seek . For example, LinkedIn’s list of the most in-demand soft skills of 2019 includes creativity, collaboration and adaptability, all of which fall under the problem-solving umbrella.

Despite its importance, many employees misunderstand what the problem solving method really involves.

What constitutes effective problem solving?

Effective problem solving doesn’t mean going away and coming up with an answer immediately. In fact, this isn’t good problem solving at all, because you’ll be running with the first solution that comes into your mind, which often isn’t the best.

Instead, you should look at problem solving more as a process with several steps involved that will help you reach the best outcome. Those steps are:

  • Define the problem
  • List all the possible solutions
  • Evaluate the options
  • Select the best solution
  • Create an implementation plan
  • Communicate your solution

Let’s look at each step in a little more detail.

It's important you take the time to brainstorm and consider all your options when solving problems.

1. Define the problem

The first step to solving a problem is defining what the problem actually is – sounds simple, right? Well no. An effective problem solver will take the thoughts of everyone involved into account, but different people might have different ideas on what the root cause of the issue really is. It’s up to you to actively listen to everyone without bringing any of your own preconceived notions to the conversation. Learning to differentiate facts from opinion is an essential part of this process.

An effective problem solver will take the opinions of everyone involved into account

The same can be said of data. Depending on what the problem is, there will be varying amounts of information available that will help you work out what’s gone wrong. There should be at least some data involved in any problem, and it’s up to you to gather as much as possible and analyse it objectively.

2. List all the possible solutions

Once you’ve identified what the real issue is, it’s time to think of solutions. Brainstorming as many solutions as possible will help you arrive at the best answer because you’ll be considering all potential options and scenarios. You should take everyone’s thoughts into account when you’re brainstorming these ideas, as well as all the insights you’ve gleaned from your data analysis. It also helps to seek input from others at this stage, as they may come up with solutions you haven’t thought of.

Depending on the type of problem, it can be useful to think of both short-term and long-term solutions, as some of your options may take a while to implement.

One of the best problem solving techniques is brainstorming a number of different solutions and involving affected parties in this process.

3. Evaluate the options

Each option will have pros and cons, and it’s important you list all of these, as well as how each solution could impact key stakeholders. Once you’ve narrowed down your options to three or four, it’s often a good idea to go to other employees for feedback just in case you’ve missed something. You should also work out how each option ties in with the broader goals of the business.

There may be a way to merge two options together in order to satisfy more people.

4. Select an option

Only now should you choose which solution you’re going to go with. What you decide should be whatever solves the problem most effectively while also taking the interests of everyone involved into account. There may be a way to merge two options together in order to satisfy more people.

5. Create an implementation plan

At this point you might be thinking it’s time to sit back and relax – problem solved, right? There are actually two more steps involved if you want your problem solving method to be truly effective. The first is to create an implementation plan. After all, if you don’t carry out your solution effectively, you’re not really solving the problem at all. 

Create an implementation plan on how you will put your solution into practice. One problem solving technique that many use here is to introduce a testing and feedback phase just to make sure the option you’ve selected really is the most viable. You’ll also want to include any changes to your solution that may occur in your implementation plan, as well as how you’ll monitor compliance and success.

6. Communicate your solution

There’s one last step to consider as part of the problem solving methodology, and that’s communicating your solution . Without this crucial part of the process, how is anyone going to know what you’ve decided? Make sure you communicate your decision to all the people who might be impacted by it. Not everyone is going to be 100 per cent happy with it, so when you communicate you must give them context. Explain exactly why you’ve made that decision and how the pros mean it’s better than any of the other options you came up with.

Prove your problem solving skills with Deakin

Employers are increasingly seeking soft skills, but unfortunately, while you can show that you’ve got a degree in a subject, it’s much harder to prove you’ve got proficiency in things like problem solving skills. But this is changing thanks to Deakin’s micro-credentials. These are university-level micro-credentials that provide an authoritative and third-party assessment of your capabilities in a range of areas, including problem solving. Reach out today for more information .

problem-solving

Justin Sullivan/Getty Images

By Dr. Josh Axe Leaders Staff

the first step of the problem solving process is to

Dr. Josh Axe

CEO/Founder

Dr. Josh Axe is the co-founder of Ancient Nutrition and the founder and CEO of Leaders.com. He earned his doctorate...

Learn about our editorial policy

Updated May 17, 2023

Reviewed by Colin Baker

the first step of the problem solving process is to

Colin Baker

Leadership and Business Writer

Colin Baker is a business writer for Leaders Media. He has a background in as a television journalism, working as...

What Is Problem-Solving? How to Use Problem-Solving Skills to Resolve Issues

What is problem-solving, what is the general process of problem-solving, the best problem-solving strategies and tools, what to do when a problem feels too big to solve.

Great businesses don’t exist to simply grow and make money. Instead, they solve the world’s problems , from tiny issues to giant dilemmas. Problem-solving is essentially the main function of organizations. An effective organization will have systems and processes in place to reach their goals and solve problems. If a company has team members and leaders who have poor problem-solving skills, that means they’re ineffective at one of the core functions of a business.

You need to be good at both external problem-solving (solving problems for others) and internal problem-solving (solving problems before or when they arise within the business). An organization that can solve problems will see its teams come closer together as they bond over providing solutions to serious issues. Companies that solve problems well will also be able to carry out their purpose more efficiently.

Learn the steps you can follow to solve problems both great and small. Additionally, discover some real-world methods and problem-solving skills successful business leaders use to solve problems of their own.

Problem-solving involves the search for solutions that follow an effective process of discovery, identification, ideation, and execution. Problem-solving usually requires overcoming numerous obstacles that stand in the way of reaching your goal. Often, the act of problem-solving includes coming up with solutions to many smaller problems before eventually solving the main issue that prompted the process in the first place.

The key to cultivating excellent problem-solving skills is having a distinct process designed to produce solutions. While it may seem like problem-solving involves a complex strategy, it features several steps that are easy to follow. The following steps represent a general problem-solving process you can use when you need to find a solution.

1. Define the Problem

The first step to take as part of the problem-solving process involves defining what that problem is. While this may seem like a simple idea to follow, the key is to get to the root of the problem . Only once you’re able to identify the root issue you’re tackling through a root cause analysis can you be sure you’re on the right path. Sometimes the surface issue isn’t what you need to address. Just like an earthquake, organizational issues have an epicenter—complete with shockwaves that negatively impact the business. If you don’t resolve the core problem, it can expand , and the damage becomes detrimental. All problem-solving jobs begin with this important first step.

If your organization has a problem with employee retention , you may think you’ll solve it by increasing pay or perks. However, that might not address the root of the issue. If you were to investigate further, you may discover that a manager is creating a toxic work environment, causing good employees to find work elsewhere. 

2. Brainstorm Possible Solutions

Once you have a solid idea of what the real problem is, you can proceed to create possible solutions you can pursue. Take the time to brainstorm different solutions. No two problems are the same, and each one will require a creative approach. Make sure you write down the alternative solutions so you can research them in depth. During the course of your brainstorming, you may stumble upon a solution you wouldn’t have thought of otherwise.

As you follow this step, you may need to find the best way to inspire your critical thinking skills. Think about when and where you generate ideas and get the creative juices flowing. Then, try to put yourself in that environment as often as possible.

Sara Blakely , the founder of SPANX®, says her most productive creative thinking happens when she’s driving in her car . Even though she doesn’t have a real commute, she gets in the car and makes one up. “I live really close to Spanx,” she said on the “Masters of Scale” podcast, “so I’ve created what my friends call my ‘fake commute,’ and I get up an hour early before I’m supposed to go to Spanx, and I drive around aimlessly in Atlanta with my commute so that I can have my thoughts come to me.” As a result, she sets time aside for developing her best problem-solving strategies every single day.

3. Research Several Options

After you’ve come up with several possible alternative solutions, pick two or three that seem the most promising using your analytical skills. Then you’ll need to buckle down and do some research to see which one to pursue. Conduct your research using primary and secondary resources.

Conduct primary research by:

  • Having a discussion with a mentor
  • Interviewing a person who’s successfully solved this problem before
  • Strategizing with team members closest to the issue

Great secondary sources include:

  • Trustworthy online articles and news sources from credible websites
  • Leadership books from experts who have written about the problem
  • Business podcast interviews on the issue
  • YouTube videos featuring established leaders

4. Select a Solution

At the conclusion of your research, you’ll be better equipped to select the right solution. Evaluate the data you have gathered. To ensure you make a good pick, you’ll need to keep several considerations in mind. 

Here are some good questions to ask when picking a solution:

  • Is this solution in line with the company’s core values?
  • Is it a realistic option?
  • Could it lead to additional problems?
  • Will everyone involved accept the solution?
  • Does it truly solve the problem, or does it only delay negative effects?

As you employ your creative thinking skills in answering these questions, you’ll eventually need to settle on a single solution. Adhering to a decision-making process helps you objectively choose the best solution out of many options. Don’t make a quick decision you may later regret. Be deliberate in your analysis, and try to remain as objective as possible.

In order to make the most objective decision:

  • Get into a humble mindset and make sure you’re willing to listen and learn.
  • Don’t let emotions influence the choice.
  • Reverse-engineer the possible outcome of any given solution.
  • Weigh the pros and cons of each choice.
  • Seek wise counsel from trusted mentors, leaders, and team members.

5. Develop an Action Plan

Once you’ve settled on a solution, you’ll be ready to pursue it. Before moving too quickly, revisit step one and make sure your choice aligns with the main objective . If it doesn’t, although it may be a valid choice, it’s most likely not the best for your team. If this is the case, don’t get discouraged. Creative problem-solving takes time.

When the right choice is made, and the solution is placed into the overall strategy, start developing an action plan . Lay out the “who,” “what,” “when,” “why,” and “how.” Visualize exactly what success looks like with this new plan. When working through the problem-solving process, write all the details down. This helps leaders construct action items and delegate them accordingly. Never leave this part of the process empty-handed. Your team needs a clear picture of expectations so they can properly implement the solution. And if everything works, you can use this problem-solving model in the future.

You will undoubtedly encounter many problems that need to be solved in your life. There are a variety of ways to solve those problems. With all the problem-solving techniques out there, it can be helpful to learn some of them so you can employ the best one at the right moment. The following are just a few examples of what these strategies and problem-solving tools look like in the real world.

One of the best ways to discover the root cause of a problem is by utilizing the 5 Whys method. This strategy was developed by Sakichi Toyoda, founder of Toyota Industries. It’s as simple as it sounds. When a problem occurs, ask why it happened five times. In theory, the last answer should get to the heart of the issue.

Here’s an example of how the 5 Whys work in action:

the first step of the problem solving process is to

When business leaders use the 5 Whys method , problems are given more context. Uncovering how, when, and why they happen helps company owners and executives identify the organization’s core issues.

First Principles Thinking

When one engages in first principles thinking , they end up questioning what everyone just assumes to be true. It effectively removes those assumptions , breaking things down into their most basic elements that are probably true. It’s all about getting to that core foundation of truth and building out from there. Problem-solving skills should always include first principles thinking.

Elon Musk most famously pursued this strategy when it comes to space travel. Instead of accepting that building a rocket was too expensive, he got to the fundamental truths of construction, all the way down to pricing each component. Musk once explained that he follows first principles thinking by following three simple steps .

  • Identify the assumptions
  • Break down the issue into its core, fundamental components
  • Innovate by creating new solutions

Other business leaders have engaged in similar strategies, such as Jeff Bezos when he advised the need for finding out key truths for yourself. First principles thinking is an important part of innovating beyond what we assume can’t be changed. It’s a way to use analytical skills to discover potential solutions through constant learning and acquiring new information.

Steve Jobs’ Problem-Solving Method

Steve Jobs gained a reputation for solving problems through Apple. He was always on the lookout for simple solutions to complex problems. He followed his own three-step method that helped him tackle difficult issues.

  • Zoom Out: When facing a problem, zoom out to get a larger view of the bigger picture. This is another way to help you define the problem and pinpoint the root cause.
  • Focus In: After defining the problem, focus all your attention on solving it. Concentrate your efforts, and don’t stop until the problem is fixed. Give yourself a period of intense focus and dedication as you bring the solution to life.
  • Disconnect: If things aren’t proceeding the way you thought they would, it may be time to disconnect. That means walking away and giving yourself a break so you can clear your mind. Sometimes, a break is all you need to approach the problem once more, this time from a fresh angle with your mind fully reenergized.

From increasing sales to engaging in conflict resolution , business leaders have a lot of problems to solve. However, some people may still feel overwhelmed, especially if the problem is large in scope and could even threaten to close the company. Fortunately, there are steps you can take to get in the right mindset as outlined by James Clear, author of Atomic Habits :

  • Break the bigger problem down into a lot of smaller problems
  • Focus on one small problem and solve it
  • Use what you learned from solving that problem to increase your knowledge about the bigger problem
  • Repeat these steps until the larger problem is solved

Tackling a problem that feels too big to solve requires a can-do, positive mindset. In order to improve your problem-solving, you’ll need to take remember these steps. Imagine what is possible instead of focusing on what seems impossible. As you do so, you’ll become skilled in solving all sorts of problems while also improving your decision-making.

For more help in growing your skillset, check out the following article:

Growth Mindset: Creating an Environment for Innovation

Leaders Media has established sourcing guidelines and relies on relevant, and credible sources for the data, facts, and expert insights and analysis we reference. You can learn more about our mission, ethics, and how we cite sources in our editorial policy .

  • Abadi, Mark. “The CEO of Spanx Wakes up an Hour Early to Drive around ‘Aimlessly’ on a ‘Fake Commute’ Because She Does Her Best Thinking in the Car.”  Insider , 15 Nov. 2018, https://www.businessinsider.com/spanx-ceo-sara-blakely-fake-commute-2018-11.
  • Oshin, Mayo. “Elon Musks’ ‘3-Step’ First Principles Thinking: How to Think and Solve Difficult Problems Like A….”  Mission.Org , 2 Nov. 2020, https://medium.com/the-mission/elon-musks-3-step-first-principles-thinking-how-to-think-and-solve-difficult-problems-like-a-ba1e73a9f6c0.
  • Clear, James. “How to Solve Big Problems.”  James Clear , 25 July 2014, https://jamesclear.com/narrow-focus.
  • Nast, C. (n.d.). WIRED. https://www.wired.com/2012/10/ff-elon-musk-qa/all/
  • Just a moment. . . (n.d.). https://www.indeed.com/career-advice/career-development/5-whys-example
  • inc.com . (n.d.). https://www.inc.com/kelly-main/apple-steve-jobs-problem-solving.html
  • How to find your big idea . (2022, October 6). Masters of Scale. https://mastersofscale.com/sara-blakely-how-to-find-your-big-idea/
  • EX-99.1 . (n.d.). https://www.sec.gov/Archives/edgar/data/1018724/000119312517120198/d373368dex991.htm

Search Leaders.com

loading

How it works

For Business

Join Mind Tools

Article • 10 min read

The Problem-Definition Process

Developing the right solution.

By the Mind Tools Content Team

the first step of the problem solving process is to

When we try to solve business problems, we can often pressurize ourselves to find solutions quickly.

The problem with this is that we can end up only partially solving the problem, or we can solve the wrong problem altogether, with all of the delay, expense, and lost business opportunity that goes with this.

The Problem-Definition Process helps you avoid this. In this article, we'll look at this process and we'll see how to apply it.

Dwayne Spradlin published the Problem-Definition Process in September 2012's Harvard Business Review . (We refer to this with permission.)

Spradlin was the President and CEO of Innocentive, an organization that connected organizations with freelance problem solvers. He developed the process over 10 years, while working with a community of more than 25,000 "problem solvers" such as engineers, scientists, and industry experts.

The process gives you four steps that help you better understand complex problems. These steps are:

  • Establish the need.
  • Justify the need.
  • Understand the problem and its wider context.
  • Write a problem statement.

The Problem-Definition Process encourages you to define and understand the problem that you're trying to solve, in detail. It also helps you confirm that solving the problem contributes towards your organization's objectives.

This stops you spending time, energy, and resources on unimportant problems, or on initiatives that don't align with your organization's overall strategy.

It also encourages you to fully define the problem and its boundaries. You can then use this information to justify the need for change, brief designers and contractors, and kick-off new projects successfully.

Use the Problem-Definition Process alongside tools such as Simplex and Hurson's Productive Thinking Model . These will guide you through the full problem-solving process .

Using the Problem-Definition Process

The four main steps in the Problem-Definition Process contain several smaller questions that, once answered, help you define and clarify the problem thoroughly.

Let's look at each step in more detail.

The process we present below is an adaptation of Spradlin's original model. We’ve included additional questions and sub-steps where appropriate.

1. Establish the Need

The first step is to identify why you need a solution to the problem. To do this, answer these questions:

a. What is the basic need? First, write your problem down in simple terms. Then, identify the basic need that you'll fulfill once you've solved the problem.

For example:

b. What is the ideal outcome? Next, identify the outcome that you want to see once you've implemented a solution.

Don't think of any particular solutions at this point – your aim is to visualize the result of a successful solution, not the solution itself.

It helps to be specific here: "Increase weekly sign-ups by 20 percent" is more useful than "Increase weekly sign-ups."

c. Who will (and won't) benefit? Finally in this step, identify all of the stakeholders who will benefit, both directly and indirectly, once you've solved the problem and reached your desired outcome. Write down who these people or groups are, and the advantages that they'll see.

Also consider who may be at a disadvantage if you solve the problem.

Tools like Impact Analysis and the Futures Wheel are useful here, as they help identify the possible consequences of a change.

As you work through the next steps of this process and get more of an understanding of your problem, you may find it useful to go back and refine your answers to previous questions.

2. Justify the Need

Once you understand the need for solving the problem, you must then justify why you should solve it. To do this, answer these questions:

a. Is effort aligned with your overall strategy? This problem, and the effort that you'll be putting into solving it, must align with your organization's strategic priorities , as well as its mission and values .

b. What benefits do we want, and how can we measure these? Identify what benefits your organization, as a whole, will see when you solve this problem, and think about how you can measure these in relation to its overall strategy and objectives. Be as specific as possible.

c. Are we likely to be able to implement a solution? Think about factors such as how you'll get support from stakeholders and decision-makers, and how you'll access the required resources and expertise. This may involve speaking with senior managers in your organization to understand what resources may be available.

3. Understand the Problem and Its Wider Context

In steps 1 and 2, you identified why you need a solution, and why it's important to your strategy and mission.

The three questions in this third step encourage you to look at the problem in more depth, and to look back into the past to see what you can learn from past efforts.

a. What's the cause? First in this step, make sure that you've identified all of the causes of your problem, using tools like CATWOE , Root Cause Analysis , Cause and Effect Analysis , Systems Diagrams , and Interrelationship Diagrams .

b. What solutions already exist? Have other people in your organization tried to solve this or a similar problem in the past? If so, what did they do? What worked and what didn't work?

Next you need to find out if people outside of your organization have already tried to do something about this problem. Widen your search to include trade journals, field studies, past research, competitors, industry experts, and your personal network.

Your goal is to look at what's been done already, and what hasn't worked, so that you don't waste time working on a solution that already exists, or working on a solution that's likely to fail.

c. What are the constraints? By now, you're starting to have a deeper understanding of the problem and how it relates to your organization. Now you can brainstorm factors that might prevent you from implementing a solution. (Use your answers from question c in step 2 to help with this.)

First, look at internal constraints. Will you have access to enough people, money, and other resources to solve this problem? Are there any stakeholders who might try to block your efforts? Are there any rules or procedures that you must follow? (For instance, a new website would need to align with your organization's brand guidelines.)

Next, look externally. Are there any government regulations or laws that might stall or block your solutions? Is the technology available?

d. What requirements must a solution meet? Write down the requirements that the solution must meet in order to solve the problem successfully. As part of this, also identify other factors that, while not essential for solving the problem successfully, would add value to the final solution. For example, you might want "quiet machinery," or a "database that you can access from anywhere with an Internet connection."

e. How will we define success? Identify how you'll define success once you've implemented a solution.

4. Write a Problem Statement

The final step is to pull together all of the information that you've gathered into a clear, comprehensive problem statement. This should provide a thorough overview of the problem, and outline a plan for how you will go about solving it.

If someone else (for example, a contractor, outside organization, or other department) will be tasked with solving the problem, also work through the following questions, and include the answers to these in your problem statement:

a. Which problem solvers should we use? Identify who, specifically, is best placed to help solve this problem. This could be a person, a team, or an outside firm.

b. What information and language should the problem statement include? The problem statement needs to be clear, specific, and understood by the people who should solve it. Avoid industry jargon , and make sure that it relates to its intended audience.

c. What do problem solvers need to produce? What will you or your organization need from them? For instance, will you need a comprehensive report, or a presentation on the proposed solution? Do you want a prototype? Is there a deadline? Spell the details out here.

d. What incentives do solvers need? This question addresses motivation. If an internal team will be working on the solution, how will they be rewarded? If an external team or firm will be addressing this problem, what incentives are you offering?

e. How will we evaluate the solutions? Who will be responsible for analyzing proposals, and what evaluation method will you use?

Dwayne Spradlin published the Problem-Definition Process in the September 2012 Harvard Business Review.

The process presents four steps that help you better understand complex problems. These four steps are:

The main advantage of using the process is that it helps you to define and understand the problem in detail, and helps you understand how important a problem is in relation to your organization's mission and strategy. From this, you can determine whether or not it's worth developing a solution.

Spradlin, D. (2012) 'Are You Solving the Right Problem?' Harvard Business Review . Available here . [Accessed November 8, 2018.]

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

The problem-solving process.

Looking at the Basic Problem-Solving Process to Help Keep You on the Right Track

Problem-Solving Sabotage

Tips to Make You Aware of Self-Sabotage Increasing Your Chance of a Positive Solution

Add comment

Comments (0)

Be the first to comment!

the first step of the problem solving process is to

Introducing Mind Tools for Business

Mind Tools for Business is a comprehensive library of award-winning performance and management support resources.

Whether you want to increase engagement, upskill teams, or complement your existing workplace programs – this is content designed to achieve impactful results.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Most Popular

Newest Releases

Article azm954y

How to Negotiate a Job Offer

Article adnb7ul

Overwhelmed at Work

Mind Tools Store

About Mind Tools Content

Discover something new today

Inclusive leadership.

Embracing diversity for organizational success

Cross-Team Collaboration in the Hybrid Workplace

Making hybrid teams inclusive, cohesive and productive

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

The ladder of inference infographic.

Infographic Transcript

Infographic

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

StrategyPunk

Master the 7-Step Problem-Solving Process for Better Decision-Making

Discover the powerful 7-Step Problem-Solving Process to make better decisions and achieve better outcomes. Master the art of problem-solving in this comprehensive guide. Download the Free PowerPoint and PDF Template.

StrategyPunk

StrategyPunk

Master the 7-Step Problem-Solving Process for Better Decision-Making

Introduction

Mastering the art of problem-solving is crucial for making better decisions. Whether you're a student, a business owner, or an employee, problem-solving skills can help you tackle complex issues and find practical solutions. The 7-Step Problem-Solving Process is a proven method that can help you approach problems systematically and efficiently.

The 7-Step Problem-Solving Process involves steps that guide you through the problem-solving process. The first step is to define the problem, followed by disaggregating the problem into smaller, more manageable parts. Next, you prioritize the features and create a work plan to address each. Then, you analyze each piece, synthesize the information, and communicate your findings to others.

By following this process, you can avoid jumping to conclusions, overlooking important details, or making hasty decisions. Instead, you can approach problems with a clear and structured mindset, which can help you make better decisions and achieve better outcomes.

In this article, we'll explore each step of the 7-Step Problem-Solving Process in detail so you can start mastering this valuable skill. At the end of the blog post, you can download the process's free PowerPoint and PDF templates .

the first step of the problem solving process is to

Step 1: Define the Problem

The first step in the problem-solving process is to define the problem. This step is crucial because if the problem is not clearly defined, finding a solution won't be easy. The problem must be defined in a specific, measurable, and achievable way.

One way to define the problem is to ask the right questions. Questions like "What is the problem?" and "What are the causes of the problem?" can help to define the problem. It is also essential to gather data and information about the problem to assist in the definition process.

Another critical aspect of defining the problem is to identify the stakeholders. Who is affected by the problem? Who has a stake in finding a solution? Identifying the stakeholders can help ensure that the problem is defined in a way that considers the needs and concerns of all those affected by the problem.

Once the problem is defined, it is essential to communicate the definition to all stakeholders. This helps to ensure that everyone is on the same page and that there is a shared understanding of the problem.

Step 2: Disaggregate

After defining the problem, the next step in the 7-step problem-solving process is to disaggregate the problem into smaller, more manageable parts. Disaggregation helps break down the problem into smaller pieces that can be analyzed individually. This step is crucial in understanding the root cause of the problem and identifying the most effective solutions.

Disaggregation can be achieved by breaking down the problem into sub-problems, identifying the factors contributing to the problem, and analyzing the relationships between these factors. This step helps identify the most critical factors that must be addressed to solve the problem.

One effective way to disaggregate a problem is using a tree or fishbone diagram. These diagrams help identify the different factors contributing to the problem and how they are related. Another way is to use a table to list the other factors contributing to the problem and their corresponding impact on the problem.

Disaggregation helps in breaking down complex problems into smaller, more manageable parts. It helps understand the relationships between different factors contributing to the problem and identify the most critical factors that must be addressed. By disaggregating the problem, decision-makers can focus on the most vital areas, leading to more effective solutions.

Step 3: Prioritize

After defining the problem and disaggregating it into smaller parts, the next step in the 7-step problem-solving process is prioritizing the issues that need addressing. Prioritizing helps to focus on the most pressing issues and allocate resources more effectively.

There are several ways to prioritize issues, including:

  • Urgency: Prioritize issues based on how urgent they are. Problems that require immediate attention should be dealt with first.
  • Impact: Prioritize issues based on their impact on the organization or stakeholders. Problems that have a high effect should be given priority.
  • Resources: Prioritize issues based on the resources required to address them. Problems that require fewer resources should be dealt with first.

It is important to involve stakeholders in the prioritization process to consider their concerns and needs. This can be done through surveys, focus groups, or other forms of engagement.

Once the issues have been prioritized, developing a plan of action to address them is essential. This involves identifying the resources required, setting timelines, and assigning responsibilities.

Prioritizing issues is a critical step in the problem-solving process. Organizations can allocate resources more effectively and make better decisions by focusing on the most pressing issues.

Step 4: Workplan

After defining the problem, disaggregating, and prioritizing the issues, the next step in the 7-step problem-solving process is to develop a work plan. This step involves creating a roadmap that outlines the steps needed to solve the problem.

The work plan should include a list of tasks, deadlines, and responsibilities for each team member involved in the problem-solving process. Assigning tasks based on each team member's strengths and expertise ensures the work is completed efficiently and effectively.

Creating a work plan can help keep the team on track and ensure everyone is working towards the same goal. It can also help to identify potential roadblocks or challenges that may arise during the problem-solving process and develop contingency plans to address them.

Several tools and techniques can be used to develop a work plan, including Gantt charts, flowcharts, and mind maps. These tools can help to visualize the steps needed to solve the problem and identify dependencies between tasks.

Developing a work plan is a critical step in the problem-solving process. It provides a clear roadmap for solving the problem and ensures everyone involved is aligned and working towards the same goal.

Step 5: Analysis

Once the problem has been defined and disaggregated, the next step is to analyze the information gathered. This step involves examining the data, identifying patterns, and determining the root cause of the problem.

Several methods can be used during the analysis phase, including:

  • Root cause analysis
  • Pareto analysis
  • SWOT analysis

Root cause analysis is a popular method used to identify the underlying cause of a problem. This method involves asking a series of "why" questions to get to the root cause of the issue.

Pareto analysis is another method that can be used during the analysis phase. This method involves identifying the 20% of causes responsible for 80% of the problems. By focusing on these critical causes, organizations can make significant improvements.

Finally, SWOT analysis is a valuable tool for analyzing the internal and external factors that may impact the problem. This method involves identifying the strengths, weaknesses, opportunities, and threats related to the issue.

Overall, the analysis phase is critical for identifying the root cause of the problem and developing practical solutions. Organizations can gain a deeper understanding of the issue and make informed decisions by using a combination of methods.

Step 6: Synthesize

Once the analysis phase is complete, it is time to synthesize the information gathered to arrive at a solution. During this step, the focus is on identifying the most viable solution that addresses the problem. This involves examining the analysis results and combining them to lead to a clear and concise conclusion.

One way to synthesize the information is to use a decision matrix. This involves creating a table that lists the potential solutions and the essential criteria in making a decision. Each answer is then rated against each standard, and the scores are tallied to arrive at a final decision.

Another approach to synthesizing the information is to use a mind map. This involves creating a visual representation of the problem and the potential solutions. The mind map can identify the relationships between the different pieces of information andhelp prioritize the solutions.

During the synthesis phase, remaining open-minded and considering all potential solutions is vital. It is also essential to involve all stakeholders in the decision-making process to ensure that everyone's perspectives are considered.

Step 7: Communicate

After synthesizing the information, the next step is communicating the findings to the relevant stakeholders. This is a crucial step because it helps to ensure that everyone is on the same page and that the decision-making process is transparent.

One effective way to communicate the findings is through a well-organized report. The report should include the problem statement, the analysis, the synthesis, and the recommended solution. It should be clear, concise, and easy to understand.

In addition to the report, it is also essential to have a presentation that explains the findings. The presentation should be tailored to the audience and highlight the report's key points. Visual aids such as tables, graphs, and charts can make the presentation more engaging.

During the presentation, it is essential to be open to feedback and questions from the audience. This helps ensure everyone is on board with the recommended solution and addresses any concerns or objections.

Effective communication is vital to ensuring the decision-making process is successful. Stakeholders can make informed decisions and work towards a common goal by communicating the findings clearly and concisely.

The 7-step problem-solving process is a powerful tool that can help individuals and organizations make better decisions. By following these steps, individuals can identify the root cause of a problem, prioritize potential solutions, and develop a clear plan of action. This process can be applied to various scenarios, from personal challenges to complex business problems.

Individuals can break down complex problems into smaller, more manageable parts through disaggregation. Individuals can focus their efforts on the most impactful actions by prioritizing potential solutions. The work step allows individuals to develop a clear action plan, while the analysis step provides a framework for evaluating possible solutions.

The synthesis step is where individuals combine all the information they have gathered to develop a comprehensive solution. Finally, the communication step allows individuals to share their answers with others and gather feedback.

By mastering the 7-step problem-solving process, individuals can become more effective decision-makers and problem-solvers. This process can help individuals and organizations save time and resources while improving outcomes. With practice, individuals can develop the skills to apply this process to a wide range of scenarios and make better decisions in all areas of life.

7-Step Problem-Solving Process 

Free powerpoint and pdf template, executive summary: the 7-step problem-solving process.

the first step of the problem solving process is to

The 7-Step Problem-Solving Process is a powerful and systematic method to help individuals and organizations make better decisions by tackling complex issues and finding practical solutions. This process comprises defining the problem, disaggregating it into smaller parts, prioritizing the issues, creating a work plan, analyzing the data, synthesizing the information, and communicating the findings.

By following these steps, individuals can identify the root cause of a problem, break it down into manageable components, and prioritize the most impactful actions. The work plan, analysis, and synthesis steps provide a framework for developing comprehensive solutions, while the communication step ensures transparency and stakeholder engagement.

Mastering this process can improve decision-making and problem-solving capabilities, saving time and resources and better outcomes in both personal and professional contexts.

Please buy me a coffee.

I'd appreciate your support if my templates have saved you time or helped you get a project off the ground. Buy Me a Coffee is a simple way to show your appreciation and help me continue creating high-quality templates that meet your needs.

Buy Me A Coffee

7-Step Problem-Solving Process PDF Template

7-step problem-solving process powerpoint template.

Walmart SWOT Analysis: Free PPT Template and In-Depth Insights 2024

Walmart SWOT Analysis: Free PPT Template and In-Depth Insights 2024

Explore the strengths, weaknesses, opportunities, and threats of Walmart with our free PowerPoint template. Gain detailed insights into Walmart's strategic positioning in 2024 through our expertly crafted SWOT analysis.

Amazon SWOT Analysis: Free PPT Template and In-Depth Insights 2024

Amazon SWOT Analysis: Free PPT Template and In-Depth Insights 2024

Free download: 2024 Amazon SWOT Analysis PowerPoint template. Quick, insightful analysis of Amazon's market position and strategic opportunities.

Peloton SWOT Analysis: Free PPT Template and In-Depth Insights 2024

Peloton SWOT Analysis: Free PPT Template and In-Depth Insights 2024

2024 Peloton SWOT Analysis: Free PPT Template & Detailed Guide. Master your strategy with our in-depth insights. Download now!

Strategic Insights 2024: A SWOT Analysis of AMD (Free PPT)

Strategic Insights 2024: A SWOT Analysis of AMD (Free PPT)

Strategic Insights 2024: AMD's SWOT Analysis. Free PowerPoint Template reveals key business strategies for AMD. Download now!

What are the 7 Steps to Problem-Solving? & Its Examples

What are the 7 Steps to Problem-Solving & Its Examples (2)-compressed

7 Steps to Problem-Solving

7 Steps to Problem-Solving is a systematic process that involves analyzing a situation, generating possible solutions, and implementing the best course of action. While different problem-solving models exist, a common approach often involves the following seven steps:

Define the Problem:

  • Clearly articulate and understand the nature of the problem. Define the issue, its scope, and its impact on individuals or the organization.

Gather Information:

  • Collect relevant data and information related to the problem. This may involve research, observation, interviews, or any other method to gain a comprehensive understanding.

Generate Possible Solutions:

  • Brainstorm and generate a variety of potential solutions to the problem. Encourage creativity and consider different perspectives during this phase.

Evaluate Options:

  • Assess the strengths and weaknesses of each potential solution. Consider the feasibility, potential risks, and the likely outcomes associated with each option.

Make a Decision:

  • Based on the evaluation, choose the most suitable solution. This decision should align with the goals and values of the individual or organization facing the problem.

Implement the Solution:

  • Put the chosen solution into action. Develop an implementation plan, allocate resources, and carry out the necessary steps to address the problem effectively.

Evaluate the Results:

  • Assess the outcomes of the implemented solution. Did it solve the problem as intended? What can be learned from the process? Use this information to refine future problem-solving efforts.

It’s important to note that these steps are not always linear and may involve iteration. Problem-solving is often an ongoing process, and feedback from the implementation and evaluation stages may lead to adjustments in the chosen solution or the identification of new issues that need to be addressed.

Problem-Solving Example in Education

  • Certainly: Let’s consider a problem-solving example in the context of education.
  • Problem: Declining Student Engagement in Mathematics Classes

Background:

A high school has noticed a decline in student engagement and performance in mathematics classes over the past few years. Students seem disinterested, and there is a noticeable decrease in test scores. The traditional teaching methods are not effectively capturing students’ attention, and there’s a need for innovative solutions to rekindle interest in mathematics.

Steps in Problem-Solving

Identify the problem:.

  • Clearly define the issue: declining student engagement and performance in mathematics classes.
  • Gather data on student performance, attendance, and feedback from teachers and students.

Root Cause Analysis

  • Conduct surveys, interviews, and classroom observations to identify the root causes of disengagement.
  • Identify potential factors such as teaching methods, curriculum relevance, or lack of real-world applications.

Brainstorm Solutions

  • Organize a team of educators, administrators, and even students to brainstorm creative solutions.
  • Consider integrating technology, real-world applications, project-based learning, or other interactive teaching methods.

Evaluate and Prioritize Solutions

  • Evaluate each solution based on feasibility, cost, and potential impact.
  • Prioritize solutions that are likely to address the root causes and have a positive impact on student engagement.

Implement the Chosen Solution

  • Develop an action plan for implementing the chosen solution.
  • Provide training and resources for teachers to adapt to new teaching methods or technologies.

Monitor and Evaluate

  • Continuously monitor the implementation of the solution.
  • Collect feedback from teachers and students to assess the effectiveness of the changes.

Adjust as Needed

  • Be willing to make adjustments based on ongoing feedback and data analysis.
  • Fine-tune the solution to address any unforeseen challenges or issues.

Example Solution

  • Introduce a project-based learning approach in mathematics classes, where students work on real-world problems that require mathematical skills.
  • Incorporate technology, such as educational apps or interactive simulations, to make learning more engaging.
  • Provide professional development for teachers to enhance their skills in implementing these new teaching methods.

Expected Outcomes:

  • Increased student engagement and interest in mathematics.
  • Improvement in test scores and overall academic performance.
  • Positive feedback from both teachers and students.

Final Words

This problem-solving approach in education involves a systematic process of identifying, analyzing, and addressing issues to enhance the learning experience for students.

Leave a Reply Cancel reply

Teach educator.

"Teach Educator" is a dynamic and innovative platform designed to empower educators with the tools and resources they need to excel in their teaching journey. This comprehensive solution goes beyond traditional methods, offering a collaborative space where educators can access cutting-edge teaching techniques, share best practices, and engage in professional development.

Privacy Policy

Live Cricket Score

Recent Post

Best Guide for Bank of America Internships Programs - Latest 2024-compressed

Best Guide for Bank of America Internships Programs – Latest 2024

March 8, 2024

AIOU Announces Final Date Sheet for Matric, F-compressed

AIOU Announces Final Date Sheet for Matric, F.A / I.Com Autumn Semester 2024

Textbook Evaluation Methods & Its Types - Latest (2)-compressed

Textbook Evaluation Methods & Its Types – Latest

Copyright © 2024 Teach Educator

Privacy policy

Discover more from Teach Educator

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

Tesla engineers break down what it's like to interview at Elon Musk's car company

  • Tesla attracted more than 3.6 million applications in 2022.
  • Tesla's hiring process can involve up to 9 interviews, a presentation, and a letter to Elon Musk.
  • 10 Tesla engineers broke down the process and gave tips for getting a job at Musk's company.

Insider Today

Millions of people are lining up to work for Tesla .

The electric carmaker said it received more than 3.6 million applications in 2022. But engineers at Tesla say it's no small feat to land a role at Elon Musk's most well-known company.

Tesla's hiring process for engineers can require as many as 9 interviews, a series of tests, and in some cases, a letter to Musk himself.

Business Insider spoke with 10 current Tesla engineers about what it takes to work at the company. The employees spoke under the condition of anonymity to protect their employment, but their identities and roles at Tesla have been verified by BI.

Several engineers said it took multiple attempts to land a role at the company, and the process could be laborious. Typically, applicants must start from the beginning of the process when applying for a new role externally.

From start to finish, it can take up to six months to receive an offer letter.

The first step in the application process is pretty standard

Tesla typically responds to a successful application by setting up an interview with a recruiter or a human-resources employee.

Tesla engineers said they secured an initial interview by either sending their résumé into an application on Tesla's careers page, chatting with a Tesla representative at a networking event, or having a colleague pass along their résumé through the company's internal recommendation system.

"Sometimes it really is who you know at Tesla," one engineer who has worked at the company for six years said. "It helps to go to a feeder college where a classmate can help recommend you for a role."

Recruiters often sift through thousands of applications, giving interviews to a maximum of only 20 or so applicants , according to four engineers who've been involved in the hiring process. Only about half of those candidates would make it to the next step, they said.

After the initial culture-fit interview — which includes traditional questions about why people want to work at Tesla and how they jibe with others — candidates who progress typically chat separately with a manager and at least one engineer from their prospective team. These interviews are more technical and sometimes include a take-home or live test.

"Tesla takes a no-bullshit approach," one engineer told BI. "At other companies, you can sometimes get away with saying something to sound impressive. You can't do that at Tesla. If you don't know something, own up to it because they will always ask the follow-up questions."

Panel interviews can last up to six hours

The next step in Tesla's hiring process includes a presentation and a series of rapid-fire interviews that can take anywhere from four to six hours.

Applicants are typically told to present on a previous project for 15 to 30 minutes, followed by a Q&A session on the project. Tesla workers said it was best for early-career applicants to present on college group projects or personal ventures.

Four to six engineers sit in on the presentation and later break off to interview the candidate on their own for about 30 minutes each.

"We try to leave it pretty open-ended because it's a good way to find red flags," an engineer who has been involved in the recruiting process said regarding the presentation prompt. "We tell them not to present something confidential, and that's the biggest red flag if they present something like that. It's an easy no if we know they won't be trustworthy."

Some Tesla engineers said they spent more than 40 hours preparing for the presentation over the course of several weeks. The panel can take place over Zoom or in person. It also includes a short break in the middle of the session to give panelists time to take lunch.

"You need to make sure you know the technical details of your project inside and out," one engineer said. "It doesn't have to be the most complicated tech so long as you can talk about what you've done in great detail. You need to be able to tell them why you approached it the way you did and address other ways of accomplishing it as well."

One engineer with knowledge of the process said that after the panel, the employees would meet to give a "blind vote" on the candidate, meaning the panelists all submit their scores at once. Candidates are scored on a scale of one to four. The engineer said that if a single panel member were to give the candidate a score of one and could back up their opinion, the individual's application would usually be rejected, while a score of a three or a four would be viewed as a sign of approval for the prospective hire.

Two engineers said only about half the applicants who made it to the panel stage would be selected.

Sit tight — it could take six months to land the job

Depending on the role, some applicants are offered the job after a successful panel interview. For higher-level positions, the candidates can go on to interview with director or VP-level employees.

Three workers said some applicants were required to fill out a form that would be sent to a VP or director-level worker outlining three reasons they would be a good fit for Tesla. Some of the notes would even be passed onto Musk, the engineers said. Last year, the Tesla CEO said in an email to staff that he must approve all new hires .

From start to finish, the entire process could take anywhere from one to six months, the engineers said. Seven engineers said Tesla had the most intensive application process they'd seen in the industry.

"Half the time, we miss out because we're too slow," an engineer with knowledge of the hiring process said. "We know it, but it's set up in some ways to find the people who are so gung-ho they're willing to wait. They're people who'd probably get a higher base pay at a different company, but they have the opportunity to cash in on Tesla stock too."

A Tesla spokesperson didn't respond to a request for comment.

Do you work for Tesla or have insight to share? Reach out to the reporter from a non-work email and device at [email protected]

Watch: Tesla's biggest problem is one nobody saw coming

the first step of the problem solving process is to

  • Main content

Check for Recalls Search vehicles, car seats, tires and other equipment for safety recalls, investigations, complaints and manufacturer communication.

Where’s my vin.

Every vehicle has a unique vehicle identification number , often referred to as a VIN. Look on the lower left of your car’s windshield for your 17-character VIN. Your VIN is also located on your car’s registration card, and it may be shown on your insurance card.

Vehicle Identification Number location

What information will display in the search results?

  • When searching by license plate or VIN, you’ll learn if a specific vehicle needs to be repaired as part of a recall.
  • When searching by a vehicle’s year, make and model, or for car seats, tires or equipment, you'll get general results for recalls, investigations, complaints and manufacturer communications.

What will the license plate and VIN search show?

  • An unrepaired recall for a vehicle from  certain manufacturers .
  • If the vehicle has no unrepaired recalls, you will see the message: "0 unrepaired recalls associated with this VIN."

What won’t the license plate and VIN search show?

  • A safety recall that has already been repaired. 
  • Some recently announced safety recalls for which not all VINs have been identified. VINs are added continuously so please check regularly. 
  • Safety recalls that are more than 15 years old (except where a manufacturer offers more coverage).
  • Safety recalls conducted by small vehicle manufacturers, including some ultra-luxury brands and specialty applications.
  • Manufacturer customer service or other non-safety recall campaigns.
  • A recall involving an international vehicle.

Other search options, including by NHTSA ID

You can also search for recalls and safety issues information by NHTSA ID  and  complaints by keyword . 

Get Recall Alerts

Download NHTSA's free SaferCar app. When SaferCar discovers a safety recall for the vehicle or equipment you entered, it will send you an alert on your phone.

You can also sign up for general recall alerts via email.

Report a Safety Problem by filing a complaint with NHTSA

Have you experienced a vehicle, tire, car seat, or equipment safety problem that could be a safety defect.

If so, you can file a complaint that we will carefully review — like we do with every safety problem submitted to NHTSA. Complaints like yours help us investigate possible defects, which could lead to a safety recall.

From complaints to recall

NHTSA issues vehicle safety standards and requires manufacturers to recall vehicles and equipment that have safety-related defects. Learn about NHTSA's recall process.

Reporting your problem is the important first step.

Your complaint will be added to a public NHTSA database after personally identifying information is removed.

If the agency receives similar reports from a number of people about the same product, this could indicate that a safety-related defect may exist that would warrant the opening of an investigation.

Investigations

Nhtsa conducts an investigation from reported complaints..

A. SCREENING

NHTSA reviews filed complaints from vehicle owners and other information related to alleged defects to decide whether to open an investigation.

B. ANALYSIS

NHTSA conducts an analysis of any petitions calling for defect investigations. If the petition is denied, the reasons for the denial are published in the Federal Register.

C. INVESTIGATION

NHTSA opens an investigation of alleged safety defects. It is closed when they notify the manufacturer of recall recommendations or they don’t identify a safety-related defect.

D. RECALL MANAGEMENT

NHTSA monitors the effectiveness and management of recalls, including the filing of recall notices with NHTSA, communicating with owners regarding the recalls and tracking the completion rate of each recall.

Initiated safety recalls require a manufacturer's action to announce and remedy the defects.

A recall is issued when a manufacturer or NHTSA determines that a vehicle, equipment, car seat, or tire creates an unreasonable safety risk or fails to meet minimum safety standards. Most decisions to conduct a recall and remedy a safety defect are made voluntarily by manufacturers prior to any involvement by NHTSA.

Manufacturers are required to fix the problem by repairing it, replacing it, offering a refund, or in rare cases repurchasing the vehicle.

Using our VIN lookup tool, you can access recall information provided by the manufacturer conducting the recall which may be not posted yet on NHTSA’s site.

Recall Spotlight

Recalls Spotlight monitors high-profile recalls and offers consumers resources to find and address vehicle recalls.

Defects Investigation and Recalls Resources

Quick links to databases, resources and reports related to defects investigations and recalls.

Roles in the Recall Process

the first step of the problem solving process is to

Manufacturer

Manufacturers will notify registered owners by first class mail within 60 days of notifying NHTSA of a recall decision. Manufacturers should offer a proper remedy to the owner.

the first step of the problem solving process is to

NHTSA will monitor each safety recall to make sure owners receive safe, free, and effective remedies from manufacturers according to the Safety Act and Federal regulations.

the first step of the problem solving process is to

You (owner)

You’ll be notified via mail from the manufacturer. When you receive a notification, follow any interim safety guidance provided by the manufacturer and contact your local dealership to fix the recalled part for free.

Register your vehicle, tires, car seats & equipment and check recalls twice a year.

Motor Vehicle Safety Defects And Recalls - What Every Vehicle Owner Should Know

Download this brochure to get more information about how and why recall campaigns are initiated, and to know your rights and responsibilities when a vehicle or item of motor vehicle equipment is recalled.

Vehicle Comparison

Available manufacturers.

Renew your support to TVO!

Donations provide powerful moments of learning for all Ontarians. From digital learning resources to TVOkids to docs and current affairs. Donate now!

  • Current Affairs Expand: Current Affairs
  • Docs & Series Expand: Docs & Series
  • Podcasts Expand: Podcasts

Why Ontario should declare intimate-partner violence an epidemic

OPINION: Last summer, the government said it would not take this step. It needs to reverse its decision — because the first step to solving a problem is naming it

the first step of the problem solving process is to

Written by Chantal Braganza

Mar 8, 2024

a group of people hold candles in the dark

Mourners hold a candlelit vigil in remembrance of Carol Culleton, Anastasia Kuzyk and Natalie Warmardam in Wilno on September 25, 2015. (Justin Tang/CP)

If there is one meaningful and relatively simple thing the Ontario government can do this International Women’s Day, it’s to declare intimate-partner violence an epidemic in this province.

I’m saying this because the provincial government refused to do so just last summer.

Article continues below

great american thaw

Two years ago, Ontario’s chief coroner published the results of a juried inquest into Basil Borutski’s 2015 killing of Carol Culleton, Nathalie Warmerdam, and Anastasia Kuzyk in Renfrew County. It included recommendations to address the systemic conditions that made such a horrific triple-homicide possible — and work toward preventing future cases. Some actions were geared towards education, such as public-awareness programs and training for law-enforcement personnel. Others focused on prevention, from registries for repeat offenders to survivor-informed risk assessments around pleas, bail, and sentencing.

But the number one item on the 86-point list, in a section titled Oversight and Accountability, was “Formally declare intimate partner violence as an epidemic.”

Last June, the province confirmed it would reject this item, as IPV “would not be considered an epidemic as it is not an infectious or communicable disease.” 

The United Nations would disagree with this . So would a lot of Ontarians. In the eight months since, almost 100 cities in the province have officially declared IPV an epidemic in their own jurisdictions: from Mattise Val-Côté in the north to Amherstberg in the south, and nearly every major city centre in between. Toronto, Ottawa, Kingston, Windsor, Thunder Bay. Many of the motions to do so were the result of unanimous council votes; the declarations themselves cite regionally specific factors such as increased calls to police for IPV incidents and higher domestic-violence rates in rural areas . 

Intimate-partner violence and its effects are inextricably linked with public health , and not only because of the immediately apparent consequences of physical and sexual violence. Studies have shown for some time that survivors are at significantly increased risk of future poor health outcomes, from chronic disease to mental illness .

Whether classified as a pathogen or not, IPV has ripple effects that certainly spread like one. Children exposed to it are at higher risk of developmental and psychiatric issues later in life, and exposure to IPV is associated with a higher likelihood of intergenerational recurrence. It often seeps into a victim’s workplace . We also know that marginalized women are more likely to experience it — and some aspects of these lived realities make reporting violence or accessing services a difficult proposition , whether that’s because these women are disabled, newcomers, unhoused, underage, or trans. 

Most concerningly, IPV has been on a fast upward trajectory over the past four years. At least 58 women in Ontario were killed in the last year alone with a man charged, convicted, or deemed responsible for her death; 30 of those deaths took place in a 30-week period in the first half of 2023. That total is 36 per cent higher than the average rate before the pandemic began .

Actionable policy — such as following up on the 85 other recommendations from the coroner’s  inquest — will always speak louder than statements. The Family Law Act could use some amending, specifically with how it deals with histories of intimate-partner violence. The inquest suggests the act include “authority to order counselling for the perpetrator where IPV findings are made by the family court.” Justice-system personnel and people who work with survivors would benefit from cohesive frameworks of what intimate-partner violence looks like and how it affects families to ensure no one is misunderstood or left behind. Studying how trends in court decisions on IPV cases can affect recurrence or escalation of violence can help prevent future tragedies.

But as a first step: it’s past time to declare that a type of violence more than 40 per cent of women will experience in their life is an epidemic. Anyone whose life has been affected by intimate-partner violence can tell you that it is on the rise and that, with concerted effort, its causes are preventable. The province should acknowledge that reality by reversing its decision from last summer — because the first step to solving a problem is naming it.

Chantal Braganza

Chantal Braganza is a deputy editor at Chatelaine, with a focus on food, politics, social justice, and the arts

More Opinion

man in button-up shirt and tie speaks into a microphone with one hand raised in front of a sign reading "Connecting Canada"

A challenge for politicians: Make decisions reasonably quickly — and then stick to them

Matt Gurney | Mar 7, 2024

woman in blue blazer stands in front of flags

Ontario needs to pony up more cash for colleges and universities

David Moscrop | Mar 6, 2024

closeup of suited man

The Durham byelection results may not matter much. But they’re a warning for the Liberals

Matt Gurney | Mar 5, 2024

IMAGES

  1. The 5 Steps of Problem Solving

    the first step of the problem solving process is to

  2. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    the first step of the problem solving process is to

  3. identify and explain the 7 stages of the problem solving process

    the first step of the problem solving process is to

  4. Problem-Solving Process in 6 Steps

    the first step of the problem solving process is to

  5. ️ Problem solving step. 5 Problem Solving Steps. 2019-01-14

    the first step of the problem solving process is to

  6. three stages of problem solving according to traditional models

    the first step of the problem solving process is to

COMMENTS

  1. The Problem-Solving Process

    Allocate Resources. Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off ...

  2. What is Problem Solving? Steps, Process & Techniques

    1. Define the problem. Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes.. The sections below help explain key problem-solving steps.

  3. The Problem-Solving Process

    Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity.

  4. What is Problem Solving? An Introduction

    Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn't working as expected, or something as ...

  5. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  6. The 5 steps of the solving problem process

    The problem solving process typically includes: Pinpointing what's broken by gathering data and consulting with team members. Figuring out why it's not working by mapping out and troubleshooting the problem. Deciding on the most effective way to fix it by brainstorming and then implementing a solution. While skills like active listening ...

  7. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  8. 1.3: What is Problem Solving?

    Problem solving is the process of identifying a problem, developing possible solution paths, and taking the appropriate course of action. ... What is the first step of solving any problem? The first step is to recognize that there is a problem and identify the right cause of the problem. This may sound obvious, but similar problems can arise ...

  9. 5 Step Problem Solving Process

    Making a decision to alter the way your team works may also be a problem. Launching new products, technological upgrades, customer feedback collection exercises—all of these are also "problems" that need to be "solved". Here are the steps of a problem-solving process: 1. Defining the Problem. The first step in the process is often ...

  10. Problem-Solving with Critical Thinking

    Problem-Solving Process Step 1: Define the problem. Albert Einstein once said, "If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and five minutes thinking about solutions." Often, when we first hear of or learn about a problem, we do not have all the information. If we immediately try to find a solution ...

  11. What Is Problem Solving? Steps, Techniques, and Best ...

    How to Solve Problems: 5 Steps. 1. Precisely Identify Problems. As obvious as it seems, identifying the problem is the first step in the problem-solving process. Pinpointing a problem at the beginning of the process will guide your research, collaboration, and solutions in the right direction. At this stage, your task is to identify the scope ...

  12. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  13. THE PROBLEM-SOLVING PROCESS Flashcards

    Step 1: Define the Problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically. Identify what standard or expectation is violated. Determine in which process the problem lies. Avoid trying to solve the problem without data.

  14. 14 Critical First Steps To Solving A Problem

    6. Look At The Stakeholders. When trying to solve a problem it's helpful to start with an understanding of what the problem is about and what a desired outcome/solution could be if the problem ...

  15. Problem solving techniques: Steps and methods

    Evaluate the options. Select the best solution. Create an implementation plan. Communicate your solution. Let's look at each step in a little more detail. The first solution you come up with won't always be the best - taking the time to consider your options is an essential problem solving technique. 1.

  16. What Is Problem-Solving? How to Use Problem-Solving Skills to Resolve

    The key to cultivating excellent problem-solving skills is having a distinct process designed to produce solutions. While it may seem like problem-solving involves a complex strategy, it features several steps that are easy to follow. The following steps represent a general problem-solving process you can use when you need to find a solution. 1.

  17. 5 Steps (And 4 Techniques) for Effective Problem Solving

    4. Implement the Solution. At this stage of problem solving, be prepared for feedback, and plan for this. When you roll out the solution, request feedback on the success of the change made. 5. Review, Iterate, and Improve. Making a change shouldn't be a one time action.

  18. The Problem-Definition Process

    Justify the need. Understand the problem and its wider context. Write a problem statement. The Problem-Definition Process encourages you to define and understand the problem that you're trying to solve, in detail. It also helps you confirm that solving the problem contributes towards your organization's objectives.

  19. Master the 7-Step Problem-Solving Process for Better ...

    Step 2: Disaggregate. After defining the problem, the next step in the 7-step problem-solving process is to disaggregate the problem into smaller, more manageable parts. Disaggregation helps break down the problem into smaller pieces that can be analyzed individually. This step is crucial in understanding the root cause of the problem and ...

  20. Chapter 11: Problem Solving Flashcards

    Terms in this set (20) b. Discuss and document individual views until everyone agrees the nature of the problem. The first step in problem solving is to: a. Descriptive, functional, and prescriptive. The main approaches to examining how groups solve problems are: d. Forming, storming, norming, and performing.

  21. Problem Solving Flashcards

    If we can solve it once, then we can define the steps in order to solve it again. What is the third in the problem solving process? Test the algorithm. Why test the algorithm? to verify that it works. Verify it solves the problem given. What is the fourth step in the problem solving process? Refine the algorithm.

  22. How to Solve Any Problem in Process Automation: 6 Steps

    The first step is to clearly define the problem you want to solve with process automation. What is the current situation, and what are the pain points, challenges, or gaps that need to be ...

  23. What are the 7 Steps to Problem-Solving? & Its Examples

    7 Steps to Problem-Solving. 7 Steps to Problem-Solving is a systematic process that involves analyzing a situation, generating possible solutions, and implementing the best course of action.While different problem-solving models exist, a common approach often involves the following seven steps:

  24. How to Get Hired at Tesla: Interview Process, Tips

    The first step in the application process is pretty standard Tesla typically responds to a successful application by setting up an interview with a recruiter or a human-resources employee.

  25. Check for Recalls: Vehicle, Car Seat, Tire, Equipment

    Learn about NHTSA's recall process. 01 Complaints. Reporting your problem is the important first step. Your complaint will be added to a public NHTSA database after personally identifying information is removed. If the agency receives similar reports from a number of people about the same product, this could indicate that a safety-related ...

  26. Module 1

    Military Problem Solving Process (MPSP) The ________ was expanded and altered so it could apply to operational problems. Incorrect - Mission analysis Process. Military Problem Solving Process (MPSP) As a leader which technique or process would you use to plan for tactical military operations? Military Decision Making Process (MDMP) Study with ...

  27. Why Ontario should declare intimate-partner violence an epidemic

    The province should acknowledge that reality by reversing its decision from last summer — because the first step to solving a problem is naming it. Chantal Braganza. Chantal Braganza is a deputy editor at Chatelaine, with a focus on food, politics, social justice, and the arts @chantalbraganza.

  28. Locksbottom Podiatry on Instagram: "INJURING YOUR FOOT It is actually

    6 likes, 2 comments - locksbottompodiatry on October 9, 2021: "INJURING YOUR FOOT It is actually pretty easy to injure your foot due to the complexity of it, ..."